Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLoweringBase class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCExpr.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Target/TargetLoweringObjectFile.h"
     31 #include "llvm/Target/TargetMachine.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include <cctype>
     34 using namespace llvm;
     35 
     36 /// InitLibcallNames - Set default libcall names.
     37 ///
     38 static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
     39   Names[RTLIB::SHL_I16] = "__ashlhi3";
     40   Names[RTLIB::SHL_I32] = "__ashlsi3";
     41   Names[RTLIB::SHL_I64] = "__ashldi3";
     42   Names[RTLIB::SHL_I128] = "__ashlti3";
     43   Names[RTLIB::SRL_I16] = "__lshrhi3";
     44   Names[RTLIB::SRL_I32] = "__lshrsi3";
     45   Names[RTLIB::SRL_I64] = "__lshrdi3";
     46   Names[RTLIB::SRL_I128] = "__lshrti3";
     47   Names[RTLIB::SRA_I16] = "__ashrhi3";
     48   Names[RTLIB::SRA_I32] = "__ashrsi3";
     49   Names[RTLIB::SRA_I64] = "__ashrdi3";
     50   Names[RTLIB::SRA_I128] = "__ashrti3";
     51   Names[RTLIB::MUL_I8] = "__mulqi3";
     52   Names[RTLIB::MUL_I16] = "__mulhi3";
     53   Names[RTLIB::MUL_I32] = "__mulsi3";
     54   Names[RTLIB::MUL_I64] = "__muldi3";
     55   Names[RTLIB::MUL_I128] = "__multi3";
     56   Names[RTLIB::MULO_I32] = "__mulosi4";
     57   Names[RTLIB::MULO_I64] = "__mulodi4";
     58   Names[RTLIB::MULO_I128] = "__muloti4";
     59   Names[RTLIB::SDIV_I8] = "__divqi3";
     60   Names[RTLIB::SDIV_I16] = "__divhi3";
     61   Names[RTLIB::SDIV_I32] = "__divsi3";
     62   Names[RTLIB::SDIV_I64] = "__divdi3";
     63   Names[RTLIB::SDIV_I128] = "__divti3";
     64   Names[RTLIB::UDIV_I8] = "__udivqi3";
     65   Names[RTLIB::UDIV_I16] = "__udivhi3";
     66   Names[RTLIB::UDIV_I32] = "__udivsi3";
     67   Names[RTLIB::UDIV_I64] = "__udivdi3";
     68   Names[RTLIB::UDIV_I128] = "__udivti3";
     69   Names[RTLIB::SREM_I8] = "__modqi3";
     70   Names[RTLIB::SREM_I16] = "__modhi3";
     71   Names[RTLIB::SREM_I32] = "__modsi3";
     72   Names[RTLIB::SREM_I64] = "__moddi3";
     73   Names[RTLIB::SREM_I128] = "__modti3";
     74   Names[RTLIB::UREM_I8] = "__umodqi3";
     75   Names[RTLIB::UREM_I16] = "__umodhi3";
     76   Names[RTLIB::UREM_I32] = "__umodsi3";
     77   Names[RTLIB::UREM_I64] = "__umoddi3";
     78   Names[RTLIB::UREM_I128] = "__umodti3";
     79 
     80   // These are generally not available.
     81   Names[RTLIB::SDIVREM_I8] = 0;
     82   Names[RTLIB::SDIVREM_I16] = 0;
     83   Names[RTLIB::SDIVREM_I32] = 0;
     84   Names[RTLIB::SDIVREM_I64] = 0;
     85   Names[RTLIB::SDIVREM_I128] = 0;
     86   Names[RTLIB::UDIVREM_I8] = 0;
     87   Names[RTLIB::UDIVREM_I16] = 0;
     88   Names[RTLIB::UDIVREM_I32] = 0;
     89   Names[RTLIB::UDIVREM_I64] = 0;
     90   Names[RTLIB::UDIVREM_I128] = 0;
     91 
     92   Names[RTLIB::NEG_I32] = "__negsi2";
     93   Names[RTLIB::NEG_I64] = "__negdi2";
     94   Names[RTLIB::ADD_F32] = "__addsf3";
     95   Names[RTLIB::ADD_F64] = "__adddf3";
     96   Names[RTLIB::ADD_F80] = "__addxf3";
     97   Names[RTLIB::ADD_F128] = "__addtf3";
     98   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
     99   Names[RTLIB::SUB_F32] = "__subsf3";
    100   Names[RTLIB::SUB_F64] = "__subdf3";
    101   Names[RTLIB::SUB_F80] = "__subxf3";
    102   Names[RTLIB::SUB_F128] = "__subtf3";
    103   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    104   Names[RTLIB::MUL_F32] = "__mulsf3";
    105   Names[RTLIB::MUL_F64] = "__muldf3";
    106   Names[RTLIB::MUL_F80] = "__mulxf3";
    107   Names[RTLIB::MUL_F128] = "__multf3";
    108   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    109   Names[RTLIB::DIV_F32] = "__divsf3";
    110   Names[RTLIB::DIV_F64] = "__divdf3";
    111   Names[RTLIB::DIV_F80] = "__divxf3";
    112   Names[RTLIB::DIV_F128] = "__divtf3";
    113   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    114   Names[RTLIB::REM_F32] = "fmodf";
    115   Names[RTLIB::REM_F64] = "fmod";
    116   Names[RTLIB::REM_F80] = "fmodl";
    117   Names[RTLIB::REM_F128] = "fmodl";
    118   Names[RTLIB::REM_PPCF128] = "fmodl";
    119   Names[RTLIB::FMA_F32] = "fmaf";
    120   Names[RTLIB::FMA_F64] = "fma";
    121   Names[RTLIB::FMA_F80] = "fmal";
    122   Names[RTLIB::FMA_F128] = "fmal";
    123   Names[RTLIB::FMA_PPCF128] = "fmal";
    124   Names[RTLIB::POWI_F32] = "__powisf2";
    125   Names[RTLIB::POWI_F64] = "__powidf2";
    126   Names[RTLIB::POWI_F80] = "__powixf2";
    127   Names[RTLIB::POWI_F128] = "__powitf2";
    128   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    129   Names[RTLIB::SQRT_F32] = "sqrtf";
    130   Names[RTLIB::SQRT_F64] = "sqrt";
    131   Names[RTLIB::SQRT_F80] = "sqrtl";
    132   Names[RTLIB::SQRT_F128] = "sqrtl";
    133   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    134   Names[RTLIB::LOG_F32] = "logf";
    135   Names[RTLIB::LOG_F64] = "log";
    136   Names[RTLIB::LOG_F80] = "logl";
    137   Names[RTLIB::LOG_F128] = "logl";
    138   Names[RTLIB::LOG_PPCF128] = "logl";
    139   Names[RTLIB::LOG2_F32] = "log2f";
    140   Names[RTLIB::LOG2_F64] = "log2";
    141   Names[RTLIB::LOG2_F80] = "log2l";
    142   Names[RTLIB::LOG2_F128] = "log2l";
    143   Names[RTLIB::LOG2_PPCF128] = "log2l";
    144   Names[RTLIB::LOG10_F32] = "log10f";
    145   Names[RTLIB::LOG10_F64] = "log10";
    146   Names[RTLIB::LOG10_F80] = "log10l";
    147   Names[RTLIB::LOG10_F128] = "log10l";
    148   Names[RTLIB::LOG10_PPCF128] = "log10l";
    149   Names[RTLIB::EXP_F32] = "expf";
    150   Names[RTLIB::EXP_F64] = "exp";
    151   Names[RTLIB::EXP_F80] = "expl";
    152   Names[RTLIB::EXP_F128] = "expl";
    153   Names[RTLIB::EXP_PPCF128] = "expl";
    154   Names[RTLIB::EXP2_F32] = "exp2f";
    155   Names[RTLIB::EXP2_F64] = "exp2";
    156   Names[RTLIB::EXP2_F80] = "exp2l";
    157   Names[RTLIB::EXP2_F128] = "exp2l";
    158   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    159   Names[RTLIB::SIN_F32] = "sinf";
    160   Names[RTLIB::SIN_F64] = "sin";
    161   Names[RTLIB::SIN_F80] = "sinl";
    162   Names[RTLIB::SIN_F128] = "sinl";
    163   Names[RTLIB::SIN_PPCF128] = "sinl";
    164   Names[RTLIB::COS_F32] = "cosf";
    165   Names[RTLIB::COS_F64] = "cos";
    166   Names[RTLIB::COS_F80] = "cosl";
    167   Names[RTLIB::COS_F128] = "cosl";
    168   Names[RTLIB::COS_PPCF128] = "cosl";
    169   Names[RTLIB::POW_F32] = "powf";
    170   Names[RTLIB::POW_F64] = "pow";
    171   Names[RTLIB::POW_F80] = "powl";
    172   Names[RTLIB::POW_F128] = "powl";
    173   Names[RTLIB::POW_PPCF128] = "powl";
    174   Names[RTLIB::CEIL_F32] = "ceilf";
    175   Names[RTLIB::CEIL_F64] = "ceil";
    176   Names[RTLIB::CEIL_F80] = "ceill";
    177   Names[RTLIB::CEIL_F128] = "ceill";
    178   Names[RTLIB::CEIL_PPCF128] = "ceill";
    179   Names[RTLIB::TRUNC_F32] = "truncf";
    180   Names[RTLIB::TRUNC_F64] = "trunc";
    181   Names[RTLIB::TRUNC_F80] = "truncl";
    182   Names[RTLIB::TRUNC_F128] = "truncl";
    183   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    184   Names[RTLIB::RINT_F32] = "rintf";
    185   Names[RTLIB::RINT_F64] = "rint";
    186   Names[RTLIB::RINT_F80] = "rintl";
    187   Names[RTLIB::RINT_F128] = "rintl";
    188   Names[RTLIB::RINT_PPCF128] = "rintl";
    189   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    190   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    191   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    192   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
    193   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    194   Names[RTLIB::FLOOR_F32] = "floorf";
    195   Names[RTLIB::FLOOR_F64] = "floor";
    196   Names[RTLIB::FLOOR_F80] = "floorl";
    197   Names[RTLIB::FLOOR_F128] = "floorl";
    198   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    199   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    200   Names[RTLIB::COPYSIGN_F64] = "copysign";
    201   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    202   Names[RTLIB::COPYSIGN_F128] = "copysignl";
    203   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    204   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
    205   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
    206   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    207   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    208   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    209   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    210   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    211   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
    212   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    213   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    214   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
    215   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    216   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    217   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    218   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    219   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    220   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    221   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    222   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    223   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    224   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    225   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    226   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    227   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    228   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    229   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
    230   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
    231   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
    232   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    233   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    234   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    235   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    236   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    237   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    238   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    239   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    240   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    241   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    242   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    243   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    244   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    245   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    246   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    247   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    248   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
    249   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
    250   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
    251   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    252   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    253   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    254   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    255   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    256   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    257   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
    258   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    259   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    260   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    261   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    262   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
    263   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    264   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    265   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    266   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    267   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
    268   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    269   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    270   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    271   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    272   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
    273   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    274   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    275   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    276   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    277   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
    278   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    279   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    280   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    281   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    282   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
    283   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    284   Names[RTLIB::OEQ_F32] = "__eqsf2";
    285   Names[RTLIB::OEQ_F64] = "__eqdf2";
    286   Names[RTLIB::OEQ_F128] = "__eqtf2";
    287   Names[RTLIB::UNE_F32] = "__nesf2";
    288   Names[RTLIB::UNE_F64] = "__nedf2";
    289   Names[RTLIB::UNE_F128] = "__netf2";
    290   Names[RTLIB::OGE_F32] = "__gesf2";
    291   Names[RTLIB::OGE_F64] = "__gedf2";
    292   Names[RTLIB::OGE_F128] = "__getf2";
    293   Names[RTLIB::OLT_F32] = "__ltsf2";
    294   Names[RTLIB::OLT_F64] = "__ltdf2";
    295   Names[RTLIB::OLT_F128] = "__lttf2";
    296   Names[RTLIB::OLE_F32] = "__lesf2";
    297   Names[RTLIB::OLE_F64] = "__ledf2";
    298   Names[RTLIB::OLE_F128] = "__letf2";
    299   Names[RTLIB::OGT_F32] = "__gtsf2";
    300   Names[RTLIB::OGT_F64] = "__gtdf2";
    301   Names[RTLIB::OGT_F128] = "__gttf2";
    302   Names[RTLIB::UO_F32] = "__unordsf2";
    303   Names[RTLIB::UO_F64] = "__unorddf2";
    304   Names[RTLIB::UO_F128] = "__unordtf2";
    305   Names[RTLIB::O_F32] = "__unordsf2";
    306   Names[RTLIB::O_F64] = "__unorddf2";
    307   Names[RTLIB::O_F128] = "__unordtf2";
    308   Names[RTLIB::MEMCPY] = "memcpy";
    309   Names[RTLIB::MEMMOVE] = "memmove";
    310   Names[RTLIB::MEMSET] = "memset";
    311   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    312   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    313   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    314   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    315   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    316   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    317   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    318   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    319   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    320   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    321   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    322   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    323   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    324   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    325   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    326   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    327   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    328   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    329   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    330   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    331   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    332   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    333   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    334   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    335   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    336   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    337   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    338   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    339   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    340   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    341   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    342   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    343   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    344 
    345   if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
    346     Names[RTLIB::SINCOS_F32] = "sincosf";
    347     Names[RTLIB::SINCOS_F64] = "sincos";
    348     Names[RTLIB::SINCOS_F80] = "sincosl";
    349     Names[RTLIB::SINCOS_F128] = "sincosl";
    350     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
    351   } else {
    352     // These are generally not available.
    353     Names[RTLIB::SINCOS_F32] = 0;
    354     Names[RTLIB::SINCOS_F64] = 0;
    355     Names[RTLIB::SINCOS_F80] = 0;
    356     Names[RTLIB::SINCOS_F128] = 0;
    357     Names[RTLIB::SINCOS_PPCF128] = 0;
    358   }
    359 }
    360 
    361 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    362 ///
    363 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    364   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    365     CCs[i] = CallingConv::C;
    366   }
    367 }
    368 
    369 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    370 /// UNKNOWN_LIBCALL if there is none.
    371 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    372   if (OpVT == MVT::f32) {
    373     if (RetVT == MVT::f64)
    374       return FPEXT_F32_F64;
    375     if (RetVT == MVT::f128)
    376       return FPEXT_F32_F128;
    377   } else if (OpVT == MVT::f64) {
    378     if (RetVT == MVT::f128)
    379       return FPEXT_F64_F128;
    380   }
    381 
    382   return UNKNOWN_LIBCALL;
    383 }
    384 
    385 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    386 /// UNKNOWN_LIBCALL if there is none.
    387 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    388   if (RetVT == MVT::f32) {
    389     if (OpVT == MVT::f64)
    390       return FPROUND_F64_F32;
    391     if (OpVT == MVT::f80)
    392       return FPROUND_F80_F32;
    393     if (OpVT == MVT::f128)
    394       return FPROUND_F128_F32;
    395     if (OpVT == MVT::ppcf128)
    396       return FPROUND_PPCF128_F32;
    397   } else if (RetVT == MVT::f64) {
    398     if (OpVT == MVT::f80)
    399       return FPROUND_F80_F64;
    400     if (OpVT == MVT::f128)
    401       return FPROUND_F128_F64;
    402     if (OpVT == MVT::ppcf128)
    403       return FPROUND_PPCF128_F64;
    404   }
    405 
    406   return UNKNOWN_LIBCALL;
    407 }
    408 
    409 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    410 /// UNKNOWN_LIBCALL if there is none.
    411 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    412   if (OpVT == MVT::f32) {
    413     if (RetVT == MVT::i8)
    414       return FPTOSINT_F32_I8;
    415     if (RetVT == MVT::i16)
    416       return FPTOSINT_F32_I16;
    417     if (RetVT == MVT::i32)
    418       return FPTOSINT_F32_I32;
    419     if (RetVT == MVT::i64)
    420       return FPTOSINT_F32_I64;
    421     if (RetVT == MVT::i128)
    422       return FPTOSINT_F32_I128;
    423   } else if (OpVT == MVT::f64) {
    424     if (RetVT == MVT::i8)
    425       return FPTOSINT_F64_I8;
    426     if (RetVT == MVT::i16)
    427       return FPTOSINT_F64_I16;
    428     if (RetVT == MVT::i32)
    429       return FPTOSINT_F64_I32;
    430     if (RetVT == MVT::i64)
    431       return FPTOSINT_F64_I64;
    432     if (RetVT == MVT::i128)
    433       return FPTOSINT_F64_I128;
    434   } else if (OpVT == MVT::f80) {
    435     if (RetVT == MVT::i32)
    436       return FPTOSINT_F80_I32;
    437     if (RetVT == MVT::i64)
    438       return FPTOSINT_F80_I64;
    439     if (RetVT == MVT::i128)
    440       return FPTOSINT_F80_I128;
    441   } else if (OpVT == MVT::f128) {
    442     if (RetVT == MVT::i32)
    443       return FPTOSINT_F128_I32;
    444     if (RetVT == MVT::i64)
    445       return FPTOSINT_F128_I64;
    446     if (RetVT == MVT::i128)
    447       return FPTOSINT_F128_I128;
    448   } else if (OpVT == MVT::ppcf128) {
    449     if (RetVT == MVT::i32)
    450       return FPTOSINT_PPCF128_I32;
    451     if (RetVT == MVT::i64)
    452       return FPTOSINT_PPCF128_I64;
    453     if (RetVT == MVT::i128)
    454       return FPTOSINT_PPCF128_I128;
    455   }
    456   return UNKNOWN_LIBCALL;
    457 }
    458 
    459 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    460 /// UNKNOWN_LIBCALL if there is none.
    461 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    462   if (OpVT == MVT::f32) {
    463     if (RetVT == MVT::i8)
    464       return FPTOUINT_F32_I8;
    465     if (RetVT == MVT::i16)
    466       return FPTOUINT_F32_I16;
    467     if (RetVT == MVT::i32)
    468       return FPTOUINT_F32_I32;
    469     if (RetVT == MVT::i64)
    470       return FPTOUINT_F32_I64;
    471     if (RetVT == MVT::i128)
    472       return FPTOUINT_F32_I128;
    473   } else if (OpVT == MVT::f64) {
    474     if (RetVT == MVT::i8)
    475       return FPTOUINT_F64_I8;
    476     if (RetVT == MVT::i16)
    477       return FPTOUINT_F64_I16;
    478     if (RetVT == MVT::i32)
    479       return FPTOUINT_F64_I32;
    480     if (RetVT == MVT::i64)
    481       return FPTOUINT_F64_I64;
    482     if (RetVT == MVT::i128)
    483       return FPTOUINT_F64_I128;
    484   } else if (OpVT == MVT::f80) {
    485     if (RetVT == MVT::i32)
    486       return FPTOUINT_F80_I32;
    487     if (RetVT == MVT::i64)
    488       return FPTOUINT_F80_I64;
    489     if (RetVT == MVT::i128)
    490       return FPTOUINT_F80_I128;
    491   } else if (OpVT == MVT::f128) {
    492     if (RetVT == MVT::i32)
    493       return FPTOUINT_F128_I32;
    494     if (RetVT == MVT::i64)
    495       return FPTOUINT_F128_I64;
    496     if (RetVT == MVT::i128)
    497       return FPTOUINT_F128_I128;
    498   } else if (OpVT == MVT::ppcf128) {
    499     if (RetVT == MVT::i32)
    500       return FPTOUINT_PPCF128_I32;
    501     if (RetVT == MVT::i64)
    502       return FPTOUINT_PPCF128_I64;
    503     if (RetVT == MVT::i128)
    504       return FPTOUINT_PPCF128_I128;
    505   }
    506   return UNKNOWN_LIBCALL;
    507 }
    508 
    509 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    510 /// UNKNOWN_LIBCALL if there is none.
    511 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    512   if (OpVT == MVT::i32) {
    513     if (RetVT == MVT::f32)
    514       return SINTTOFP_I32_F32;
    515     if (RetVT == MVT::f64)
    516       return SINTTOFP_I32_F64;
    517     if (RetVT == MVT::f80)
    518       return SINTTOFP_I32_F80;
    519     if (RetVT == MVT::f128)
    520       return SINTTOFP_I32_F128;
    521     if (RetVT == MVT::ppcf128)
    522       return SINTTOFP_I32_PPCF128;
    523   } else if (OpVT == MVT::i64) {
    524     if (RetVT == MVT::f32)
    525       return SINTTOFP_I64_F32;
    526     if (RetVT == MVT::f64)
    527       return SINTTOFP_I64_F64;
    528     if (RetVT == MVT::f80)
    529       return SINTTOFP_I64_F80;
    530     if (RetVT == MVT::f128)
    531       return SINTTOFP_I64_F128;
    532     if (RetVT == MVT::ppcf128)
    533       return SINTTOFP_I64_PPCF128;
    534   } else if (OpVT == MVT::i128) {
    535     if (RetVT == MVT::f32)
    536       return SINTTOFP_I128_F32;
    537     if (RetVT == MVT::f64)
    538       return SINTTOFP_I128_F64;
    539     if (RetVT == MVT::f80)
    540       return SINTTOFP_I128_F80;
    541     if (RetVT == MVT::f128)
    542       return SINTTOFP_I128_F128;
    543     if (RetVT == MVT::ppcf128)
    544       return SINTTOFP_I128_PPCF128;
    545   }
    546   return UNKNOWN_LIBCALL;
    547 }
    548 
    549 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    550 /// UNKNOWN_LIBCALL if there is none.
    551 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    552   if (OpVT == MVT::i32) {
    553     if (RetVT == MVT::f32)
    554       return UINTTOFP_I32_F32;
    555     if (RetVT == MVT::f64)
    556       return UINTTOFP_I32_F64;
    557     if (RetVT == MVT::f80)
    558       return UINTTOFP_I32_F80;
    559     if (RetVT == MVT::f128)
    560       return UINTTOFP_I32_F128;
    561     if (RetVT == MVT::ppcf128)
    562       return UINTTOFP_I32_PPCF128;
    563   } else if (OpVT == MVT::i64) {
    564     if (RetVT == MVT::f32)
    565       return UINTTOFP_I64_F32;
    566     if (RetVT == MVT::f64)
    567       return UINTTOFP_I64_F64;
    568     if (RetVT == MVT::f80)
    569       return UINTTOFP_I64_F80;
    570     if (RetVT == MVT::f128)
    571       return UINTTOFP_I64_F128;
    572     if (RetVT == MVT::ppcf128)
    573       return UINTTOFP_I64_PPCF128;
    574   } else if (OpVT == MVT::i128) {
    575     if (RetVT == MVT::f32)
    576       return UINTTOFP_I128_F32;
    577     if (RetVT == MVT::f64)
    578       return UINTTOFP_I128_F64;
    579     if (RetVT == MVT::f80)
    580       return UINTTOFP_I128_F80;
    581     if (RetVT == MVT::f128)
    582       return UINTTOFP_I128_F128;
    583     if (RetVT == MVT::ppcf128)
    584       return UINTTOFP_I128_PPCF128;
    585   }
    586   return UNKNOWN_LIBCALL;
    587 }
    588 
    589 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    590 ///
    591 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    592   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    593   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    594   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    595   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
    596   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    597   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    598   CCs[RTLIB::UNE_F128] = ISD::SETNE;
    599   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    600   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    601   CCs[RTLIB::OGE_F128] = ISD::SETGE;
    602   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    603   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    604   CCs[RTLIB::OLT_F128] = ISD::SETLT;
    605   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    606   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    607   CCs[RTLIB::OLE_F128] = ISD::SETLE;
    608   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    609   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    610   CCs[RTLIB::OGT_F128] = ISD::SETGT;
    611   CCs[RTLIB::UO_F32] = ISD::SETNE;
    612   CCs[RTLIB::UO_F64] = ISD::SETNE;
    613   CCs[RTLIB::UO_F128] = ISD::SETNE;
    614   CCs[RTLIB::O_F32] = ISD::SETEQ;
    615   CCs[RTLIB::O_F64] = ISD::SETEQ;
    616   CCs[RTLIB::O_F128] = ISD::SETEQ;
    617 }
    618 
    619 /// NOTE: The constructor takes ownership of TLOF.
    620 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
    621                                        const TargetLoweringObjectFile *tlof)
    622   : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
    623   // All operations default to being supported.
    624   memset(OpActions, 0, sizeof(OpActions));
    625   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    626   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    627   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    628   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    629 
    630   // Set default actions for various operations.
    631   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
    632     // Default all indexed load / store to expand.
    633     for (unsigned IM = (unsigned)ISD::PRE_INC;
    634          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    635       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
    636       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
    637     }
    638 
    639     // These operations default to expand.
    640     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
    641     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
    642   }
    643 
    644   // Most targets ignore the @llvm.prefetch intrinsic.
    645   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    646 
    647   // ConstantFP nodes default to expand.  Targets can either change this to
    648   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    649   // to optimize expansions for certain constants.
    650   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    651   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    652   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    653   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    654   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
    655 
    656   // These library functions default to expand.
    657   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
    658   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
    659   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
    660   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
    661   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
    662   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
    663   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
    664   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
    665   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
    666   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
    667   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
    668   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
    669   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
    670   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
    671   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
    672   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
    673   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
    674   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
    675   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
    676   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
    677   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
    678   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
    679   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
    680   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
    681   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
    682   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
    683   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    684   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
    685   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
    686   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
    687   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
    688   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
    689   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
    690   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
    691   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
    692   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
    693   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
    694   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
    695   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
    696   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
    697 
    698   // Default ISD::TRAP to expand (which turns it into abort).
    699   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    700 
    701   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
    702   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
    703   //
    704   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
    705 
    706   IsLittleEndian = TD->isLittleEndian();
    707   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
    708   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    709   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    710   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
    711   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    712     = MaxStoresPerMemmoveOptSize = 4;
    713   BenefitFromCodePlacementOpt = false;
    714   UseUnderscoreSetJmp = false;
    715   UseUnderscoreLongJmp = false;
    716   SelectIsExpensive = false;
    717   IntDivIsCheap = false;
    718   Pow2DivIsCheap = false;
    719   JumpIsExpensive = false;
    720   PredictableSelectIsExpensive = false;
    721   StackPointerRegisterToSaveRestore = 0;
    722   ExceptionPointerRegister = 0;
    723   ExceptionSelectorRegister = 0;
    724   BooleanContents = UndefinedBooleanContent;
    725   BooleanVectorContents = UndefinedBooleanContent;
    726   SchedPreferenceInfo = Sched::ILP;
    727   JumpBufSize = 0;
    728   JumpBufAlignment = 0;
    729   MinFunctionAlignment = 0;
    730   PrefFunctionAlignment = 0;
    731   PrefLoopAlignment = 0;
    732   MinStackArgumentAlignment = 1;
    733   ShouldFoldAtomicFences = false;
    734   InsertFencesForAtomic = false;
    735   SupportJumpTables = true;
    736   MinimumJumpTableEntries = 4;
    737 
    738   InitLibcallNames(LibcallRoutineNames, TM);
    739   InitCmpLibcallCCs(CmpLibcallCCs);
    740   InitLibcallCallingConvs(LibcallCallingConvs);
    741 }
    742 
    743 TargetLoweringBase::~TargetLoweringBase() {
    744   delete &TLOF;
    745 }
    746 
    747 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
    748   return MVT::getIntegerVT(8*TD->getPointerSize(0));
    749 }
    750 
    751 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
    752   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
    753   if (LHSTy.isVector())
    754     return LHSTy;
    755   return getScalarShiftAmountTy(LHSTy);
    756 }
    757 
    758 /// canOpTrap - Returns true if the operation can trap for the value type.
    759 /// VT must be a legal type.
    760 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
    761   assert(isTypeLegal(VT));
    762   switch (Op) {
    763   default:
    764     return false;
    765   case ISD::FDIV:
    766   case ISD::FREM:
    767   case ISD::SDIV:
    768   case ISD::UDIV:
    769   case ISD::SREM:
    770   case ISD::UREM:
    771     return true;
    772   }
    773 }
    774 
    775 
    776 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
    777                                           unsigned &NumIntermediates,
    778                                           MVT &RegisterVT,
    779                                           TargetLoweringBase *TLI) {
    780   // Figure out the right, legal destination reg to copy into.
    781   unsigned NumElts = VT.getVectorNumElements();
    782   MVT EltTy = VT.getVectorElementType();
    783 
    784   unsigned NumVectorRegs = 1;
    785 
    786   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    787   // could break down into LHS/RHS like LegalizeDAG does.
    788   if (!isPowerOf2_32(NumElts)) {
    789     NumVectorRegs = NumElts;
    790     NumElts = 1;
    791   }
    792 
    793   // Divide the input until we get to a supported size.  This will always
    794   // end with a scalar if the target doesn't support vectors.
    795   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    796     NumElts >>= 1;
    797     NumVectorRegs <<= 1;
    798   }
    799 
    800   NumIntermediates = NumVectorRegs;
    801 
    802   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
    803   if (!TLI->isTypeLegal(NewVT))
    804     NewVT = EltTy;
    805   IntermediateVT = NewVT;
    806 
    807   unsigned NewVTSize = NewVT.getSizeInBits();
    808 
    809   // Convert sizes such as i33 to i64.
    810   if (!isPowerOf2_32(NewVTSize))
    811     NewVTSize = NextPowerOf2(NewVTSize);
    812 
    813   MVT DestVT = TLI->getRegisterType(NewVT);
    814   RegisterVT = DestVT;
    815   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    816     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    817 
    818   // Otherwise, promotion or legal types use the same number of registers as
    819   // the vector decimated to the appropriate level.
    820   return NumVectorRegs;
    821 }
    822 
    823 /// isLegalRC - Return true if the value types that can be represented by the
    824 /// specified register class are all legal.
    825 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
    826   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
    827        I != E; ++I) {
    828     if (isTypeLegal(*I))
    829       return true;
    830   }
    831   return false;
    832 }
    833 
    834 /// findRepresentativeClass - Return the largest legal super-reg register class
    835 /// of the register class for the specified type and its associated "cost".
    836 std::pair<const TargetRegisterClass*, uint8_t>
    837 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
    838   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
    839   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    840   if (!RC)
    841     return std::make_pair(RC, 0);
    842 
    843   // Compute the set of all super-register classes.
    844   BitVector SuperRegRC(TRI->getNumRegClasses());
    845   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
    846     SuperRegRC.setBitsInMask(RCI.getMask());
    847 
    848   // Find the first legal register class with the largest spill size.
    849   const TargetRegisterClass *BestRC = RC;
    850   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
    851     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
    852     // We want the largest possible spill size.
    853     if (SuperRC->getSize() <= BestRC->getSize())
    854       continue;
    855     if (!isLegalRC(SuperRC))
    856       continue;
    857     BestRC = SuperRC;
    858   }
    859   return std::make_pair(BestRC, 1);
    860 }
    861 
    862 /// computeRegisterProperties - Once all of the register classes are added,
    863 /// this allows us to compute derived properties we expose.
    864 void TargetLoweringBase::computeRegisterProperties() {
    865   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
    866          "Too many value types for ValueTypeActions to hold!");
    867 
    868   // Everything defaults to needing one register.
    869   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    870     NumRegistersForVT[i] = 1;
    871     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
    872   }
    873   // ...except isVoid, which doesn't need any registers.
    874   NumRegistersForVT[MVT::isVoid] = 0;
    875 
    876   // Find the largest integer register class.
    877   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
    878   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    879     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
    880 
    881   // Every integer value type larger than this largest register takes twice as
    882   // many registers to represent as the previous ValueType.
    883   for (unsigned ExpandedReg = LargestIntReg + 1;
    884        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
    885     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    886     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    887     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    888     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
    889                                    TypeExpandInteger);
    890   }
    891 
    892   // Inspect all of the ValueType's smaller than the largest integer
    893   // register to see which ones need promotion.
    894   unsigned LegalIntReg = LargestIntReg;
    895   for (unsigned IntReg = LargestIntReg - 1;
    896        IntReg >= (unsigned)MVT::i1; --IntReg) {
    897     MVT IVT = (MVT::SimpleValueType)IntReg;
    898     if (isTypeLegal(IVT)) {
    899       LegalIntReg = IntReg;
    900     } else {
    901       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
    902         (const MVT::SimpleValueType)LegalIntReg;
    903       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    904     }
    905   }
    906 
    907   // ppcf128 type is really two f64's.
    908   if (!isTypeLegal(MVT::ppcf128)) {
    909     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
    910     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
    911     TransformToType[MVT::ppcf128] = MVT::f64;
    912     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    913   }
    914 
    915   // Decide how to handle f128. If the target does not have native f128 support,
    916   // expand it to i128 and we will be generating soft float library calls.
    917   if (!isTypeLegal(MVT::f128)) {
    918     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
    919     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
    920     TransformToType[MVT::f128] = MVT::i128;
    921     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
    922   }
    923 
    924   // Decide how to handle f64. If the target does not have native f64 support,
    925   // expand it to i64 and we will be generating soft float library calls.
    926   if (!isTypeLegal(MVT::f64)) {
    927     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    928     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    929     TransformToType[MVT::f64] = MVT::i64;
    930     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
    931   }
    932 
    933   // Decide how to handle f32. If the target does not have native support for
    934   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
    935   if (!isTypeLegal(MVT::f32)) {
    936     if (isTypeLegal(MVT::f64)) {
    937       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
    938       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
    939       TransformToType[MVT::f32] = MVT::f64;
    940       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
    941     } else {
    942       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    943       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    944       TransformToType[MVT::f32] = MVT::i32;
    945       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
    946     }
    947   }
    948 
    949   // Loop over all of the vector value types to see which need transformations.
    950   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
    951        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    952     MVT VT = (MVT::SimpleValueType)i;
    953     if (isTypeLegal(VT)) continue;
    954 
    955     // Determine if there is a legal wider type.  If so, we should promote to
    956     // that wider vector type.
    957     MVT EltVT = VT.getVectorElementType();
    958     unsigned NElts = VT.getVectorNumElements();
    959     if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
    960       bool IsLegalWiderType = false;
    961       // First try to promote the elements of integer vectors. If no legal
    962       // promotion was found, fallback to the widen-vector method.
    963       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    964         MVT SVT = (MVT::SimpleValueType)nVT;
    965         // Promote vectors of integers to vectors with the same number
    966         // of elements, with a wider element type.
    967         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
    968             && SVT.getVectorNumElements() == NElts &&
    969             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
    970           TransformToType[i] = SVT;
    971           RegisterTypeForVT[i] = SVT;
    972           NumRegistersForVT[i] = 1;
    973           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
    974           IsLegalWiderType = true;
    975           break;
    976         }
    977       }
    978 
    979       if (IsLegalWiderType) continue;
    980 
    981       // Try to widen the vector.
    982       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    983         MVT SVT = (MVT::SimpleValueType)nVT;
    984         if (SVT.getVectorElementType() == EltVT &&
    985             SVT.getVectorNumElements() > NElts &&
    986             isTypeLegal(SVT)) {
    987           TransformToType[i] = SVT;
    988           RegisterTypeForVT[i] = SVT;
    989           NumRegistersForVT[i] = 1;
    990           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    991           IsLegalWiderType = true;
    992           break;
    993         }
    994       }
    995       if (IsLegalWiderType) continue;
    996     }
    997 
    998     MVT IntermediateVT;
    999     MVT RegisterVT;
   1000     unsigned NumIntermediates;
   1001     NumRegistersForVT[i] =
   1002       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
   1003                                 RegisterVT, this);
   1004     RegisterTypeForVT[i] = RegisterVT;
   1005 
   1006     MVT NVT = VT.getPow2VectorType();
   1007     if (NVT == VT) {
   1008       // Type is already a power of 2.  The default action is to split.
   1009       TransformToType[i] = MVT::Other;
   1010       unsigned NumElts = VT.getVectorNumElements();
   1011       ValueTypeActions.setTypeAction(VT,
   1012             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
   1013     } else {
   1014       TransformToType[i] = NVT;
   1015       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1016     }
   1017   }
   1018 
   1019   // Determine the 'representative' register class for each value type.
   1020   // An representative register class is the largest (meaning one which is
   1021   // not a sub-register class / subreg register class) legal register class for
   1022   // a group of value types. For example, on i386, i8, i16, and i32
   1023   // representative would be GR32; while on x86_64 it's GR64.
   1024   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1025     const TargetRegisterClass* RRC;
   1026     uint8_t Cost;
   1027     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
   1028     RepRegClassForVT[i] = RRC;
   1029     RepRegClassCostForVT[i] = Cost;
   1030   }
   1031 }
   1032 
   1033 EVT TargetLoweringBase::getSetCCResultType(EVT VT) const {
   1034   assert(!VT.isVector() && "No default SetCC type for vectors!");
   1035   return getPointerTy(0).SimpleTy;
   1036 }
   1037 
   1038 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
   1039   return MVT::i32; // return the default value
   1040 }
   1041 
   1042 /// getVectorTypeBreakdown - Vector types are broken down into some number of
   1043 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
   1044 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
   1045 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
   1046 ///
   1047 /// This method returns the number of registers needed, and the VT for each
   1048 /// register.  It also returns the VT and quantity of the intermediate values
   1049 /// before they are promoted/expanded.
   1050 ///
   1051 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   1052                                                 EVT &IntermediateVT,
   1053                                                 unsigned &NumIntermediates,
   1054                                                 MVT &RegisterVT) const {
   1055   unsigned NumElts = VT.getVectorNumElements();
   1056 
   1057   // If there is a wider vector type with the same element type as this one,
   1058   // or a promoted vector type that has the same number of elements which
   1059   // are wider, then we should convert to that legal vector type.
   1060   // This handles things like <2 x float> -> <4 x float> and
   1061   // <4 x i1> -> <4 x i32>.
   1062   LegalizeTypeAction TA = getTypeAction(Context, VT);
   1063   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
   1064     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
   1065     if (isTypeLegal(RegisterEVT)) {
   1066       IntermediateVT = RegisterEVT;
   1067       RegisterVT = RegisterEVT.getSimpleVT();
   1068       NumIntermediates = 1;
   1069       return 1;
   1070     }
   1071   }
   1072 
   1073   // Figure out the right, legal destination reg to copy into.
   1074   EVT EltTy = VT.getVectorElementType();
   1075 
   1076   unsigned NumVectorRegs = 1;
   1077 
   1078   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1079   // could break down into LHS/RHS like LegalizeDAG does.
   1080   if (!isPowerOf2_32(NumElts)) {
   1081     NumVectorRegs = NumElts;
   1082     NumElts = 1;
   1083   }
   1084 
   1085   // Divide the input until we get to a supported size.  This will always
   1086   // end with a scalar if the target doesn't support vectors.
   1087   while (NumElts > 1 && !isTypeLegal(
   1088                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
   1089     NumElts >>= 1;
   1090     NumVectorRegs <<= 1;
   1091   }
   1092 
   1093   NumIntermediates = NumVectorRegs;
   1094 
   1095   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   1096   if (!isTypeLegal(NewVT))
   1097     NewVT = EltTy;
   1098   IntermediateVT = NewVT;
   1099 
   1100   MVT DestVT = getRegisterType(Context, NewVT);
   1101   RegisterVT = DestVT;
   1102   unsigned NewVTSize = NewVT.getSizeInBits();
   1103 
   1104   // Convert sizes such as i33 to i64.
   1105   if (!isPowerOf2_32(NewVTSize))
   1106     NewVTSize = NextPowerOf2(NewVTSize);
   1107 
   1108   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
   1109     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1110 
   1111   // Otherwise, promotion or legal types use the same number of registers as
   1112   // the vector decimated to the appropriate level.
   1113   return NumVectorRegs;
   1114 }
   1115 
   1116 /// Get the EVTs and ArgFlags collections that represent the legalized return
   1117 /// type of the given function.  This does not require a DAG or a return value,
   1118 /// and is suitable for use before any DAGs for the function are constructed.
   1119 /// TODO: Move this out of TargetLowering.cpp.
   1120 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
   1121                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1122                          const TargetLowering &TLI) {
   1123   SmallVector<EVT, 4> ValueVTs;
   1124   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   1125   unsigned NumValues = ValueVTs.size();
   1126   if (NumValues == 0) return;
   1127 
   1128   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1129     EVT VT = ValueVTs[j];
   1130     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1131 
   1132     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1133       ExtendKind = ISD::SIGN_EXTEND;
   1134     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1135       ExtendKind = ISD::ZERO_EXTEND;
   1136 
   1137     // FIXME: C calling convention requires the return type to be promoted to
   1138     // at least 32-bit. But this is not necessary for non-C calling
   1139     // conventions. The frontend should mark functions whose return values
   1140     // require promoting with signext or zeroext attributes.
   1141     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1142       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1143       if (VT.bitsLT(MinVT))
   1144         VT = MinVT;
   1145     }
   1146 
   1147     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1148     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1149 
   1150     // 'inreg' on function refers to return value
   1151     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1152     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
   1153       Flags.setInReg();
   1154 
   1155     // Propagate extension type if any
   1156     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1157       Flags.setSExt();
   1158     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1159       Flags.setZExt();
   1160 
   1161     for (unsigned i = 0; i < NumParts; ++i)
   1162       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
   1163   }
   1164 }
   1165 
   1166 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1167 /// function arguments in the caller parameter area.  This is the actual
   1168 /// alignment, not its logarithm.
   1169 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
   1170   return TD->getCallFrameTypeAlignment(Ty);
   1171 }
   1172 
   1173 //===----------------------------------------------------------------------===//
   1174 //  TargetTransformInfo Helpers
   1175 //===----------------------------------------------------------------------===//
   1176 
   1177 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
   1178   enum InstructionOpcodes {
   1179 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
   1180 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
   1181 #include "llvm/IR/Instruction.def"
   1182   };
   1183   switch (static_cast<InstructionOpcodes>(Opcode)) {
   1184   case Ret:            return 0;
   1185   case Br:             return 0;
   1186   case Switch:         return 0;
   1187   case IndirectBr:     return 0;
   1188   case Invoke:         return 0;
   1189   case Resume:         return 0;
   1190   case Unreachable:    return 0;
   1191   case Add:            return ISD::ADD;
   1192   case FAdd:           return ISD::FADD;
   1193   case Sub:            return ISD::SUB;
   1194   case FSub:           return ISD::FSUB;
   1195   case Mul:            return ISD::MUL;
   1196   case FMul:           return ISD::FMUL;
   1197   case UDiv:           return ISD::UDIV;
   1198   case SDiv:           return ISD::UDIV;
   1199   case FDiv:           return ISD::FDIV;
   1200   case URem:           return ISD::UREM;
   1201   case SRem:           return ISD::SREM;
   1202   case FRem:           return ISD::FREM;
   1203   case Shl:            return ISD::SHL;
   1204   case LShr:           return ISD::SRL;
   1205   case AShr:           return ISD::SRA;
   1206   case And:            return ISD::AND;
   1207   case Or:             return ISD::OR;
   1208   case Xor:            return ISD::XOR;
   1209   case Alloca:         return 0;
   1210   case Load:           return ISD::LOAD;
   1211   case Store:          return ISD::STORE;
   1212   case GetElementPtr:  return 0;
   1213   case Fence:          return 0;
   1214   case AtomicCmpXchg:  return 0;
   1215   case AtomicRMW:      return 0;
   1216   case Trunc:          return ISD::TRUNCATE;
   1217   case ZExt:           return ISD::ZERO_EXTEND;
   1218   case SExt:           return ISD::SIGN_EXTEND;
   1219   case FPToUI:         return ISD::FP_TO_UINT;
   1220   case FPToSI:         return ISD::FP_TO_SINT;
   1221   case UIToFP:         return ISD::UINT_TO_FP;
   1222   case SIToFP:         return ISD::SINT_TO_FP;
   1223   case FPTrunc:        return ISD::FP_ROUND;
   1224   case FPExt:          return ISD::FP_EXTEND;
   1225   case PtrToInt:       return ISD::BITCAST;
   1226   case IntToPtr:       return ISD::BITCAST;
   1227   case BitCast:        return ISD::BITCAST;
   1228   case ICmp:           return ISD::SETCC;
   1229   case FCmp:           return ISD::SETCC;
   1230   case PHI:            return 0;
   1231   case Call:           return 0;
   1232   case Select:         return ISD::SELECT;
   1233   case UserOp1:        return 0;
   1234   case UserOp2:        return 0;
   1235   case VAArg:          return 0;
   1236   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
   1237   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
   1238   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
   1239   case ExtractValue:   return ISD::MERGE_VALUES;
   1240   case InsertValue:    return ISD::MERGE_VALUES;
   1241   case LandingPad:     return 0;
   1242   }
   1243 
   1244   llvm_unreachable("Unknown instruction type encountered!");
   1245 }
   1246 
   1247 std::pair<unsigned, MVT>
   1248 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
   1249   LLVMContext &C = Ty->getContext();
   1250   EVT MTy = getValueType(Ty);
   1251 
   1252   unsigned Cost = 1;
   1253   // We keep legalizing the type until we find a legal kind. We assume that
   1254   // the only operation that costs anything is the split. After splitting
   1255   // we need to handle two types.
   1256   while (true) {
   1257     LegalizeKind LK = getTypeConversion(C, MTy);
   1258 
   1259     if (LK.first == TypeLegal)
   1260       return std::make_pair(Cost, MTy.getSimpleVT());
   1261 
   1262     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
   1263       Cost *= 2;
   1264 
   1265     // Keep legalizing the type.
   1266     MTy = LK.second;
   1267   }
   1268 }
   1269 
   1270 //===----------------------------------------------------------------------===//
   1271 //  Loop Strength Reduction hooks
   1272 //===----------------------------------------------------------------------===//
   1273 
   1274 /// isLegalAddressingMode - Return true if the addressing mode represented
   1275 /// by AM is legal for this target, for a load/store of the specified type.
   1276 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
   1277                                            Type *Ty) const {
   1278   // The default implementation of this implements a conservative RISCy, r+r and
   1279   // r+i addr mode.
   1280 
   1281   // Allows a sign-extended 16-bit immediate field.
   1282   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   1283     return false;
   1284 
   1285   // No global is ever allowed as a base.
   1286   if (AM.BaseGV)
   1287     return false;
   1288 
   1289   // Only support r+r,
   1290   switch (AM.Scale) {
   1291   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   1292     break;
   1293   case 1:
   1294     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   1295       return false;
   1296     // Otherwise we have r+r or r+i.
   1297     break;
   1298   case 2:
   1299     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   1300       return false;
   1301     // Allow 2*r as r+r.
   1302     break;
   1303   }
   1304 
   1305   return true;
   1306 }
   1307