1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_MAT_H 18 #define ANDROID_MAT_H 19 20 #include "vec.h" 21 #include "traits.h" 22 23 // ----------------------------------------------------------------------- 24 25 namespace android { 26 27 template <typename TYPE, size_t C, size_t R> 28 class mat; 29 30 namespace helpers { 31 32 template <typename TYPE, size_t C, size_t R> 33 mat<TYPE, C, R>& doAssign( 34 mat<TYPE, C, R>& lhs, 35 typename TypeTraits<TYPE>::ParameterType rhs) { 36 for (size_t i=0 ; i<C ; i++) 37 for (size_t j=0 ; j<R ; j++) 38 lhs[i][j] = (i==j) ? rhs : 0; 39 return lhs; 40 } 41 42 template <typename TYPE, size_t C, size_t R, size_t D> 43 mat<TYPE, C, R> PURE doMul( 44 const mat<TYPE, D, R>& lhs, 45 const mat<TYPE, C, D>& rhs) 46 { 47 mat<TYPE, C, R> res; 48 for (size_t c=0 ; c<C ; c++) { 49 for (size_t r=0 ; r<R ; r++) { 50 TYPE v(0); 51 for (size_t k=0 ; k<D ; k++) { 52 v += lhs[k][r] * rhs[c][k]; 53 } 54 res[c][r] = v; 55 } 56 } 57 return res; 58 } 59 60 template <typename TYPE, size_t R, size_t D> 61 vec<TYPE, R> PURE doMul( 62 const mat<TYPE, D, R>& lhs, 63 const vec<TYPE, D>& rhs) 64 { 65 vec<TYPE, R> res; 66 for (size_t r=0 ; r<R ; r++) { 67 TYPE v(0); 68 for (size_t k=0 ; k<D ; k++) { 69 v += lhs[k][r] * rhs[k]; 70 } 71 res[r] = v; 72 } 73 return res; 74 } 75 76 template <typename TYPE, size_t C, size_t R> 77 mat<TYPE, C, R> PURE doMul( 78 const vec<TYPE, R>& lhs, 79 const mat<TYPE, C, 1>& rhs) 80 { 81 mat<TYPE, C, R> res; 82 for (size_t c=0 ; c<C ; c++) { 83 for (size_t r=0 ; r<R ; r++) { 84 res[c][r] = lhs[r] * rhs[c][0]; 85 } 86 } 87 return res; 88 } 89 90 template <typename TYPE, size_t C, size_t R> 91 mat<TYPE, C, R> PURE doMul( 92 const mat<TYPE, C, R>& rhs, 93 typename TypeTraits<TYPE>::ParameterType v) 94 { 95 mat<TYPE, C, R> res; 96 for (size_t c=0 ; c<C ; c++) { 97 for (size_t r=0 ; r<R ; r++) { 98 res[c][r] = rhs[c][r] * v; 99 } 100 } 101 return res; 102 } 103 104 template <typename TYPE, size_t C, size_t R> 105 mat<TYPE, C, R> PURE doMul( 106 typename TypeTraits<TYPE>::ParameterType v, 107 const mat<TYPE, C, R>& rhs) 108 { 109 mat<TYPE, C, R> res; 110 for (size_t c=0 ; c<C ; c++) { 111 for (size_t r=0 ; r<R ; r++) { 112 res[c][r] = v * rhs[c][r]; 113 } 114 } 115 return res; 116 } 117 118 119 }; // namespace helpers 120 121 // ----------------------------------------------------------------------- 122 123 template <typename TYPE, size_t C, size_t R> 124 class mat : public vec< vec<TYPE, R>, C > { 125 typedef typename TypeTraits<TYPE>::ParameterType pTYPE; 126 typedef vec< vec<TYPE, R>, C > base; 127 public: 128 // STL-like interface. 129 typedef TYPE value_type; 130 typedef TYPE& reference; 131 typedef TYPE const& const_reference; 132 typedef size_t size_type; 133 size_type size() const { return R*C; } 134 enum { ROWS = R, COLS = C }; 135 136 137 // ----------------------------------------------------------------------- 138 // default constructors 139 140 mat() { } 141 mat(const mat& rhs) : base(rhs) { } 142 mat(const base& rhs) : base(rhs) { } 143 144 // ----------------------------------------------------------------------- 145 // conversion constructors 146 147 // sets the diagonal to the value, off-diagonal to zero 148 mat(pTYPE rhs) { 149 helpers::doAssign(*this, rhs); 150 } 151 152 // ----------------------------------------------------------------------- 153 // Assignment 154 155 mat& operator=(const mat& rhs) { 156 base::operator=(rhs); 157 return *this; 158 } 159 160 mat& operator=(const base& rhs) { 161 base::operator=(rhs); 162 return *this; 163 } 164 165 mat& operator=(pTYPE rhs) { 166 return helpers::doAssign(*this, rhs); 167 } 168 169 // ----------------------------------------------------------------------- 170 // non-member function declaration and definition 171 172 friend inline mat PURE operator + (const mat& lhs, const mat& rhs) { 173 return helpers::doAdd( 174 static_cast<const base&>(lhs), 175 static_cast<const base&>(rhs)); 176 } 177 friend inline mat PURE operator - (const mat& lhs, const mat& rhs) { 178 return helpers::doSub( 179 static_cast<const base&>(lhs), 180 static_cast<const base&>(rhs)); 181 } 182 183 // matrix*matrix 184 template <size_t D> 185 friend mat PURE operator * ( 186 const mat<TYPE, D, R>& lhs, 187 const mat<TYPE, C, D>& rhs) { 188 return helpers::doMul(lhs, rhs); 189 } 190 191 // matrix*vector 192 friend vec<TYPE, R> PURE operator * ( 193 const mat& lhs, const vec<TYPE, C>& rhs) { 194 return helpers::doMul(lhs, rhs); 195 } 196 197 // vector*matrix 198 friend mat PURE operator * ( 199 const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) { 200 return helpers::doMul(lhs, rhs); 201 } 202 203 // matrix*scalar 204 friend inline mat PURE operator * (const mat& lhs, pTYPE v) { 205 return helpers::doMul(lhs, v); 206 } 207 208 // scalar*matrix 209 friend inline mat PURE operator * (pTYPE v, const mat& rhs) { 210 return helpers::doMul(v, rhs); 211 } 212 213 // ----------------------------------------------------------------------- 214 // streaming operator to set the columns of the matrix: 215 // example: 216 // mat33_t m; 217 // m << v0 << v1 << v2; 218 219 // column_builder<> stores the matrix and knows which column to set 220 template<size_t PREV_COLUMN> 221 struct column_builder { 222 mat& matrix; 223 column_builder(mat& matrix) : matrix(matrix) { } 224 }; 225 226 // operator << is not a method of column_builder<> so we can 227 // overload it for unauthorized values (partial specialization 228 // not allowed in class-scope). 229 // we just set the column and return the next column_builder<> 230 template<size_t PREV_COLUMN> 231 friend column_builder<PREV_COLUMN+1> operator << ( 232 const column_builder<PREV_COLUMN>& lhs, 233 const vec<TYPE, R>& rhs) { 234 lhs.matrix[PREV_COLUMN+1] = rhs; 235 return column_builder<PREV_COLUMN+1>(lhs.matrix); 236 } 237 238 // we return void here so we get a compile-time error if the 239 // user tries to set too many columns 240 friend void operator << ( 241 const column_builder<C-2>& lhs, 242 const vec<TYPE, R>& rhs) { 243 lhs.matrix[C-1] = rhs; 244 } 245 246 // this is where the process starts. we set the first columns and 247 // return the next column_builder<> 248 column_builder<0> operator << (const vec<TYPE, R>& rhs) { 249 (*this)[0] = rhs; 250 return column_builder<0>(*this); 251 } 252 }; 253 254 // Specialize column matrix so they're exactly equivalent to a vector 255 template <typename TYPE, size_t R> 256 class mat<TYPE, 1, R> : public vec<TYPE, R> { 257 typedef vec<TYPE, R> base; 258 public: 259 // STL-like interface. 260 typedef TYPE value_type; 261 typedef TYPE& reference; 262 typedef TYPE const& const_reference; 263 typedef size_t size_type; 264 size_type size() const { return R; } 265 enum { ROWS = R, COLS = 1 }; 266 267 mat() { } 268 mat(const base& rhs) : base(rhs) { } 269 mat(const mat& rhs) : base(rhs) { } 270 mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); } 271 mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; } 272 mat& operator=(const base& rhs) { base::operator=(rhs); return *this; } 273 mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); } 274 // we only have one column, so ignore the index 275 const base& operator[](size_t) const { return *this; } 276 base& operator[](size_t) { return *this; } 277 void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; } 278 }; 279 280 // ----------------------------------------------------------------------- 281 // matrix functions 282 283 // transpose. this handles matrices of matrices 284 inline int PURE transpose(int v) { return v; } 285 inline float PURE transpose(float v) { return v; } 286 inline double PURE transpose(double v) { return v; } 287 288 // Transpose a matrix 289 template <typename TYPE, size_t C, size_t R> 290 mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) { 291 mat<TYPE, R, C> r; 292 for (size_t i=0 ; i<R ; i++) 293 for (size_t j=0 ; j<C ; j++) 294 r[i][j] = transpose(m[j][i]); 295 return r; 296 } 297 298 // Calculate the trace of a matrix 299 template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) { 300 TYPE t; 301 for (size_t i=0 ; i<C ; i++) 302 t += m[i][i]; 303 return t; 304 } 305 306 // Test positive-semidefiniteness of a matrix 307 template <typename TYPE, size_t C> 308 static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) { 309 for (size_t i=0 ; i<C ; i++) 310 if (m[i][i] < 0) 311 return false; 312 313 for (size_t i=0 ; i<C ; i++) 314 for (size_t j=i+1 ; j<C ; j++) 315 if (fabs(m[i][j] - m[j][i]) > tolerance) 316 return false; 317 318 return true; 319 } 320 321 // Transpose a vector 322 template < 323 template<typename T, size_t S> class VEC, 324 typename TYPE, 325 size_t SIZE 326 > 327 mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) { 328 mat<TYPE, SIZE, 1> r; 329 for (size_t i=0 ; i<SIZE ; i++) 330 r[i][0] = transpose(v[i]); 331 return r; 332 } 333 334 // ----------------------------------------------------------------------- 335 // "dumb" matrix inversion 336 template<typename T, size_t N> 337 mat<T, N, N> PURE invert(const mat<T, N, N>& src) { 338 T t; 339 size_t swap; 340 mat<T, N, N> tmp(src); 341 mat<T, N, N> inverse(1); 342 343 for (size_t i=0 ; i<N ; i++) { 344 // look for largest element in column 345 swap = i; 346 for (size_t j=i+1 ; j<N ; j++) { 347 if (fabs(tmp[j][i]) > fabs(tmp[i][i])) { 348 swap = j; 349 } 350 } 351 352 if (swap != i) { 353 /* swap rows. */ 354 for (size_t k=0 ; k<N ; k++) { 355 t = tmp[i][k]; 356 tmp[i][k] = tmp[swap][k]; 357 tmp[swap][k] = t; 358 359 t = inverse[i][k]; 360 inverse[i][k] = inverse[swap][k]; 361 inverse[swap][k] = t; 362 } 363 } 364 365 t = 1 / tmp[i][i]; 366 for (size_t k=0 ; k<N ; k++) { 367 tmp[i][k] *= t; 368 inverse[i][k] *= t; 369 } 370 for (size_t j=0 ; j<N ; j++) { 371 if (j != i) { 372 t = tmp[j][i]; 373 for (size_t k=0 ; k<N ; k++) { 374 tmp[j][k] -= tmp[i][k] * t; 375 inverse[j][k] -= inverse[i][k] * t; 376 } 377 } 378 } 379 } 380 return inverse; 381 } 382 383 // ----------------------------------------------------------------------- 384 385 typedef mat<float, 2, 2> mat22_t; 386 typedef mat<float, 3, 3> mat33_t; 387 typedef mat<float, 4, 4> mat44_t; 388 389 // ----------------------------------------------------------------------- 390 391 }; // namespace android 392 393 #endif /* ANDROID_MAT_H */ 394