Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass which is used
     11 // by the Linear Scan Register allocator. This pass linearizes the
     12 // basic blocks of the function in DFS order and uses the
     13 // LiveVariables pass to conservatively compute live intervals for
     14 // each virtual and physical register.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "regalloc"
     19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     20 #include "LiveRangeCalc.h"
     21 #include "llvm/ADT/DenseSet.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/LiveVariables.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/Passes.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include <algorithm>
     39 #include <cmath>
     40 #include <limits>
     41 using namespace llvm;
     42 
     43 char LiveIntervals::ID = 0;
     44 char &llvm::LiveIntervalsID = LiveIntervals::ID;
     45 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
     46                 "Live Interval Analysis", false, false)
     47 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     48 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
     49 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
     50 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
     51 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
     52                 "Live Interval Analysis", false, false)
     53 
     54 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
     55   AU.setPreservesCFG();
     56   AU.addRequired<AliasAnalysis>();
     57   AU.addPreserved<AliasAnalysis>();
     58   // LiveVariables isn't really required by this analysis, it is only required
     59   // here to make sure it is live during TwoAddressInstructionPass and
     60   // PHIElimination. This is temporary.
     61   AU.addRequired<LiveVariables>();
     62   AU.addPreserved<LiveVariables>();
     63   AU.addPreservedID(MachineLoopInfoID);
     64   AU.addRequiredTransitiveID(MachineDominatorsID);
     65   AU.addPreservedID(MachineDominatorsID);
     66   AU.addPreserved<SlotIndexes>();
     67   AU.addRequiredTransitive<SlotIndexes>();
     68   MachineFunctionPass::getAnalysisUsage(AU);
     69 }
     70 
     71 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
     72   DomTree(0), LRCalc(0) {
     73   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     74 }
     75 
     76 LiveIntervals::~LiveIntervals() {
     77   delete LRCalc;
     78 }
     79 
     80 void LiveIntervals::releaseMemory() {
     81   // Free the live intervals themselves.
     82   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
     83     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
     84   VirtRegIntervals.clear();
     85   RegMaskSlots.clear();
     86   RegMaskBits.clear();
     87   RegMaskBlocks.clear();
     88 
     89   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
     90     delete RegUnitIntervals[i];
     91   RegUnitIntervals.clear();
     92 
     93   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
     94   VNInfoAllocator.Reset();
     95 }
     96 
     97 /// runOnMachineFunction - Register allocate the whole function
     98 ///
     99 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
    100   MF = &fn;
    101   MRI = &MF->getRegInfo();
    102   TM = &fn.getTarget();
    103   TRI = TM->getRegisterInfo();
    104   TII = TM->getInstrInfo();
    105   AA = &getAnalysis<AliasAnalysis>();
    106   Indexes = &getAnalysis<SlotIndexes>();
    107   DomTree = &getAnalysis<MachineDominatorTree>();
    108   if (!LRCalc)
    109     LRCalc = new LiveRangeCalc();
    110 
    111   // Allocate space for all virtual registers.
    112   VirtRegIntervals.resize(MRI->getNumVirtRegs());
    113 
    114   computeVirtRegs();
    115   computeRegMasks();
    116   computeLiveInRegUnits();
    117 
    118   DEBUG(dump());
    119   return true;
    120 }
    121 
    122 /// print - Implement the dump method.
    123 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
    124   OS << "********** INTERVALS **********\n";
    125 
    126   // Dump the regunits.
    127   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
    128     if (LiveInterval *LI = RegUnitIntervals[i])
    129       OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
    130 
    131   // Dump the virtregs.
    132   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    133     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    134     if (hasInterval(Reg))
    135       OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
    136   }
    137 
    138   OS << "RegMasks:";
    139   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    140     OS << ' ' << RegMaskSlots[i];
    141   OS << '\n';
    142 
    143   printInstrs(OS);
    144 }
    145 
    146 void LiveIntervals::printInstrs(raw_ostream &OS) const {
    147   OS << "********** MACHINEINSTRS **********\n";
    148   MF->print(OS, Indexes);
    149 }
    150 
    151 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    152 void LiveIntervals::dumpInstrs() const {
    153   printInstrs(dbgs());
    154 }
    155 #endif
    156 
    157 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
    158   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
    159   return new LiveInterval(reg, Weight);
    160 }
    161 
    162 
    163 /// computeVirtRegInterval - Compute the live interval of a virtual register,
    164 /// based on defs and uses.
    165 void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
    166   assert(LRCalc && "LRCalc not initialized.");
    167   assert(LI->empty() && "Should only compute empty intervals.");
    168   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    169   LRCalc->createDeadDefs(LI);
    170   LRCalc->extendToUses(LI);
    171 }
    172 
    173 void LiveIntervals::computeVirtRegs() {
    174   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    175     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    176     if (MRI->reg_nodbg_empty(Reg))
    177       continue;
    178     LiveInterval *LI = createInterval(Reg);
    179     VirtRegIntervals[Reg] = LI;
    180     computeVirtRegInterval(LI);
    181   }
    182 }
    183 
    184 void LiveIntervals::computeRegMasks() {
    185   RegMaskBlocks.resize(MF->getNumBlockIDs());
    186 
    187   // Find all instructions with regmask operands.
    188   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    189        MBBI != E; ++MBBI) {
    190     MachineBasicBlock *MBB = MBBI;
    191     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    192     RMB.first = RegMaskSlots.size();
    193     for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
    194          MI != ME; ++MI)
    195       for (MIOperands MO(MI); MO.isValid(); ++MO) {
    196         if (!MO->isRegMask())
    197           continue;
    198           RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
    199           RegMaskBits.push_back(MO->getRegMask());
    200       }
    201     // Compute the number of register mask instructions in this block.
    202     RMB.second = RegMaskSlots.size() - RMB.first;
    203   }
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 //                           Register Unit Liveness
    208 //===----------------------------------------------------------------------===//
    209 //
    210 // Fixed interference typically comes from ABI boundaries: Function arguments
    211 // and return values are passed in fixed registers, and so are exception
    212 // pointers entering landing pads. Certain instructions require values to be
    213 // present in specific registers. That is also represented through fixed
    214 // interference.
    215 //
    216 
    217 /// computeRegUnitInterval - Compute the live interval of a register unit, based
    218 /// on the uses and defs of aliasing registers.  The interval should be empty,
    219 /// or contain only dead phi-defs from ABI blocks.
    220 void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
    221   unsigned Unit = LI->reg;
    222 
    223   assert(LRCalc && "LRCalc not initialized.");
    224   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    225 
    226   // The physregs aliasing Unit are the roots and their super-registers.
    227   // Create all values as dead defs before extending to uses. Note that roots
    228   // may share super-registers. That's OK because createDeadDefs() is
    229   // idempotent. It is very rare for a register unit to have multiple roots, so
    230   // uniquing super-registers is probably not worthwhile.
    231   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    232     unsigned Root = *Roots;
    233     if (!MRI->reg_empty(Root))
    234       LRCalc->createDeadDefs(LI, Root);
    235     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
    236       if (!MRI->reg_empty(*Supers))
    237         LRCalc->createDeadDefs(LI, *Supers);
    238     }
    239   }
    240 
    241   // Now extend LI to reach all uses.
    242   // Ignore uses of reserved registers. We only track defs of those.
    243   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    244     unsigned Root = *Roots;
    245     if (!MRI->isReserved(Root) && !MRI->reg_empty(Root))
    246       LRCalc->extendToUses(LI, Root);
    247     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
    248       unsigned Reg = *Supers;
    249       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
    250         LRCalc->extendToUses(LI, Reg);
    251     }
    252   }
    253 }
    254 
    255 
    256 /// computeLiveInRegUnits - Precompute the live ranges of any register units
    257 /// that are live-in to an ABI block somewhere. Register values can appear
    258 /// without a corresponding def when entering the entry block or a landing pad.
    259 ///
    260 void LiveIntervals::computeLiveInRegUnits() {
    261   RegUnitIntervals.resize(TRI->getNumRegUnits());
    262   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
    263 
    264   // Keep track of the intervals allocated.
    265   SmallVector<LiveInterval*, 8> NewIntvs;
    266 
    267   // Check all basic blocks for live-ins.
    268   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    269        MFI != MFE; ++MFI) {
    270     const MachineBasicBlock *MBB = MFI;
    271 
    272     // We only care about ABI blocks: Entry + landing pads.
    273     if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
    274       continue;
    275 
    276     // Create phi-defs at Begin for all live-in registers.
    277     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    278     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    279     for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
    280          LIE = MBB->livein_end(); LII != LIE; ++LII) {
    281       for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
    282         unsigned Unit = *Units;
    283         LiveInterval *Intv = RegUnitIntervals[Unit];
    284         if (!Intv) {
    285           Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
    286           NewIntvs.push_back(Intv);
    287         }
    288         VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
    289         (void)VNI;
    290         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
    291       }
    292     }
    293     DEBUG(dbgs() << '\n');
    294   }
    295   DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
    296 
    297   // Compute the 'normal' part of the intervals.
    298   for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
    299     computeRegUnitInterval(NewIntvs[i]);
    300 }
    301 
    302 
    303 /// shrinkToUses - After removing some uses of a register, shrink its live
    304 /// range to just the remaining uses. This method does not compute reaching
    305 /// defs for new uses, and it doesn't remove dead defs.
    306 bool LiveIntervals::shrinkToUses(LiveInterval *li,
    307                                  SmallVectorImpl<MachineInstr*> *dead) {
    308   DEBUG(dbgs() << "Shrink: " << *li << '\n');
    309   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
    310          && "Can only shrink virtual registers");
    311   // Find all the values used, including PHI kills.
    312   SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
    313 
    314   // Blocks that have already been added to WorkList as live-out.
    315   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
    316 
    317   // Visit all instructions reading li->reg.
    318   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
    319        MachineInstr *UseMI = I.skipInstruction();) {
    320     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
    321       continue;
    322     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    323     LiveRangeQuery LRQ(*li, Idx);
    324     VNInfo *VNI = LRQ.valueIn();
    325     if (!VNI) {
    326       // This shouldn't happen: readsVirtualRegister returns true, but there is
    327       // no live value. It is likely caused by a target getting <undef> flags
    328       // wrong.
    329       DEBUG(dbgs() << Idx << '\t' << *UseMI
    330                    << "Warning: Instr claims to read non-existent value in "
    331                     << *li << '\n');
    332       continue;
    333     }
    334     // Special case: An early-clobber tied operand reads and writes the
    335     // register one slot early.
    336     if (VNInfo *DefVNI = LRQ.valueDefined())
    337       Idx = DefVNI->def;
    338 
    339     WorkList.push_back(std::make_pair(Idx, VNI));
    340   }
    341 
    342   // Create a new live interval with only minimal live segments per def.
    343   LiveInterval NewLI(li->reg, 0);
    344   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
    345        I != E; ++I) {
    346     VNInfo *VNI = *I;
    347     if (VNI->isUnused())
    348       continue;
    349     NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
    350   }
    351 
    352   // Keep track of the PHIs that are in use.
    353   SmallPtrSet<VNInfo*, 8> UsedPHIs;
    354 
    355   // Extend intervals to reach all uses in WorkList.
    356   while (!WorkList.empty()) {
    357     SlotIndex Idx = WorkList.back().first;
    358     VNInfo *VNI = WorkList.back().second;
    359     WorkList.pop_back();
    360     const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
    361     SlotIndex BlockStart = getMBBStartIdx(MBB);
    362 
    363     // Extend the live range for VNI to be live at Idx.
    364     if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
    365       (void)ExtVNI;
    366       assert(ExtVNI == VNI && "Unexpected existing value number");
    367       // Is this a PHIDef we haven't seen before?
    368       if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
    369         continue;
    370       // The PHI is live, make sure the predecessors are live-out.
    371       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    372            PE = MBB->pred_end(); PI != PE; ++PI) {
    373         if (!LiveOut.insert(*PI))
    374           continue;
    375         SlotIndex Stop = getMBBEndIdx(*PI);
    376         // A predecessor is not required to have a live-out value for a PHI.
    377         if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
    378           WorkList.push_back(std::make_pair(Stop, PVNI));
    379       }
    380       continue;
    381     }
    382 
    383     // VNI is live-in to MBB.
    384     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    385     NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
    386 
    387     // Make sure VNI is live-out from the predecessors.
    388     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    389          PE = MBB->pred_end(); PI != PE; ++PI) {
    390       if (!LiveOut.insert(*PI))
    391         continue;
    392       SlotIndex Stop = getMBBEndIdx(*PI);
    393       assert(li->getVNInfoBefore(Stop) == VNI &&
    394              "Wrong value out of predecessor");
    395       WorkList.push_back(std::make_pair(Stop, VNI));
    396     }
    397   }
    398 
    399   // Handle dead values.
    400   bool CanSeparate = false;
    401   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
    402        I != E; ++I) {
    403     VNInfo *VNI = *I;
    404     if (VNI->isUnused())
    405       continue;
    406     LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
    407     assert(LII != NewLI.end() && "Missing live range for PHI");
    408     if (LII->end != VNI->def.getDeadSlot())
    409       continue;
    410     if (VNI->isPHIDef()) {
    411       // This is a dead PHI. Remove it.
    412       VNI->markUnused();
    413       NewLI.removeRange(*LII);
    414       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
    415       CanSeparate = true;
    416     } else {
    417       // This is a dead def. Make sure the instruction knows.
    418       MachineInstr *MI = getInstructionFromIndex(VNI->def);
    419       assert(MI && "No instruction defining live value");
    420       MI->addRegisterDead(li->reg, TRI);
    421       if (dead && MI->allDefsAreDead()) {
    422         DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
    423         dead->push_back(MI);
    424       }
    425     }
    426   }
    427 
    428   // Move the trimmed ranges back.
    429   li->ranges.swap(NewLI.ranges);
    430   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
    431   return CanSeparate;
    432 }
    433 
    434 void LiveIntervals::extendToIndices(LiveInterval *LI,
    435                                     ArrayRef<SlotIndex> Indices) {
    436   assert(LRCalc && "LRCalc not initialized.");
    437   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    438   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    439     LRCalc->extend(LI, Indices[i]);
    440 }
    441 
    442 void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
    443                                SmallVectorImpl<SlotIndex> *EndPoints) {
    444   LiveRangeQuery LRQ(*LI, Kill);
    445   VNInfo *VNI = LRQ.valueOut();
    446   if (!VNI)
    447     return;
    448 
    449   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
    450   SlotIndex MBBStart, MBBEnd;
    451   tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
    452 
    453   // If VNI isn't live out from KillMBB, the value is trivially pruned.
    454   if (LRQ.endPoint() < MBBEnd) {
    455     LI->removeRange(Kill, LRQ.endPoint());
    456     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    457     return;
    458   }
    459 
    460   // VNI is live out of KillMBB.
    461   LI->removeRange(Kill, MBBEnd);
    462   if (EndPoints) EndPoints->push_back(MBBEnd);
    463 
    464   // Find all blocks that are reachable from KillMBB without leaving VNI's live
    465   // range. It is possible that KillMBB itself is reachable, so start a DFS
    466   // from each successor.
    467   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
    468   VisitedTy Visited;
    469   for (MachineBasicBlock::succ_iterator
    470        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
    471        SuccI != SuccE; ++SuccI) {
    472     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
    473          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
    474          I != E;) {
    475       MachineBasicBlock *MBB = *I;
    476 
    477       // Check if VNI is live in to MBB.
    478       tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
    479       LiveRangeQuery LRQ(*LI, MBBStart);
    480       if (LRQ.valueIn() != VNI) {
    481         // This block isn't part of the VNI live range. Prune the search.
    482         I.skipChildren();
    483         continue;
    484       }
    485 
    486       // Prune the search if VNI is killed in MBB.
    487       if (LRQ.endPoint() < MBBEnd) {
    488         LI->removeRange(MBBStart, LRQ.endPoint());
    489         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    490         I.skipChildren();
    491         continue;
    492       }
    493 
    494       // VNI is live through MBB.
    495       LI->removeRange(MBBStart, MBBEnd);
    496       if (EndPoints) EndPoints->push_back(MBBEnd);
    497       ++I;
    498     }
    499   }
    500 }
    501 
    502 //===----------------------------------------------------------------------===//
    503 // Register allocator hooks.
    504 //
    505 
    506 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
    507   // Keep track of regunit ranges.
    508   SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
    509 
    510   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    511     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    512     if (MRI->reg_nodbg_empty(Reg))
    513       continue;
    514     LiveInterval *LI = &getInterval(Reg);
    515     if (LI->empty())
    516       continue;
    517 
    518     // Find the regunit intervals for the assigned register. They may overlap
    519     // the virtual register live range, cancelling any kills.
    520     RU.clear();
    521     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
    522          ++Units) {
    523       LiveInterval *RUInt = &getRegUnit(*Units);
    524       if (RUInt->empty())
    525         continue;
    526       RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
    527     }
    528 
    529     // Every instruction that kills Reg corresponds to a live range end point.
    530     for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
    531          ++RI) {
    532       // A block index indicates an MBB edge.
    533       if (RI->end.isBlock())
    534         continue;
    535       MachineInstr *MI = getInstructionFromIndex(RI->end);
    536       if (!MI)
    537         continue;
    538 
    539       // Check if any of the reguints are live beyond the end of RI. That could
    540       // happen when a physreg is defined as a copy of a virtreg:
    541       //
    542       //   %EAX = COPY %vreg5
    543       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
    544       //   BAR %EAX<kill>
    545       //
    546       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
    547       bool CancelKill = false;
    548       for (unsigned u = 0, e = RU.size(); u != e; ++u) {
    549         LiveInterval *RInt = RU[u].first;
    550         LiveInterval::iterator &I = RU[u].second;
    551         if (I == RInt->end())
    552           continue;
    553         I = RInt->advanceTo(I, RI->end);
    554         if (I == RInt->end() || I->start >= RI->end)
    555           continue;
    556         // I is overlapping RI.
    557         CancelKill = true;
    558         break;
    559       }
    560       if (CancelKill)
    561         MI->clearRegisterKills(Reg, NULL);
    562       else
    563         MI->addRegisterKilled(Reg, NULL);
    564     }
    565   }
    566 }
    567 
    568 MachineBasicBlock*
    569 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
    570   // A local live range must be fully contained inside the block, meaning it is
    571   // defined and killed at instructions, not at block boundaries. It is not
    572   // live in or or out of any block.
    573   //
    574   // It is technically possible to have a PHI-defined live range identical to a
    575   // single block, but we are going to return false in that case.
    576 
    577   SlotIndex Start = LI.beginIndex();
    578   if (Start.isBlock())
    579     return NULL;
    580 
    581   SlotIndex Stop = LI.endIndex();
    582   if (Stop.isBlock())
    583     return NULL;
    584 
    585   // getMBBFromIndex doesn't need to search the MBB table when both indexes
    586   // belong to proper instructions.
    587   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
    588   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
    589   return MBB1 == MBB2 ? MBB1 : NULL;
    590 }
    591 
    592 bool
    593 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
    594   for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
    595        I != E; ++I) {
    596     const VNInfo *PHI = *I;
    597     if (PHI->isUnused() || !PHI->isPHIDef())
    598       continue;
    599     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    600     // Conservatively return true instead of scanning huge predecessor lists.
    601     if (PHIMBB->pred_size() > 100)
    602       return true;
    603     for (MachineBasicBlock::const_pred_iterator
    604          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
    605       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
    606         return true;
    607   }
    608   return false;
    609 }
    610 
    611 float
    612 LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
    613   // Limit the loop depth ridiculousness.
    614   if (loopDepth > 200)
    615     loopDepth = 200;
    616 
    617   // The loop depth is used to roughly estimate the number of times the
    618   // instruction is executed. Something like 10^d is simple, but will quickly
    619   // overflow a float. This expression behaves like 10^d for small d, but is
    620   // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
    621   // headroom before overflow.
    622   // By the way, powf() might be unavailable here. For consistency,
    623   // We may take pow(double,double).
    624   float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
    625 
    626   return (isDef + isUse) * lc;
    627 }
    628 
    629 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
    630                                                   MachineInstr* startInst) {
    631   LiveInterval& Interval = getOrCreateInterval(reg);
    632   VNInfo* VN = Interval.getNextValue(
    633     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    634     getVNInfoAllocator());
    635   LiveRange LR(
    636      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    637      getMBBEndIdx(startInst->getParent()), VN);
    638   Interval.addRange(LR);
    639 
    640   return LR;
    641 }
    642 
    643 
    644 //===----------------------------------------------------------------------===//
    645 //                          Register mask functions
    646 //===----------------------------------------------------------------------===//
    647 
    648 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
    649                                              BitVector &UsableRegs) {
    650   if (LI.empty())
    651     return false;
    652   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
    653 
    654   // Use a smaller arrays for local live ranges.
    655   ArrayRef<SlotIndex> Slots;
    656   ArrayRef<const uint32_t*> Bits;
    657   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    658     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    659     Bits = getRegMaskBitsInBlock(MBB->getNumber());
    660   } else {
    661     Slots = getRegMaskSlots();
    662     Bits = getRegMaskBits();
    663   }
    664 
    665   // We are going to enumerate all the register mask slots contained in LI.
    666   // Start with a binary search of RegMaskSlots to find a starting point.
    667   ArrayRef<SlotIndex>::iterator SlotI =
    668     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
    669   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
    670 
    671   // No slots in range, LI begins after the last call.
    672   if (SlotI == SlotE)
    673     return false;
    674 
    675   bool Found = false;
    676   for (;;) {
    677     assert(*SlotI >= LiveI->start);
    678     // Loop over all slots overlapping this segment.
    679     while (*SlotI < LiveI->end) {
    680       // *SlotI overlaps LI. Collect mask bits.
    681       if (!Found) {
    682         // This is the first overlap. Initialize UsableRegs to all ones.
    683         UsableRegs.clear();
    684         UsableRegs.resize(TRI->getNumRegs(), true);
    685         Found = true;
    686       }
    687       // Remove usable registers clobbered by this mask.
    688       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
    689       if (++SlotI == SlotE)
    690         return Found;
    691     }
    692     // *SlotI is beyond the current LI segment.
    693     LiveI = LI.advanceTo(LiveI, *SlotI);
    694     if (LiveI == LiveE)
    695       return Found;
    696     // Advance SlotI until it overlaps.
    697     while (*SlotI < LiveI->start)
    698       if (++SlotI == SlotE)
    699         return Found;
    700   }
    701 }
    702 
    703 //===----------------------------------------------------------------------===//
    704 //                         IntervalUpdate class.
    705 //===----------------------------------------------------------------------===//
    706 
    707 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
    708 class LiveIntervals::HMEditor {
    709 private:
    710   LiveIntervals& LIS;
    711   const MachineRegisterInfo& MRI;
    712   const TargetRegisterInfo& TRI;
    713   SlotIndex OldIdx;
    714   SlotIndex NewIdx;
    715   SmallPtrSet<LiveInterval*, 8> Updated;
    716   bool UpdateFlags;
    717 
    718 public:
    719   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
    720            const TargetRegisterInfo& TRI,
    721            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    722     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
    723       UpdateFlags(UpdateFlags) {}
    724 
    725   // FIXME: UpdateFlags is a workaround that creates live intervals for all
    726   // physregs, even those that aren't needed for regalloc, in order to update
    727   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
    728   // flags, and postRA passes will use a live register utility instead.
    729   LiveInterval *getRegUnitLI(unsigned Unit) {
    730     if (UpdateFlags)
    731       return &LIS.getRegUnit(Unit);
    732     return LIS.getCachedRegUnit(Unit);
    733   }
    734 
    735   /// Update all live ranges touched by MI, assuming a move from OldIdx to
    736   /// NewIdx.
    737   void updateAllRanges(MachineInstr *MI) {
    738     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    739     bool hasRegMask = false;
    740     for (MIOperands MO(MI); MO.isValid(); ++MO) {
    741       if (MO->isRegMask())
    742         hasRegMask = true;
    743       if (!MO->isReg())
    744         continue;
    745       // Aggressively clear all kill flags.
    746       // They are reinserted by VirtRegRewriter.
    747       if (MO->isUse())
    748         MO->setIsKill(false);
    749 
    750       unsigned Reg = MO->getReg();
    751       if (!Reg)
    752         continue;
    753       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    754         updateRange(LIS.getInterval(Reg));
    755         continue;
    756       }
    757 
    758       // For physregs, only update the regunits that actually have a
    759       // precomputed live range.
    760       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
    761         if (LiveInterval *LI = getRegUnitLI(*Units))
    762           updateRange(*LI);
    763     }
    764     if (hasRegMask)
    765       updateRegMaskSlots();
    766   }
    767 
    768 private:
    769   /// Update a single live range, assuming an instruction has been moved from
    770   /// OldIdx to NewIdx.
    771   void updateRange(LiveInterval &LI) {
    772     if (!Updated.insert(&LI))
    773       return;
    774     DEBUG({
    775       dbgs() << "     ";
    776       if (TargetRegisterInfo::isVirtualRegister(LI.reg))
    777         dbgs() << PrintReg(LI.reg);
    778       else
    779         dbgs() << PrintRegUnit(LI.reg, &TRI);
    780       dbgs() << ":\t" << LI << '\n';
    781     });
    782     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
    783       handleMoveDown(LI);
    784     else
    785       handleMoveUp(LI);
    786     DEBUG(dbgs() << "        -->\t" << LI << '\n');
    787     LI.verify();
    788   }
    789 
    790   /// Update LI to reflect an instruction has been moved downwards from OldIdx
    791   /// to NewIdx.
    792   ///
    793   /// 1. Live def at OldIdx:
    794   ///    Move def to NewIdx, assert endpoint after NewIdx.
    795   ///
    796   /// 2. Live def at OldIdx, killed at NewIdx:
    797   ///    Change to dead def at NewIdx.
    798   ///    (Happens when bundling def+kill together).
    799   ///
    800   /// 3. Dead def at OldIdx:
    801   ///    Move def to NewIdx, possibly across another live value.
    802   ///
    803   /// 4. Def at OldIdx AND at NewIdx:
    804   ///    Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
    805   ///    (Happens when bundling multiple defs together).
    806   ///
    807   /// 5. Value read at OldIdx, killed before NewIdx:
    808   ///    Extend kill to NewIdx.
    809   ///
    810   void handleMoveDown(LiveInterval &LI) {
    811     // First look for a kill at OldIdx.
    812     LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
    813     LiveInterval::iterator E = LI.end();
    814     // Is LI even live at OldIdx?
    815     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
    816       return;
    817 
    818     // Handle a live-in value.
    819     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
    820       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
    821       // If the live-in value already extends to NewIdx, there is nothing to do.
    822       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
    823         return;
    824       // Aggressively remove all kill flags from the old kill point.
    825       // Kill flags shouldn't be used while live intervals exist, they will be
    826       // reinserted by VirtRegRewriter.
    827       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
    828         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
    829           if (MO->isReg() && MO->isUse())
    830             MO->setIsKill(false);
    831       // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
    832       // overlapping ranges. Case 5 above.
    833       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
    834       // If this was a kill, there may also be a def. Otherwise we're done.
    835       if (!isKill)
    836         return;
    837       ++I;
    838     }
    839 
    840     // Check for a def at OldIdx.
    841     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
    842       return;
    843     // We have a def at OldIdx.
    844     VNInfo *DefVNI = I->valno;
    845     assert(DefVNI->def == I->start && "Inconsistent def");
    846     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
    847     // If the defined value extends beyond NewIdx, just move the def down.
    848     // This is case 1 above.
    849     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
    850       I->start = DefVNI->def;
    851       return;
    852     }
    853     // The remaining possibilities are now:
    854     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
    855     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
    856     // In either case, it is possible that there is an existing def at NewIdx.
    857     assert((I->end == OldIdx.getDeadSlot() ||
    858             SlotIndex::isSameInstr(I->end, NewIdx)) &&
    859             "Cannot move def below kill");
    860     LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
    861     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
    862       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
    863       // coalesced into that value.
    864       assert(NewI->valno != DefVNI && "Multiple defs of value?");
    865       LI.removeValNo(DefVNI);
    866       return;
    867     }
    868     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
    869     // If the def at OldIdx was dead, we allow it to be moved across other LI
    870     // values. The new range should be placed immediately before NewI, move any
    871     // intermediate ranges up.
    872     assert(NewI != I && "Inconsistent iterators");
    873     std::copy(llvm::next(I), NewI, I);
    874     *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
    875   }
    876 
    877   /// Update LI to reflect an instruction has been moved upwards from OldIdx
    878   /// to NewIdx.
    879   ///
    880   /// 1. Live def at OldIdx:
    881   ///    Hoist def to NewIdx.
    882   ///
    883   /// 2. Dead def at OldIdx:
    884   ///    Hoist def+end to NewIdx, possibly move across other values.
    885   ///
    886   /// 3. Dead def at OldIdx AND existing def at NewIdx:
    887   ///    Remove value defined at OldIdx, coalescing it with existing value.
    888   ///
    889   /// 4. Live def at OldIdx AND existing def at NewIdx:
    890   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
    891   ///    (Happens when bundling multiple defs together).
    892   ///
    893   /// 5. Value killed at OldIdx:
    894   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
    895   ///    OldIdx.
    896   ///
    897   void handleMoveUp(LiveInterval &LI) {
    898     // First look for a kill at OldIdx.
    899     LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
    900     LiveInterval::iterator E = LI.end();
    901     // Is LI even live at OldIdx?
    902     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
    903       return;
    904 
    905     // Handle a live-in value.
    906     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
    907       // If the live-in value isn't killed here, there is nothing to do.
    908       if (!SlotIndex::isSameInstr(OldIdx, I->end))
    909         return;
    910       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
    911       // another use, we need to search for that use. Case 5 above.
    912       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
    913       ++I;
    914       // If OldIdx also defines a value, there couldn't have been another use.
    915       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
    916         // No def, search for the new kill.
    917         // This can never be an early clobber kill since there is no def.
    918         llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
    919         return;
    920       }
    921     }
    922 
    923     // Now deal with the def at OldIdx.
    924     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
    925     VNInfo *DefVNI = I->valno;
    926     assert(DefVNI->def == I->start && "Inconsistent def");
    927     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
    928 
    929     // Check for an existing def at NewIdx.
    930     LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
    931     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
    932       assert(NewI->valno != DefVNI && "Same value defined more than once?");
    933       // There is an existing def at NewIdx.
    934       if (I->end.isDead()) {
    935         // Case 3: Remove the dead def at OldIdx.
    936         LI.removeValNo(DefVNI);
    937         return;
    938       }
    939       // Case 4: Replace def at NewIdx with live def at OldIdx.
    940       I->start = DefVNI->def;
    941       LI.removeValNo(NewI->valno);
    942       return;
    943     }
    944 
    945     // There is no existing def at NewIdx. Hoist DefVNI.
    946     if (!I->end.isDead()) {
    947       // Leave the end point of a live def.
    948       I->start = DefVNI->def;
    949       return;
    950     }
    951 
    952     // DefVNI is a dead def. It may have been moved across other values in LI,
    953     // so move I up to NewI. Slide [NewI;I) down one position.
    954     std::copy_backward(NewI, I, llvm::next(I));
    955     *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
    956   }
    957 
    958   void updateRegMaskSlots() {
    959     SmallVectorImpl<SlotIndex>::iterator RI =
    960       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
    961                        OldIdx);
    962     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
    963            "No RegMask at OldIdx.");
    964     *RI = NewIdx.getRegSlot();
    965     assert((RI == LIS.RegMaskSlots.begin() ||
    966             SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
    967             "Cannot move regmask instruction above another call");
    968     assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
    969             SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
    970             "Cannot move regmask instruction below another call");
    971   }
    972 
    973   // Return the last use of reg between NewIdx and OldIdx.
    974   SlotIndex findLastUseBefore(unsigned Reg) {
    975 
    976     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    977       SlotIndex LastUse = NewIdx;
    978       for (MachineRegisterInfo::use_nodbg_iterator
    979              UI = MRI.use_nodbg_begin(Reg),
    980              UE = MRI.use_nodbg_end();
    981            UI != UE; UI.skipInstruction()) {
    982         const MachineInstr* MI = &*UI;
    983         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
    984         if (InstSlot > LastUse && InstSlot < OldIdx)
    985           LastUse = InstSlot;
    986       }
    987       return LastUse;
    988     }
    989 
    990     // This is a regunit interval, so scanning the use list could be very
    991     // expensive. Scan upwards from OldIdx instead.
    992     assert(NewIdx < OldIdx && "Expected upwards move");
    993     SlotIndexes *Indexes = LIS.getSlotIndexes();
    994     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
    995 
    996     // OldIdx may not correspond to an instruction any longer, so set MII to
    997     // point to the next instruction after OldIdx, or MBB->end().
    998     MachineBasicBlock::iterator MII = MBB->end();
    999     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
   1000                            Indexes->getNextNonNullIndex(OldIdx)))
   1001       if (MI->getParent() == MBB)
   1002         MII = MI;
   1003 
   1004     MachineBasicBlock::iterator Begin = MBB->begin();
   1005     while (MII != Begin) {
   1006       if ((--MII)->isDebugValue())
   1007         continue;
   1008       SlotIndex Idx = Indexes->getInstructionIndex(MII);
   1009 
   1010       // Stop searching when NewIdx is reached.
   1011       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
   1012         return NewIdx;
   1013 
   1014       // Check if MII uses Reg.
   1015       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
   1016         if (MO->isReg() &&
   1017             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
   1018             TRI.hasRegUnit(MO->getReg(), Reg))
   1019           return Idx;
   1020     }
   1021     // Didn't reach NewIdx. It must be the first instruction in the block.
   1022     return NewIdx;
   1023   }
   1024 };
   1025 
   1026 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
   1027   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
   1028   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1029   Indexes->removeMachineInstrFromMaps(MI);
   1030   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
   1031   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
   1032          OldIndex < getMBBEndIdx(MI->getParent()) &&
   1033          "Cannot handle moves across basic block boundaries.");
   1034 
   1035   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1036   HME.updateAllRanges(MI);
   1037 }
   1038 
   1039 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
   1040                                          MachineInstr* BundleStart,
   1041                                          bool UpdateFlags) {
   1042   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1043   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
   1044   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1045   HME.updateAllRanges(MI);
   1046 }
   1047 
   1048 void
   1049 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
   1050                                       MachineBasicBlock::iterator Begin,
   1051                                       MachineBasicBlock::iterator End,
   1052                                       ArrayRef<unsigned> OrigRegs) {
   1053   // Find anchor points, which are at the beginning/end of blocks or at
   1054   // instructions that already have indexes.
   1055   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
   1056     --Begin;
   1057   while (End != MBB->end() && !Indexes->hasIndex(End))
   1058     ++End;
   1059 
   1060   SlotIndex endIdx;
   1061   if (End == MBB->end())
   1062     endIdx = getMBBEndIdx(MBB).getPrevSlot();
   1063   else
   1064     endIdx = getInstructionIndex(End);
   1065 
   1066   Indexes->repairIndexesInRange(MBB, Begin, End);
   1067 
   1068   for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1069     --I;
   1070     MachineInstr *MI = I;
   1071     if (MI->isDebugValue())
   1072       continue;
   1073     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
   1074          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
   1075       if (MOI->isReg() &&
   1076           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
   1077           !hasInterval(MOI->getReg())) {
   1078         LiveInterval &LI = getOrCreateInterval(MOI->getReg());
   1079         computeVirtRegInterval(&LI);
   1080       }
   1081     }
   1082   }
   1083 
   1084   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
   1085     unsigned Reg = OrigRegs[i];
   1086     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1087       continue;
   1088 
   1089     LiveInterval &LI = getInterval(Reg);
   1090     // FIXME: Should we support undefs that gain defs?
   1091     if (!LI.hasAtLeastOneValue())
   1092       continue;
   1093 
   1094     LiveInterval::iterator LII = LI.find(endIdx);
   1095     SlotIndex lastUseIdx;
   1096     if (LII != LI.end() && LII->start < endIdx)
   1097       lastUseIdx = LII->end;
   1098     else
   1099       --LII;
   1100 
   1101     for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1102       --I;
   1103       MachineInstr *MI = I;
   1104       if (MI->isDebugValue())
   1105         continue;
   1106 
   1107       SlotIndex instrIdx = getInstructionIndex(MI);
   1108       bool isStartValid = getInstructionFromIndex(LII->start);
   1109       bool isEndValid = getInstructionFromIndex(LII->end);
   1110 
   1111       // FIXME: This doesn't currently handle early-clobber or multiple removed
   1112       // defs inside of the region to repair.
   1113       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
   1114            OE = MI->operands_end(); OI != OE; ++OI) {
   1115         const MachineOperand &MO = *OI;
   1116         if (!MO.isReg() || MO.getReg() != Reg)
   1117           continue;
   1118 
   1119         if (MO.isDef()) {
   1120           if (!isStartValid) {
   1121             if (LII->end.isDead()) {
   1122               SlotIndex prevStart;
   1123               if (LII != LI.begin())
   1124                 prevStart = llvm::prior(LII)->start;
   1125 
   1126               // FIXME: This could be more efficient if there was a removeRange
   1127               // method that returned an iterator.
   1128               LI.removeRange(*LII, true);
   1129               if (prevStart.isValid())
   1130                 LII = LI.find(prevStart);
   1131               else
   1132                 LII = LI.begin();
   1133             } else {
   1134               LII->start = instrIdx.getRegSlot();
   1135               LII->valno->def = instrIdx.getRegSlot();
   1136               if (MO.getSubReg() && !MO.isUndef())
   1137                 lastUseIdx = instrIdx.getRegSlot();
   1138               else
   1139                 lastUseIdx = SlotIndex();
   1140               continue;
   1141             }
   1142           }
   1143 
   1144           if (!lastUseIdx.isValid()) {
   1145             VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
   1146                                           VNInfoAllocator);
   1147             LiveRange LR(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI);
   1148             LII = LI.addRange(LR);
   1149           } else if (LII->start != instrIdx.getRegSlot()) {
   1150             VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
   1151                                           VNInfoAllocator);
   1152             LiveRange LR(instrIdx.getRegSlot(), lastUseIdx, VNI);
   1153             LII = LI.addRange(LR);
   1154           }
   1155 
   1156           if (MO.getSubReg() && !MO.isUndef())
   1157             lastUseIdx = instrIdx.getRegSlot();
   1158           else
   1159             lastUseIdx = SlotIndex();
   1160         } else if (MO.isUse()) {
   1161           // FIXME: This should probably be handled outside of this branch,
   1162           // either as part of the def case (for defs inside of the region) or
   1163           // after the loop over the region.
   1164           if (!isEndValid && !LII->end.isBlock())
   1165             LII->end = instrIdx.getRegSlot();
   1166           if (!lastUseIdx.isValid())
   1167             lastUseIdx = instrIdx.getRegSlot();
   1168         }
   1169       }
   1170     }
   1171   }
   1172 }
   1173