Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MachineRegisterInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
     15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
     16 
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/IndexedMap.h"
     19 #include "llvm/CodeGen/MachineInstrBundle.h"
     20 #include "llvm/Target/TargetRegisterInfo.h"
     21 #include <vector>
     22 
     23 namespace llvm {
     24 
     25 /// MachineRegisterInfo - Keep track of information for virtual and physical
     26 /// registers, including vreg register classes, use/def chains for registers,
     27 /// etc.
     28 class MachineRegisterInfo {
     29   const TargetRegisterInfo *const TRI;
     30 
     31   /// IsSSA - True when the machine function is in SSA form and virtual
     32   /// registers have a single def.
     33   bool IsSSA;
     34 
     35   /// TracksLiveness - True while register liveness is being tracked accurately.
     36   /// Basic block live-in lists, kill flags, and implicit defs may not be
     37   /// accurate when after this flag is cleared.
     38   bool TracksLiveness;
     39 
     40   /// VRegInfo - Information we keep for each virtual register.
     41   ///
     42   /// Each element in this list contains the register class of the vreg and the
     43   /// start of the use/def list for the register.
     44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
     45              VirtReg2IndexFunctor> VRegInfo;
     46 
     47   /// RegAllocHints - This vector records register allocation hints for virtual
     48   /// registers. For each virtual register, it keeps a register and hint type
     49   /// pair making up the allocation hint. Hint type is target specific except
     50   /// for the value 0 which means the second value of the pair is the preferred
     51   /// register for allocation. For example, if the hint is <0, 1024>, it means
     52   /// the allocator should prefer the physical register allocated to the virtual
     53   /// register of the hint.
     54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
     55 
     56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
     57   /// physical registers.
     58   MachineOperand **PhysRegUseDefLists;
     59 
     60   /// getRegUseDefListHead - Return the head pointer for the register use/def
     61   /// list for the specified virtual or physical register.
     62   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
     63     if (TargetRegisterInfo::isVirtualRegister(RegNo))
     64       return VRegInfo[RegNo].second;
     65     return PhysRegUseDefLists[RegNo];
     66   }
     67 
     68   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
     69     if (TargetRegisterInfo::isVirtualRegister(RegNo))
     70       return VRegInfo[RegNo].second;
     71     return PhysRegUseDefLists[RegNo];
     72   }
     73 
     74   /// Get the next element in the use-def chain.
     75   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
     76     assert(MO && MO->isReg() && "This is not a register operand!");
     77     return MO->Contents.Reg.Next;
     78   }
     79 
     80   /// UsedRegUnits - This is a bit vector that is computed and set by the
     81   /// register allocator, and must be kept up to date by passes that run after
     82   /// register allocation (though most don't modify this).  This is used
     83   /// so that the code generator knows which callee save registers to save and
     84   /// for other target specific uses.
     85   /// This vector has bits set for register units that are modified in the
     86   /// current function. It doesn't include registers clobbered by function
     87   /// calls with register mask operands.
     88   BitVector UsedRegUnits;
     89 
     90   /// UsedPhysRegMask - Additional used physregs including aliases.
     91   /// This bit vector represents all the registers clobbered by function calls.
     92   /// It can model things that UsedRegUnits can't, such as function calls that
     93   /// clobber ymm7 but preserve the low half in xmm7.
     94   BitVector UsedPhysRegMask;
     95 
     96   /// ReservedRegs - This is a bit vector of reserved registers.  The target
     97   /// may change its mind about which registers should be reserved.  This
     98   /// vector is the frozen set of reserved registers when register allocation
     99   /// started.
    100   BitVector ReservedRegs;
    101 
    102   /// Keep track of the physical registers that are live in to the function.
    103   /// Live in values are typically arguments in registers.  LiveIn values are
    104   /// allowed to have virtual registers associated with them, stored in the
    105   /// second element.
    106   std::vector<std::pair<unsigned, unsigned> > LiveIns;
    107 
    108   MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
    109   void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
    110 public:
    111   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
    112   ~MachineRegisterInfo();
    113 
    114   //===--------------------------------------------------------------------===//
    115   // Function State
    116   //===--------------------------------------------------------------------===//
    117 
    118   // isSSA - Returns true when the machine function is in SSA form. Early
    119   // passes require the machine function to be in SSA form where every virtual
    120   // register has a single defining instruction.
    121   //
    122   // The TwoAddressInstructionPass and PHIElimination passes take the machine
    123   // function out of SSA form when they introduce multiple defs per virtual
    124   // register.
    125   bool isSSA() const { return IsSSA; }
    126 
    127   // leaveSSA - Indicates that the machine function is no longer in SSA form.
    128   void leaveSSA() { IsSSA = false; }
    129 
    130   /// tracksLiveness - Returns true when tracking register liveness accurately.
    131   ///
    132   /// While this flag is true, register liveness information in basic block
    133   /// live-in lists and machine instruction operands is accurate. This means it
    134   /// can be used to change the code in ways that affect the values in
    135   /// registers, for example by the register scavenger.
    136   ///
    137   /// When this flag is false, liveness is no longer reliable.
    138   bool tracksLiveness() const { return TracksLiveness; }
    139 
    140   /// invalidateLiveness - Indicates that register liveness is no longer being
    141   /// tracked accurately.
    142   ///
    143   /// This should be called by late passes that invalidate the liveness
    144   /// information.
    145   void invalidateLiveness() { TracksLiveness = false; }
    146 
    147   //===--------------------------------------------------------------------===//
    148   // Register Info
    149   //===--------------------------------------------------------------------===//
    150 
    151   // Strictly for use by MachineInstr.cpp.
    152   void addRegOperandToUseList(MachineOperand *MO);
    153 
    154   // Strictly for use by MachineInstr.cpp.
    155   void removeRegOperandFromUseList(MachineOperand *MO);
    156 
    157   // Strictly for use by MachineInstr.cpp.
    158   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
    159 
    160   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
    161   /// and uses of a register within the MachineFunction that corresponds to this
    162   /// MachineRegisterInfo object.
    163   template<bool Uses, bool Defs, bool SkipDebug>
    164   class defusechain_iterator;
    165 
    166   // Make it a friend so it can access getNextOperandForReg().
    167   template<bool, bool, bool> friend class defusechain_iterator;
    168 
    169   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
    170   /// register.
    171   typedef defusechain_iterator<true,true,false> reg_iterator;
    172   reg_iterator reg_begin(unsigned RegNo) const {
    173     return reg_iterator(getRegUseDefListHead(RegNo));
    174   }
    175   static reg_iterator reg_end() { return reg_iterator(0); }
    176 
    177   /// reg_empty - Return true if there are no instructions using or defining the
    178   /// specified register (it may be live-in).
    179   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
    180 
    181   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
    182   /// of the specified register, skipping those marked as Debug.
    183   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
    184   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
    185     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
    186   }
    187   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
    188 
    189   /// reg_nodbg_empty - Return true if the only instructions using or defining
    190   /// Reg are Debug instructions.
    191   bool reg_nodbg_empty(unsigned RegNo) const {
    192     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
    193   }
    194 
    195   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
    196   typedef defusechain_iterator<false,true,false> def_iterator;
    197   def_iterator def_begin(unsigned RegNo) const {
    198     return def_iterator(getRegUseDefListHead(RegNo));
    199   }
    200   static def_iterator def_end() { return def_iterator(0); }
    201 
    202   /// def_empty - Return true if there are no instructions defining the
    203   /// specified register (it may be live-in).
    204   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
    205 
    206   /// hasOneDef - Return true if there is exactly one instruction defining the
    207   /// specified register.
    208   bool hasOneDef(unsigned RegNo) const {
    209     def_iterator DI = def_begin(RegNo);
    210     if (DI == def_end())
    211       return false;
    212     return ++DI == def_end();
    213   }
    214 
    215   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
    216   typedef defusechain_iterator<true,false,false> use_iterator;
    217   use_iterator use_begin(unsigned RegNo) const {
    218     return use_iterator(getRegUseDefListHead(RegNo));
    219   }
    220   static use_iterator use_end() { return use_iterator(0); }
    221 
    222   /// use_empty - Return true if there are no instructions using the specified
    223   /// register.
    224   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
    225 
    226   /// hasOneUse - Return true if there is exactly one instruction using the
    227   /// specified register.
    228   bool hasOneUse(unsigned RegNo) const {
    229     use_iterator UI = use_begin(RegNo);
    230     if (UI == use_end())
    231       return false;
    232     return ++UI == use_end();
    233   }
    234 
    235   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
    236   /// specified register, skipping those marked as Debug.
    237   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
    238   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
    239     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
    240   }
    241   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
    242 
    243   /// use_nodbg_empty - Return true if there are no non-Debug instructions
    244   /// using the specified register.
    245   bool use_nodbg_empty(unsigned RegNo) const {
    246     return use_nodbg_begin(RegNo) == use_nodbg_end();
    247   }
    248 
    249   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
    250   /// instruction using the specified register.
    251   bool hasOneNonDBGUse(unsigned RegNo) const;
    252 
    253   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
    254   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
    255   /// except that it also changes any definitions of the register as well.
    256   ///
    257   /// Note that it is usually necessary to first constrain ToReg's register
    258   /// class to match the FromReg constraints using:
    259   ///
    260   ///   constrainRegClass(ToReg, getRegClass(FromReg))
    261   ///
    262   /// That function will return NULL if the virtual registers have incompatible
    263   /// constraints.
    264   void replaceRegWith(unsigned FromReg, unsigned ToReg);
    265 
    266   /// getVRegDef - Return the machine instr that defines the specified virtual
    267   /// register or null if none is found.  This assumes that the code is in SSA
    268   /// form, so there should only be one definition.
    269   MachineInstr *getVRegDef(unsigned Reg) const;
    270 
    271   /// getUniqueVRegDef - Return the unique machine instr that defines the
    272   /// specified virtual register or null if none is found.  If there are
    273   /// multiple definitions or no definition, return null.
    274   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
    275 
    276   /// clearKillFlags - Iterate over all the uses of the given register and
    277   /// clear the kill flag from the MachineOperand. This function is used by
    278   /// optimization passes which extend register lifetimes and need only
    279   /// preserve conservative kill flag information.
    280   void clearKillFlags(unsigned Reg) const;
    281 
    282 #ifndef NDEBUG
    283   void dumpUses(unsigned RegNo) const;
    284 #endif
    285 
    286   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
    287   /// throughout the function.  It is safe to move instructions that read such
    288   /// a physreg.
    289   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
    290 
    291   //===--------------------------------------------------------------------===//
    292   // Virtual Register Info
    293   //===--------------------------------------------------------------------===//
    294 
    295   /// getRegClass - Return the register class of the specified virtual register.
    296   ///
    297   const TargetRegisterClass *getRegClass(unsigned Reg) const {
    298     return VRegInfo[Reg].first;
    299   }
    300 
    301   /// setRegClass - Set the register class of the specified virtual register.
    302   ///
    303   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
    304 
    305   /// constrainRegClass - Constrain the register class of the specified virtual
    306   /// register to be a common subclass of RC and the current register class,
    307   /// but only if the new class has at least MinNumRegs registers.  Return the
    308   /// new register class, or NULL if no such class exists.
    309   /// This should only be used when the constraint is known to be trivial, like
    310   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
    311   ///
    312   const TargetRegisterClass *constrainRegClass(unsigned Reg,
    313                                                const TargetRegisterClass *RC,
    314                                                unsigned MinNumRegs = 0);
    315 
    316   /// recomputeRegClass - Try to find a legal super-class of Reg's register
    317   /// class that still satisfies the constraints from the instructions using
    318   /// Reg.  Returns true if Reg was upgraded.
    319   ///
    320   /// This method can be used after constraints have been removed from a
    321   /// virtual register, for example after removing instructions or splitting
    322   /// the live range.
    323   ///
    324   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
    325 
    326   /// createVirtualRegister - Create and return a new virtual register in the
    327   /// function with the specified register class.
    328   ///
    329   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
    330 
    331   /// getNumVirtRegs - Return the number of virtual registers created.
    332   ///
    333   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
    334 
    335   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
    336   void clearVirtRegs();
    337 
    338   /// setRegAllocationHint - Specify a register allocation hint for the
    339   /// specified virtual register.
    340   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
    341     RegAllocHints[Reg].first  = Type;
    342     RegAllocHints[Reg].second = PrefReg;
    343   }
    344 
    345   /// getRegAllocationHint - Return the register allocation hint for the
    346   /// specified virtual register.
    347   std::pair<unsigned, unsigned>
    348   getRegAllocationHint(unsigned Reg) const {
    349     return RegAllocHints[Reg];
    350   }
    351 
    352   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
    353   /// standard simple hint (Type == 0) is not set.
    354   unsigned getSimpleHint(unsigned Reg) const {
    355     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
    356     return Hint.first ? 0 : Hint.second;
    357   }
    358 
    359 
    360   //===--------------------------------------------------------------------===//
    361   // Physical Register Use Info
    362   //===--------------------------------------------------------------------===//
    363 
    364   /// isPhysRegUsed - Return true if the specified register is used in this
    365   /// function. Also check for clobbered aliases and registers clobbered by
    366   /// function calls with register mask operands.
    367   ///
    368   /// This only works after register allocation. It is primarily used by
    369   /// PrologEpilogInserter to determine which callee-saved registers need
    370   /// spilling.
    371   bool isPhysRegUsed(unsigned Reg) const {
    372     if (UsedPhysRegMask.test(Reg))
    373       return true;
    374     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    375       if (UsedRegUnits.test(*Units))
    376         return true;
    377     return false;
    378   }
    379 
    380   /// Mark the specified register unit as used in this function.
    381   /// This should only be called during and after register allocation.
    382   void setRegUnitUsed(unsigned RegUnit) {
    383     UsedRegUnits.set(RegUnit);
    384   }
    385 
    386   /// setPhysRegUsed - Mark the specified register used in this function.
    387   /// This should only be called during and after register allocation.
    388   void setPhysRegUsed(unsigned Reg) {
    389     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    390       UsedRegUnits.set(*Units);
    391   }
    392 
    393   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
    394   /// This corresponds to the bit mask attached to register mask operands.
    395   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
    396     UsedPhysRegMask.setBitsNotInMask(RegMask);
    397   }
    398 
    399   /// setPhysRegUnused - Mark the specified register unused in this function.
    400   /// This should only be called during and after register allocation.
    401   void setPhysRegUnused(unsigned Reg) {
    402     UsedPhysRegMask.reset(Reg);
    403     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    404       UsedRegUnits.reset(*Units);
    405   }
    406 
    407 
    408   //===--------------------------------------------------------------------===//
    409   // Reserved Register Info
    410   //===--------------------------------------------------------------------===//
    411   //
    412   // The set of reserved registers must be invariant during register
    413   // allocation.  For example, the target cannot suddenly decide it needs a
    414   // frame pointer when the register allocator has already used the frame
    415   // pointer register for something else.
    416   //
    417   // These methods can be used by target hooks like hasFP() to avoid changing
    418   // the reserved register set during register allocation.
    419 
    420   /// freezeReservedRegs - Called by the register allocator to freeze the set
    421   /// of reserved registers before allocation begins.
    422   void freezeReservedRegs(const MachineFunction&);
    423 
    424   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
    425   /// to ensure the set of reserved registers stays constant.
    426   bool reservedRegsFrozen() const {
    427     return !ReservedRegs.empty();
    428   }
    429 
    430   /// canReserveReg - Returns true if PhysReg can be used as a reserved
    431   /// register.  Any register can be reserved before freezeReservedRegs() is
    432   /// called.
    433   bool canReserveReg(unsigned PhysReg) const {
    434     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
    435   }
    436 
    437   /// getReservedRegs - Returns a reference to the frozen set of reserved
    438   /// registers. This method should always be preferred to calling
    439   /// TRI::getReservedRegs() when possible.
    440   const BitVector &getReservedRegs() const {
    441     assert(reservedRegsFrozen() &&
    442            "Reserved registers haven't been frozen yet. "
    443            "Use TRI::getReservedRegs().");
    444     return ReservedRegs;
    445   }
    446 
    447   /// isReserved - Returns true when PhysReg is a reserved register.
    448   ///
    449   /// Reserved registers may belong to an allocatable register class, but the
    450   /// target has explicitly requested that they are not used.
    451   ///
    452   bool isReserved(unsigned PhysReg) const {
    453     return getReservedRegs().test(PhysReg);
    454   }
    455 
    456   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
    457   /// register class and it hasn't been reserved.
    458   ///
    459   /// Allocatable registers may show up in the allocation order of some virtual
    460   /// register, so a register allocator needs to track its liveness and
    461   /// availability.
    462   bool isAllocatable(unsigned PhysReg) const {
    463     return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg);
    464   }
    465 
    466   //===--------------------------------------------------------------------===//
    467   // LiveIn Management
    468   //===--------------------------------------------------------------------===//
    469 
    470   /// addLiveIn - Add the specified register as a live-in.  Note that it
    471   /// is an error to add the same register to the same set more than once.
    472   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
    473     LiveIns.push_back(std::make_pair(Reg, vreg));
    474   }
    475 
    476   // Iteration support for the live-ins set.  It's kept in sorted order
    477   // by register number.
    478   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
    479   livein_iterator;
    480   livein_iterator livein_begin() const { return LiveIns.begin(); }
    481   livein_iterator livein_end()   const { return LiveIns.end(); }
    482   bool            livein_empty() const { return LiveIns.empty(); }
    483 
    484   bool isLiveIn(unsigned Reg) const;
    485 
    486   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
    487   /// corresponding live-in physical register.
    488   unsigned getLiveInPhysReg(unsigned VReg) const;
    489 
    490   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
    491   /// corresponding live-in physical register.
    492   unsigned getLiveInVirtReg(unsigned PReg) const;
    493 
    494   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
    495   /// into the given entry block.
    496   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
    497                         const TargetRegisterInfo &TRI,
    498                         const TargetInstrInfo &TII);
    499 
    500   /// defusechain_iterator - This class provides iterator support for machine
    501   /// operands in the function that use or define a specific register.  If
    502   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
    503   /// returns defs.  If neither are true then you are silly and it always
    504   /// returns end().  If SkipDebug is true it skips uses marked Debug
    505   /// when incrementing.
    506   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
    507   class defusechain_iterator
    508     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
    509     MachineOperand *Op;
    510     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
    511       // If the first node isn't one we're interested in, advance to one that
    512       // we are interested in.
    513       if (op) {
    514         if ((!ReturnUses && op->isUse()) ||
    515             (!ReturnDefs && op->isDef()) ||
    516             (SkipDebug && op->isDebug()))
    517           ++*this;
    518       }
    519     }
    520     friend class MachineRegisterInfo;
    521   public:
    522     typedef std::iterator<std::forward_iterator_tag,
    523                           MachineInstr, ptrdiff_t>::reference reference;
    524     typedef std::iterator<std::forward_iterator_tag,
    525                           MachineInstr, ptrdiff_t>::pointer pointer;
    526 
    527     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
    528     defusechain_iterator() : Op(0) {}
    529 
    530     bool operator==(const defusechain_iterator &x) const {
    531       return Op == x.Op;
    532     }
    533     bool operator!=(const defusechain_iterator &x) const {
    534       return !operator==(x);
    535     }
    536 
    537     /// atEnd - return true if this iterator is equal to reg_end() on the value.
    538     bool atEnd() const { return Op == 0; }
    539 
    540     // Iterator traversal: forward iteration only
    541     defusechain_iterator &operator++() {          // Preincrement
    542       assert(Op && "Cannot increment end iterator!");
    543       Op = getNextOperandForReg(Op);
    544 
    545       // All defs come before the uses, so stop def_iterator early.
    546       if (!ReturnUses) {
    547         if (Op) {
    548           if (Op->isUse())
    549             Op = 0;
    550           else
    551             assert(!Op->isDebug() && "Can't have debug defs");
    552         }
    553       } else {
    554         // If this is an operand we don't care about, skip it.
    555         while (Op && ((!ReturnDefs && Op->isDef()) ||
    556                       (SkipDebug && Op->isDebug())))
    557           Op = getNextOperandForReg(Op);
    558       }
    559 
    560       return *this;
    561     }
    562     defusechain_iterator operator++(int) {        // Postincrement
    563       defusechain_iterator tmp = *this; ++*this; return tmp;
    564     }
    565 
    566     /// skipInstruction - move forward until reaching a different instruction.
    567     /// Return the skipped instruction that is no longer pointed to, or NULL if
    568     /// already pointing to end().
    569     MachineInstr *skipInstruction() {
    570       if (!Op) return 0;
    571       MachineInstr *MI = Op->getParent();
    572       do ++*this;
    573       while (Op && Op->getParent() == MI);
    574       return MI;
    575     }
    576 
    577     MachineInstr *skipBundle() {
    578       if (!Op) return 0;
    579       MachineInstr *MI = getBundleStart(Op->getParent());
    580       do ++*this;
    581       while (Op && getBundleStart(Op->getParent()) == MI);
    582       return MI;
    583     }
    584 
    585     MachineOperand &getOperand() const {
    586       assert(Op && "Cannot dereference end iterator!");
    587       return *Op;
    588     }
    589 
    590     /// getOperandNo - Return the operand # of this MachineOperand in its
    591     /// MachineInstr.
    592     unsigned getOperandNo() const {
    593       assert(Op && "Cannot dereference end iterator!");
    594       return Op - &Op->getParent()->getOperand(0);
    595     }
    596 
    597     // Retrieve a reference to the current operand.
    598     MachineInstr &operator*() const {
    599       assert(Op && "Cannot dereference end iterator!");
    600       return *Op->getParent();
    601     }
    602 
    603     MachineInstr *operator->() const {
    604       assert(Op && "Cannot dereference end iterator!");
    605       return Op->getParent();
    606     }
    607   };
    608 
    609 };
    610 
    611 } // End llvm namespace
    612 
    613 #endif
    614