1 /* ------------------------------------------------------------------ */ 2 /* decNumber package local type, tuning, and macro definitions */ 3 /* ------------------------------------------------------------------ */ 4 /* Copyright (c) IBM Corporation, 2000-2012. All rights reserved. */ 5 /* */ 6 /* This software is made available under the terms of the */ 7 /* ICU License -- ICU 1.8.1 and later. */ 8 /* */ 9 /* The description and User's Guide ("The decNumber C Library") for */ 10 /* this software is called decNumber.pdf. This document is */ 11 /* available, together with arithmetic and format specifications, */ 12 /* testcases, and Web links, on the General Decimal Arithmetic page. */ 13 /* */ 14 /* Please send comments, suggestions, and corrections to the author: */ 15 /* mfc (at) uk.ibm.com */ 16 /* Mike Cowlishaw, IBM Fellow */ 17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ 18 /* ------------------------------------------------------------------ */ 19 /* This header file is included by all modules in the decNumber */ 20 /* library, and contains local type definitions, tuning parameters, */ 21 /* etc. It should not need to be used by application programs. */ 22 /* decNumber.h or one of decDouble (etc.) must be included first. */ 23 /* ------------------------------------------------------------------ */ 24 25 #if !defined(DECNUMBERLOC) 26 #define DECNUMBERLOC 27 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ 28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ 29 30 #include <stdlib.h> /* for abs */ 31 #include <string.h> /* for memset, strcpy */ 32 33 /* Conditional code flag -- set this to match hardware platform */ 34 #if !defined(DECLITEND) 35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ 36 #endif 37 38 /* Conditional code flag -- set this to 1 for best performance */ 39 #if !defined(DECUSE64) 40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ 41 #endif 42 43 /* Conditional check flags -- set these to 0 for best performance */ 44 #if !defined(DECCHECK) 45 #define DECCHECK 0 /* 1 to enable robust checking */ 46 #endif 47 #if !defined(DECALLOC) 48 #define DECALLOC 0 /* 1 to enable memory accounting */ 49 #endif 50 #if !defined(DECTRACE) 51 #define DECTRACE 0 /* 1 to trace certain internals, etc. */ 52 #endif 53 54 /* Tuning parameter for decNumber (arbitrary precision) module */ 55 #if !defined(DECBUFFER) 56 #define DECBUFFER 36 /* Size basis for local buffers. This */ 57 /* should be a common maximum precision */ 58 /* rounded up to a multiple of 4; must */ 59 /* be zero or positive. */ 60 #endif 61 62 /* ---------------------------------------------------------------- */ 63 /* Definitions for all modules (general-purpose) */ 64 /* ---------------------------------------------------------------- */ 65 66 /* Local names for common types -- for safety, decNumber modules do */ 67 /* not use int or long directly. */ 68 #define Flag uint8_t 69 #define Byte int8_t 70 #define uByte uint8_t 71 #define Short int16_t 72 #define uShort uint16_t 73 #define Int int32_t 74 #define uInt uint32_t 75 #define Unit decNumberUnit 76 #if DECUSE64 77 #define Long int64_t 78 #define uLong uint64_t 79 #endif 80 81 /* Development-use definitions */ 82 typedef long int LI; /* for printf arguments only */ 83 #define DECNOINT 0 /* 1 to check no internal use of 'int' */ 84 /* or stdint types */ 85 #if DECNOINT 86 /* if these interfere with your C includes, do not set DECNOINT */ 87 #define int ? /* enable to ensure that plain C 'int' */ 88 #define long ?? /* .. or 'long' types are not used */ 89 #endif 90 91 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ 92 /* (that is, sets w to be the high-order word of the 64-bit result; */ 93 /* the low-order word is simply u*v.) */ 94 /* This version is derived from Knuth via Hacker's Delight; */ 95 /* it seems to optimize better than some others tried */ 96 #define LONGMUL32HI(w, u, v) { \ 97 uInt u0, u1, v0, v1, w0, w1, w2, t; \ 98 u0=u & 0xffff; u1=u>>16; \ 99 v0=v & 0xffff; v1=v>>16; \ 100 w0=u0*v0; \ 101 t=u1*v0 + (w0>>16); \ 102 w1=t & 0xffff; w2=t>>16; \ 103 w1=u0*v1 + w1; \ 104 (w)=u1*v1 + w2 + (w1>>16);} 105 106 /* ROUNDUP -- round an integer up to a multiple of n */ 107 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) 108 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ 109 110 /* ROUNDDOWN -- round an integer down to a multiple of n */ 111 #define ROUNDDOWN(i, n) (((i)/n)*n) 112 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ 113 114 /* References to multi-byte sequences under different sizes; these */ 115 /* require locally declared variables, but do not violate strict */ 116 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ 117 /* Variables needed are uswork, uiwork, etc. [so do not use at same */ 118 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ 119 120 /* Return a uInt, etc., from bytes starting at a char* or uByte* */ 121 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) 122 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) 123 124 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ 125 /* Returns i, evaluated, for convenience; has to use uiwork because */ 126 /* i may be an expression. */ 127 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) 128 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) 129 130 /* X10 and X100 -- multiply integer i by 10 or 100 */ 131 /* [shifts are usually faster than multiply; could be conditional] */ 132 #define X10(i) (((i)<<1)+((i)<<3)) 133 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) 134 135 /* MAXI and MINI -- general max & min (not in ANSI) for integers */ 136 #define MAXI(x,y) ((x)<(y)?(y):(x)) 137 #define MINI(x,y) ((x)>(y)?(y):(x)) 138 139 /* Useful constants */ 140 #define BILLION 1000000000 /* 10**9 */ 141 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ 142 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') 143 144 145 /* ---------------------------------------------------------------- */ 146 /* Definitions for arbitary-precision modules (only valid after */ 147 /* decNumber.h has been included) */ 148 /* ---------------------------------------------------------------- */ 149 150 /* Limits and constants */ 151 #define DECNUMMAXP 999999999 /* maximum precision code can handle */ 152 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ 153 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ 154 #if (DECNUMMAXP != DEC_MAX_DIGITS) 155 #error Maximum digits mismatch 156 #endif 157 #if (DECNUMMAXE != DEC_MAX_EMAX) 158 #error Maximum exponent mismatch 159 #endif 160 #if (DECNUMMINE != DEC_MIN_EMIN) 161 #error Minimum exponent mismatch 162 #endif 163 164 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ 165 /* digits, and D2UTABLE -- the initializer for the D2U table */ 166 #if DECDPUN==1 167 #define DECDPUNMAX 9 168 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 169 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 170 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 171 48,49} 172 #elif DECDPUN==2 173 #define DECDPUNMAX 99 174 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 175 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 176 18,19,19,20,20,21,21,22,22,23,23,24,24,25} 177 #elif DECDPUN==3 178 #define DECDPUNMAX 999 179 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 180 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 181 13,14,14,14,15,15,15,16,16,16,17} 182 #elif DECDPUN==4 183 #define DECDPUNMAX 9999 184 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 185 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 186 11,11,11,12,12,12,12,13} 187 #elif DECDPUN==5 188 #define DECDPUNMAX 99999 189 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 190 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 191 9,9,10,10,10,10} 192 #elif DECDPUN==6 193 #define DECDPUNMAX 999999 194 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 195 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 196 8,8,8,8,8,9} 197 #elif DECDPUN==7 198 #define DECDPUNMAX 9999999 199 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 200 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 201 7,7,7,7,7,7} 202 #elif DECDPUN==8 203 #define DECDPUNMAX 99999999 204 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 205 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 206 6,6,6,6,6,7} 207 #elif DECDPUN==9 208 #define DECDPUNMAX 999999999 209 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 210 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 211 5,5,6,6,6,6} 212 #elif defined(DECDPUN) 213 #error DECDPUN must be in the range 1-9 214 #endif 215 216 /* ----- Shared data (in decNumber.c) ----- */ 217 /* Public lookup table used by the D2U macro (see below) */ 218 #define DECMAXD2U 49 219 /*extern const uByte d2utable[DECMAXD2U+1];*/ 220 221 /* ----- Macros ----- */ 222 /* ISZERO -- return true if decNumber dn is a zero */ 223 /* [performance-critical in some situations] */ 224 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ 225 226 /* D2U -- return the number of Units needed to hold d digits */ 227 /* (runtime version, with table lookaside for small d) */ 228 #if DECDPUN==8 229 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) 230 #elif DECDPUN==4 231 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) 232 #else 233 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) 234 #endif 235 /* SD2U -- static D2U macro (for compile-time calculation) */ 236 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) 237 238 /* MSUDIGITS -- returns digits in msu, from digits, calculated */ 239 /* using D2U */ 240 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) 241 242 /* D2N -- return the number of decNumber structs that would be */ 243 /* needed to contain that number of digits (and the initial */ 244 /* decNumber struct) safely. Note that one Unit is included in the */ 245 /* initial structure. Used for allocating space that is aligned on */ 246 /* a decNumber struct boundary. */ 247 #define D2N(d) \ 248 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) 249 250 /* TODIGIT -- macro to remove the leading digit from the unsigned */ 251 /* integer u at column cut (counting from the right, LSD=0) and */ 252 /* place it as an ASCII character into the character pointed to by */ 253 /* c. Note that cut must be <= 9, and the maximum value for u is */ 254 /* 2,000,000,000 (as is needed for negative exponents of */ 255 /* subnormals). The unsigned integer pow is used as a temporary */ 256 /* variable. */ 257 #define TODIGIT(u, cut, c, pow) { \ 258 *(c)='0'; \ 259 pow=DECPOWERS[cut]*2; \ 260 if ((u)>pow) { \ 261 pow*=4; \ 262 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ 263 pow/=2; \ 264 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ 265 pow/=2; \ 266 } \ 267 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ 268 pow/=2; \ 269 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ 270 } 271 272 /* ---------------------------------------------------------------- */ 273 /* Definitions for fixed-precision modules (only valid after */ 274 /* decSingle.h, decDouble.h, or decQuad.h has been included) */ 275 /* ---------------------------------------------------------------- */ 276 277 /* bcdnum -- a structure describing a format-independent finite */ 278 /* number, whose coefficient is a string of bcd8 uBytes */ 279 typedef struct { 280 uByte *msd; /* -> most significant digit */ 281 uByte *lsd; /* -> least ditto */ 282 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ 283 Int exponent; /* Unadjusted signed exponent (q), or */ 284 /* DECFLOAT_NaN etc. for a special */ 285 } bcdnum; 286 287 /* Test if exponent or bcdnum exponent must be a special, etc. */ 288 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) 289 #define EXPISINF(exp) (exp==DECFLOAT_Inf) 290 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) 291 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) 292 293 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ 294 /* (array) notation (the 0 word or byte contains the sign bit), */ 295 /* automatically adjusting for endianness; similarly address a word */ 296 /* in the next-wider format (decFloatWider, or dfw) */ 297 #define DECWORDS (DECBYTES/4) 298 #define DECWWORDS (DECWBYTES/4) 299 #if DECLITEND 300 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) 301 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) 302 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) 303 #else 304 #define DFBYTE(df, off) ((df)->bytes[off]) 305 #define DFWORD(df, off) ((df)->words[off]) 306 #define DFWWORD(dfw, off) ((dfw)->words[off]) 307 #endif 308 309 /* Tests for sign or specials, directly on DECFLOATs */ 310 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) 311 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) 312 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) 313 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) 314 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) 315 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) 316 317 /* Shared lookup tables */ 318 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ 319 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ 320 321 /* Private generic (utility) routine */ 322 #if DECCHECK || DECTRACE 323 extern void decShowNum(const bcdnum *, const char *); 324 #endif 325 326 /* Format-dependent macros and constants */ 327 #if defined(DECPMAX) 328 329 /* Useful constants */ 330 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ 331 /* Top words for a zero */ 332 #define SINGLEZERO 0x22500000 333 #define DOUBLEZERO 0x22380000 334 #define QUADZERO 0x22080000 335 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ 336 337 /* Format-dependent common tests: */ 338 /* DFISZERO -- test for (any) zero */ 339 /* DFISCCZERO -- test for coefficient continuation being zero */ 340 /* DFISCC01 -- test for coefficient contains only 0s and 1s */ 341 /* DFISINT -- test for finite and exponent q=0 */ 342 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ 343 /* MSD=0 or 1 */ 344 /* ZEROWORD is also defined here. */ 345 /* In DFISZERO the first test checks the least-significant word */ 346 /* (most likely to be non-zero); the penultimate tests MSD and */ 347 /* DPDs in the signword, and the final test excludes specials and */ 348 /* MSD>7. DFISINT similarly has to allow for the two forms of */ 349 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ 350 /* code. */ 351 #if DECPMAX==7 352 #define ZEROWORD SINGLEZERO 353 /* [test macros not needed except for Zero] */ 354 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ 355 && (DFWORD(df, 0)&0x60000000)!=0x60000000) 356 #elif DECPMAX==16 357 #define ZEROWORD DOUBLEZERO 358 #define DFISZERO(df) ((DFWORD(df, 1)==0 \ 359 && (DFWORD(df, 0)&0x1c03ffff)==0 \ 360 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 361 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ 362 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) 363 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) 364 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ 365 && (DFWORD(df, 0)&0x0003ffff)==0) 366 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ 367 && (DFWORD(df, 1)&~0x49124491)==0) 368 #elif DECPMAX==34 369 #define ZEROWORD QUADZERO 370 #define DFISZERO(df) ((DFWORD(df, 3)==0 \ 371 && DFWORD(df, 2)==0 \ 372 && DFWORD(df, 1)==0 \ 373 && (DFWORD(df, 0)&0x1c003fff)==0 \ 374 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 375 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ 376 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) 377 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) 378 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ 379 && DFWORD(df, 2)==0 \ 380 && DFWORD(df, 1)==0 \ 381 && (DFWORD(df, 0)&0x00003fff)==0) 382 383 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ 384 && (DFWORD(df, 1)&~0x44912449)==0 \ 385 && (DFWORD(df, 2)&~0x12449124)==0 \ 386 && (DFWORD(df, 3)&~0x49124491)==0) 387 #endif 388 389 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ 390 /* are a canonical declet [higher or lower bits are ignored]. */ 391 /* declet is at offset 0 (from the right) in a uInt: */ 392 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) 393 /* declet is at offset k (a multiple of 2) in a uInt: */ 394 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ 395 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 396 /* declet is at offset k (a multiple of 2) in a pair of uInts: */ 397 /* [the top 2 bits will always be in the more-significant uInt] */ 398 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ 399 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ 400 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 401 402 /* Macro to test whether a full-length (length DECPMAX) BCD8 */ 403 /* coefficient, starting at uByte u, is all zeros */ 404 /* Test just the LSWord first, then the remainder as a sequence */ 405 /* of tests in order to avoid same-level use of UBTOUI */ 406 #if DECPMAX==7 407 #define ISCOEFFZERO(u) ( \ 408 UBTOUI((u)+DECPMAX-4)==0 \ 409 && UBTOUS((u)+DECPMAX-6)==0 \ 410 && *(u)==0) 411 #elif DECPMAX==16 412 #define ISCOEFFZERO(u) ( \ 413 UBTOUI((u)+DECPMAX-4)==0 \ 414 && UBTOUI((u)+DECPMAX-8)==0 \ 415 && UBTOUI((u)+DECPMAX-12)==0 \ 416 && UBTOUI(u)==0) 417 #elif DECPMAX==34 418 #define ISCOEFFZERO(u) ( \ 419 UBTOUI((u)+DECPMAX-4)==0 \ 420 && UBTOUI((u)+DECPMAX-8)==0 \ 421 && UBTOUI((u)+DECPMAX-12)==0 \ 422 && UBTOUI((u)+DECPMAX-16)==0 \ 423 && UBTOUI((u)+DECPMAX-20)==0 \ 424 && UBTOUI((u)+DECPMAX-24)==0 \ 425 && UBTOUI((u)+DECPMAX-28)==0 \ 426 && UBTOUI((u)+DECPMAX-32)==0 \ 427 && UBTOUS(u)==0) 428 #endif 429 430 /* Macros and masks for the exponent continuation field and MSD */ 431 /* Get the exponent continuation from a decFloat *df as an Int */ 432 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) 433 /* Ditto, from the next-wider format */ 434 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) 435 /* Get the biased exponent similarly */ 436 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) 437 /* Get the unbiased exponent similarly */ 438 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) 439 /* Get the MSD similarly (as uInt) */ 440 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) 441 442 /* Compile-time computes of the exponent continuation field masks */ 443 /* full exponent continuation field: */ 444 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 445 /* same, not including its first digit (the qNaN/sNaN selector): */ 446 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 447 448 /* Macros to decode the coefficient in a finite decFloat *df into */ 449 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ 450 451 /* In-line sequence to convert least significant 10 bits of uInt */ 452 /* dpd to three BCD8 digits starting at uByte u. Note that an */ 453 /* extra byte is written to the right of the three digits because */ 454 /* four bytes are moved at a time for speed; the alternative */ 455 /* macro moves exactly three bytes (usually slower). */ 456 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) 457 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) 458 459 /* Decode the declets. After extracting each one, it is decoded */ 460 /* to BCD8 using a table lookup (also used for variable-length */ 461 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ 462 /* length which is not used, here). Fixed-length 4-byte moves */ 463 /* are fast, however, almost everywhere, and so are used except */ 464 /* for the final three bytes (to avoid overrun). The code below */ 465 /* is 36 instructions for Doubles and about 70 for Quads, even */ 466 /* on IA32. */ 467 468 /* Two macros are defined for each format: */ 469 /* GETCOEFF extracts the coefficient of the current format */ 470 /* GETWCOEFF extracts the coefficient of the next-wider format. */ 471 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ 472 473 #if DECPMAX==7 474 #define GETCOEFF(df, bcd) { \ 475 uInt sourhi=DFWORD(df, 0); \ 476 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 477 dpd2bcd8(bcd+1, sourhi>>10); \ 478 dpd2bcd83(bcd+4, sourhi);} 479 #define GETWCOEFF(df, bcd) { \ 480 uInt sourhi=DFWWORD(df, 0); \ 481 uInt sourlo=DFWWORD(df, 1); \ 482 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 483 dpd2bcd8(bcd+1, sourhi>>8); \ 484 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 485 dpd2bcd8(bcd+7, sourlo>>20); \ 486 dpd2bcd8(bcd+10, sourlo>>10); \ 487 dpd2bcd83(bcd+13, sourlo);} 488 489 #elif DECPMAX==16 490 #define GETCOEFF(df, bcd) { \ 491 uInt sourhi=DFWORD(df, 0); \ 492 uInt sourlo=DFWORD(df, 1); \ 493 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 494 dpd2bcd8(bcd+1, sourhi>>8); \ 495 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 496 dpd2bcd8(bcd+7, sourlo>>20); \ 497 dpd2bcd8(bcd+10, sourlo>>10); \ 498 dpd2bcd83(bcd+13, sourlo);} 499 #define GETWCOEFF(df, bcd) { \ 500 uInt sourhi=DFWWORD(df, 0); \ 501 uInt sourmh=DFWWORD(df, 1); \ 502 uInt sourml=DFWWORD(df, 2); \ 503 uInt sourlo=DFWWORD(df, 3); \ 504 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 505 dpd2bcd8(bcd+1, sourhi>>4); \ 506 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 507 dpd2bcd8(bcd+7, sourmh>>16); \ 508 dpd2bcd8(bcd+10, sourmh>>6); \ 509 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 510 dpd2bcd8(bcd+16, sourml>>18); \ 511 dpd2bcd8(bcd+19, sourml>>8); \ 512 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 513 dpd2bcd8(bcd+25, sourlo>>20); \ 514 dpd2bcd8(bcd+28, sourlo>>10); \ 515 dpd2bcd83(bcd+31, sourlo);} 516 517 #elif DECPMAX==34 518 #define GETCOEFF(df, bcd) { \ 519 uInt sourhi=DFWORD(df, 0); \ 520 uInt sourmh=DFWORD(df, 1); \ 521 uInt sourml=DFWORD(df, 2); \ 522 uInt sourlo=DFWORD(df, 3); \ 523 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 524 dpd2bcd8(bcd+1, sourhi>>4); \ 525 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 526 dpd2bcd8(bcd+7, sourmh>>16); \ 527 dpd2bcd8(bcd+10, sourmh>>6); \ 528 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 529 dpd2bcd8(bcd+16, sourml>>18); \ 530 dpd2bcd8(bcd+19, sourml>>8); \ 531 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 532 dpd2bcd8(bcd+25, sourlo>>20); \ 533 dpd2bcd8(bcd+28, sourlo>>10); \ 534 dpd2bcd83(bcd+31, sourlo);} 535 536 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ 537 #endif 538 539 /* Macros to decode the coefficient in a finite decFloat *df into */ 540 /* a base-billion uInt array, with the least-significant */ 541 /* 0-999999999 'digit' at offset 0. */ 542 543 /* Decode the declets. After extracting each one, it is decoded */ 544 /* to binary using a table lookup. Three tables are used; one */ 545 /* the usual DPD to binary, the other two pre-multiplied by 1000 */ 546 /* and 1000000 to avoid multiplication during decode. These */ 547 /* tables can also be used for multiplying up the MSD as the DPD */ 548 /* code for 0 through 9 is the identity. */ 549 #define DPD2BIN0 DPD2BIN /* for prettier code */ 550 551 #if DECPMAX==7 552 #define GETCOEFFBILL(df, buf) { \ 553 uInt sourhi=DFWORD(df, 0); \ 554 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ 555 +DPD2BINK[(sourhi>>10)&0x3ff] \ 556 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 557 558 #elif DECPMAX==16 559 #define GETCOEFFBILL(df, buf) { \ 560 uInt sourhi, sourlo; \ 561 sourlo=DFWORD(df, 1); \ 562 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 563 +DPD2BINK[(sourlo>>10)&0x3ff] \ 564 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 565 sourhi=DFWORD(df, 0); \ 566 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ 567 +DPD2BINK[(sourhi>>8)&0x3ff] \ 568 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 569 570 #elif DECPMAX==34 571 #define GETCOEFFBILL(df, buf) { \ 572 uInt sourhi, sourmh, sourml, sourlo; \ 573 sourlo=DFWORD(df, 3); \ 574 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 575 +DPD2BINK[(sourlo>>10)&0x3ff] \ 576 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 577 sourml=DFWORD(df, 2); \ 578 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ 579 +DPD2BINK[(sourml>>8)&0x3ff] \ 580 +DPD2BINM[(sourml>>18)&0x3ff]; \ 581 sourmh=DFWORD(df, 1); \ 582 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ 583 +DPD2BINK[(sourmh>>6)&0x3ff] \ 584 +DPD2BINM[(sourmh>>16)&0x3ff]; \ 585 sourhi=DFWORD(df, 0); \ 586 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ 587 +DPD2BINK[(sourhi>>4)&0x3ff] \ 588 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 589 590 #endif 591 592 /* Macros to decode the coefficient in a finite decFloat *df into */ 593 /* a base-thousand uInt array (of size DECLETS+1, to allow for */ 594 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ 595 596 /* Decode the declets. After extracting each one, it is decoded */ 597 /* to binary using a table lookup. */ 598 #if DECPMAX==7 599 #define GETCOEFFTHOU(df, buf) { \ 600 uInt sourhi=DFWORD(df, 0); \ 601 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ 602 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ 603 (buf)[2]=DECCOMBMSD[sourhi>>26];} 604 605 #elif DECPMAX==16 606 #define GETCOEFFTHOU(df, buf) { \ 607 uInt sourhi, sourlo; \ 608 sourlo=DFWORD(df, 1); \ 609 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 610 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 611 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 612 sourhi=DFWORD(df, 0); \ 613 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 614 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ 615 (buf)[5]=DECCOMBMSD[sourhi>>26];} 616 617 #elif DECPMAX==34 618 #define GETCOEFFTHOU(df, buf) { \ 619 uInt sourhi, sourmh, sourml, sourlo; \ 620 sourlo=DFWORD(df, 3); \ 621 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 622 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 623 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 624 sourml=DFWORD(df, 2); \ 625 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 626 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ 627 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ 628 sourmh=DFWORD(df, 1); \ 629 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 630 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ 631 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ 632 sourhi=DFWORD(df, 0); \ 633 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 634 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ 635 (buf)[11]=DECCOMBMSD[sourhi>>26];} 636 #endif 637 638 639 /* Macros to decode the coefficient in a finite decFloat *df and */ 640 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ 641 /* After the addition then most significant 'digit' in the array */ 642 /* might have a value larger then 10 (with a maximum of 19). */ 643 #if DECPMAX==7 644 #define ADDCOEFFTHOU(df, buf) { \ 645 uInt sourhi=DFWORD(df, 0); \ 646 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ 647 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 648 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ 649 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 650 (buf)[2]+=DECCOMBMSD[sourhi>>26];} 651 652 #elif DECPMAX==16 653 #define ADDCOEFFTHOU(df, buf) { \ 654 uInt sourhi, sourlo; \ 655 sourlo=DFWORD(df, 1); \ 656 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 657 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 658 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 659 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 660 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 661 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 662 sourhi=DFWORD(df, 0); \ 663 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 664 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 665 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ 666 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 667 (buf)[5]+=DECCOMBMSD[sourhi>>26];} 668 669 #elif DECPMAX==34 670 #define ADDCOEFFTHOU(df, buf) { \ 671 uInt sourhi, sourmh, sourml, sourlo; \ 672 sourlo=DFWORD(df, 3); \ 673 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 674 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 675 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 676 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 677 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 678 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 679 sourml=DFWORD(df, 2); \ 680 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 681 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 682 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ 683 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 684 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ 685 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ 686 sourmh=DFWORD(df, 1); \ 687 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 688 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ 689 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ 690 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ 691 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ 692 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ 693 sourhi=DFWORD(df, 0); \ 694 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 695 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ 696 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ 697 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ 698 (buf)[11]+=DECCOMBMSD[sourhi>>26];} 699 #endif 700 701 702 /* Set a decFloat to the maximum positive finite number (Nmax) */ 703 #if DECPMAX==7 704 #define DFSETNMAX(df) \ 705 {DFWORD(df, 0)=0x77f3fcff;} 706 #elif DECPMAX==16 707 #define DFSETNMAX(df) \ 708 {DFWORD(df, 0)=0x77fcff3f; \ 709 DFWORD(df, 1)=0xcff3fcff;} 710 #elif DECPMAX==34 711 #define DFSETNMAX(df) \ 712 {DFWORD(df, 0)=0x77ffcff3; \ 713 DFWORD(df, 1)=0xfcff3fcf; \ 714 DFWORD(df, 2)=0xf3fcff3f; \ 715 DFWORD(df, 3)=0xcff3fcff;} 716 #endif 717 718 /* [end of format-dependent macros and constants] */ 719 #endif 720 721 #else 722 #error decNumberLocal included more than once 723 #endif 724