1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 6 // Windows Timer Primer 7 // 8 // A good article: http://www.ddj.com/windows/184416651 9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 10 // 11 // The default windows timer, GetSystemTimeAsFileTime is not very precise. 12 // It is only good to ~15.5ms. 13 // 14 // QueryPerformanceCounter is the logical choice for a high-precision timer. 15 // However, it is known to be buggy on some hardware. Specifically, it can 16 // sometimes "jump". On laptops, QPC can also be very expensive to call. 17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower 18 // on laptops. A unittest exists which will show the relative cost of various 19 // timers on any system. 20 // 21 // The next logical choice is timeGetTime(). timeGetTime has a precision of 22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other 23 // applications on the system. By default, precision is only 15.5ms. 24 // Unfortunately, we don't want to call timeBeginPeriod because we don't 25 // want to affect other applications. Further, on mobile platforms, use of 26 // faster multimedia timers can hurt battery life. See the intel 27 // article about this here: 28 // http://softwarecommunity.intel.com/articles/eng/1086.htm 29 // 30 // To work around all this, we're going to generally use timeGetTime(). We 31 // will only increase the system-wide timer if we're not running on battery 32 // power. Using timeBeginPeriod(1) is a requirement in order to make our 33 // message loop waits have the same resolution that our time measurements 34 // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when 35 // there is nothing else to waken the Wait. 36 37 #include "base/time.h" 38 39 #pragma comment(lib, "winmm.lib") 40 #include <windows.h> 41 #include <mmsystem.h> 42 43 #include "base/basictypes.h" 44 #include "base/logging.h" 45 #include "base/cpu.h" 46 #include "base/memory/singleton.h" 47 #include "base/synchronization/lock.h" 48 49 using base::Time; 50 using base::TimeDelta; 51 using base::TimeTicks; 52 53 namespace { 54 55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of 56 // 100-nanosecond intervals since January 1, 1601 (UTC)." 57 int64 FileTimeToMicroseconds(const FILETIME& ft) { 58 // Need to bit_cast to fix alignment, then divide by 10 to convert 59 // 100-nanoseconds to milliseconds. This only works on little-endian 60 // machines. 61 return bit_cast<int64, FILETIME>(ft) / 10; 62 } 63 64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) { 65 DCHECK(us >= 0) << "Time is less than 0, negative values are not " 66 "representable in FILETIME"; 67 68 // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will 69 // handle alignment problems. This only works on little-endian machines. 70 *ft = bit_cast<FILETIME, int64>(us * 10); 71 } 72 73 int64 CurrentWallclockMicroseconds() { 74 FILETIME ft; 75 ::GetSystemTimeAsFileTime(&ft); 76 return FileTimeToMicroseconds(ft); 77 } 78 79 // Time between resampling the un-granular clock for this API. 60 seconds. 80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; 81 82 int64 initial_time = 0; 83 TimeTicks initial_ticks; 84 85 void InitializeClock() { 86 initial_ticks = TimeTicks::Now(); 87 initial_time = CurrentWallclockMicroseconds(); 88 } 89 90 } // namespace 91 92 // Time ----------------------------------------------------------------------- 93 94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 95 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the 96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding 97 // 1700, 1800, and 1900. 98 // static 99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); 100 101 bool Time::high_resolution_timer_enabled_ = false; 102 103 // static 104 Time Time::Now() { 105 if (initial_time == 0) 106 InitializeClock(); 107 108 // We implement time using the high-resolution timers so that we can get 109 // timeouts which are smaller than 10-15ms. If we just used 110 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. 111 // 112 // To make this work, we initialize the clock (initial_time) and the 113 // counter (initial_ctr). To compute the initial time, we can check 114 // the number of ticks that have elapsed, and compute the delta. 115 // 116 // To avoid any drift, we periodically resync the counters to the system 117 // clock. 118 while (true) { 119 TimeTicks ticks = TimeTicks::Now(); 120 121 // Calculate the time elapsed since we started our timer 122 TimeDelta elapsed = ticks - initial_ticks; 123 124 // Check if enough time has elapsed that we need to resync the clock. 125 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { 126 InitializeClock(); 127 continue; 128 } 129 130 return Time(elapsed + Time(initial_time)); 131 } 132 } 133 134 // static 135 Time Time::NowFromSystemTime() { 136 // Force resync. 137 InitializeClock(); 138 return Time(initial_time); 139 } 140 141 // static 142 Time Time::FromFileTime(FILETIME ft) { 143 return Time(FileTimeToMicroseconds(ft)); 144 } 145 146 FILETIME Time::ToFileTime() const { 147 FILETIME utc_ft; 148 MicrosecondsToFileTime(us_, &utc_ft); 149 return utc_ft; 150 } 151 152 // static 153 void Time::EnableHighResolutionTimer(bool enable) { 154 // Test for single-threaded access. 155 static PlatformThreadId my_thread = PlatformThread::CurrentId(); 156 DCHECK(PlatformThread::CurrentId() == my_thread); 157 158 if (high_resolution_timer_enabled_ == enable) 159 return; 160 161 high_resolution_timer_enabled_ = enable; 162 } 163 164 // static 165 bool Time::ActivateHighResolutionTimer(bool activate) { 166 if (!high_resolution_timer_enabled_) 167 return false; 168 169 // Using anything other than 1ms makes timers granular 170 // to that interval. 171 const int kMinTimerIntervalMs = 1; 172 MMRESULT result; 173 if (activate) 174 result = timeBeginPeriod(kMinTimerIntervalMs); 175 else 176 result = timeEndPeriod(kMinTimerIntervalMs); 177 return result == TIMERR_NOERROR; 178 } 179 180 // static 181 Time Time::FromExploded(bool is_local, const Exploded& exploded) { 182 // Create the system struct representing our exploded time. It will either be 183 // in local time or UTC. 184 SYSTEMTIME st; 185 st.wYear = exploded.year; 186 st.wMonth = exploded.month; 187 st.wDayOfWeek = exploded.day_of_week; 188 st.wDay = exploded.day_of_month; 189 st.wHour = exploded.hour; 190 st.wMinute = exploded.minute; 191 st.wSecond = exploded.second; 192 st.wMilliseconds = exploded.millisecond; 193 194 // Convert to FILETIME. 195 FILETIME ft; 196 if (!SystemTimeToFileTime(&st, &ft)) { 197 NOTREACHED() << "Unable to convert time"; 198 return Time(0); 199 } 200 201 // Ensure that it's in UTC. 202 if (is_local) { 203 FILETIME utc_ft; 204 LocalFileTimeToFileTime(&ft, &utc_ft); 205 return Time(FileTimeToMicroseconds(utc_ft)); 206 } 207 return Time(FileTimeToMicroseconds(ft)); 208 } 209 210 void Time::Explode(bool is_local, Exploded* exploded) const { 211 // FILETIME in UTC. 212 FILETIME utc_ft; 213 MicrosecondsToFileTime(us_, &utc_ft); 214 215 // FILETIME in local time if necessary. 216 BOOL success = TRUE; 217 FILETIME ft; 218 if (is_local) 219 success = FileTimeToLocalFileTime(&utc_ft, &ft); 220 else 221 ft = utc_ft; 222 223 // FILETIME in SYSTEMTIME (exploded). 224 SYSTEMTIME st; 225 if (!success || !FileTimeToSystemTime(&ft, &st)) { 226 NOTREACHED() << "Unable to convert time, don't know why"; 227 ZeroMemory(exploded, sizeof(exploded)); 228 return; 229 } 230 231 exploded->year = st.wYear; 232 exploded->month = st.wMonth; 233 exploded->day_of_week = st.wDayOfWeek; 234 exploded->day_of_month = st.wDay; 235 exploded->hour = st.wHour; 236 exploded->minute = st.wMinute; 237 exploded->second = st.wSecond; 238 exploded->millisecond = st.wMilliseconds; 239 } 240 241 // TimeTicks ------------------------------------------------------------------ 242 namespace { 243 244 // We define a wrapper to adapt between the __stdcall and __cdecl call of the 245 // mock function, and to avoid a static constructor. Assigning an import to a 246 // function pointer directly would require setup code to fetch from the IAT. 247 DWORD timeGetTimeWrapper() { 248 return timeGetTime(); 249 } 250 251 DWORD (*tick_function)(void) = &timeGetTimeWrapper; 252 253 // Accumulation of time lost due to rollover (in milliseconds). 254 int64 rollover_ms = 0; 255 256 // The last timeGetTime value we saw, to detect rollover. 257 DWORD last_seen_now = 0; 258 259 // Lock protecting rollover_ms and last_seen_now. 260 // Note: this is a global object, and we usually avoid these. However, the time 261 // code is low-level, and we don't want to use Singletons here (it would be too 262 // easy to use a Singleton without even knowing it, and that may lead to many 263 // gotchas). Its impact on startup time should be negligible due to low-level 264 // nature of time code. 265 base::Lock rollover_lock; 266 267 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic 268 // because it returns the number of milliseconds since Windows has started, 269 // which will roll over the 32-bit value every ~49 days. We try to track 270 // rollover ourselves, which works if TimeTicks::Now() is called at least every 271 // 49 days. 272 TimeDelta RolloverProtectedNow() { 273 base::AutoLock locked(rollover_lock); 274 // We should hold the lock while calling tick_function to make sure that 275 // we keep last_seen_now stay correctly in sync. 276 DWORD now = tick_function(); 277 if (now < last_seen_now) 278 rollover_ms += 0x100000000I64; // ~49.7 days. 279 last_seen_now = now; 280 return TimeDelta::FromMilliseconds(now + rollover_ms); 281 } 282 283 // Overview of time counters: 284 // (1) CPU cycle counter. (Retrieved via RDTSC) 285 // The CPU counter provides the highest resolution time stamp and is the least 286 // expensive to retrieve. However, the CPU counter is unreliable and should not 287 // be used in production. Its biggest issue is that it is per processor and it 288 // is not synchronized between processors. Also, on some computers, the counters 289 // will change frequency due to thermal and power changes, and stop in some 290 // states. 291 // 292 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- 293 // resolution (100 nanoseconds) time stamp but is comparatively more expensive 294 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. 295 // (with some help from ACPI). 296 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx 297 // in the worst case, it gets the counter from the rollover interrupt on the 298 // programmable interrupt timer. In best cases, the HAL may conclude that the 299 // RDTSC counter runs at a constant frequency, then it uses that instead. On 300 // multiprocessor machines, it will try to verify the values returned from 301 // RDTSC on each processor are consistent with each other, and apply a handful 302 // of workarounds for known buggy hardware. In other words, QPC is supposed to 303 // give consistent result on a multiprocessor computer, but it is unreliable in 304 // reality due to bugs in BIOS or HAL on some, especially old computers. 305 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but 306 // it should be used with caution. 307 // 308 // (3) System time. The system time provides a low-resolution (typically 10ms 309 // to 55 milliseconds) time stamp but is comparatively less expensive to 310 // retrieve and more reliable. 311 class HighResNowSingleton { 312 public: 313 static HighResNowSingleton* GetInstance() { 314 return Singleton<HighResNowSingleton>::get(); 315 } 316 317 bool IsUsingHighResClock() { 318 return ticks_per_microsecond_ != 0.0; 319 } 320 321 void DisableHighResClock() { 322 ticks_per_microsecond_ = 0.0; 323 } 324 325 TimeDelta Now() { 326 if (IsUsingHighResClock()) 327 return TimeDelta::FromMicroseconds(UnreliableNow()); 328 329 // Just fallback to the slower clock. 330 return RolloverProtectedNow(); 331 } 332 333 int64 GetQPCDriftMicroseconds() { 334 if (!IsUsingHighResClock()) 335 return 0; 336 337 return abs((UnreliableNow() - ReliableNow()) - skew_); 338 } 339 340 private: 341 HighResNowSingleton() 342 : ticks_per_microsecond_(0.0), 343 skew_(0) { 344 InitializeClock(); 345 346 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is 347 // unreliable. Fallback to low-res clock. 348 base::CPU cpu; 349 if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15) 350 DisableHighResClock(); 351 } 352 353 // Synchronize the QPC clock with GetSystemTimeAsFileTime. 354 void InitializeClock() { 355 LARGE_INTEGER ticks_per_sec = {0}; 356 if (!QueryPerformanceFrequency(&ticks_per_sec)) 357 return; // Broken, we don't guarantee this function works. 358 ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) / 359 static_cast<float>(Time::kMicrosecondsPerSecond); 360 361 skew_ = UnreliableNow() - ReliableNow(); 362 } 363 364 // Get the number of microseconds since boot in an unreliable fashion. 365 int64 UnreliableNow() { 366 LARGE_INTEGER now; 367 QueryPerformanceCounter(&now); 368 return static_cast<int64>(now.QuadPart / ticks_per_microsecond_); 369 } 370 371 // Get the number of microseconds since boot in a reliable fashion. 372 int64 ReliableNow() { 373 return RolloverProtectedNow().InMicroseconds(); 374 } 375 376 // Cached clock frequency -> microseconds. This assumes that the clock 377 // frequency is faster than one microsecond (which is 1MHz, should be OK). 378 float ticks_per_microsecond_; // 0 indicates QPF failed and we're broken. 379 int64 skew_; // Skew between lo-res and hi-res clocks (for debugging). 380 381 friend struct DefaultSingletonTraits<HighResNowSingleton>; 382 }; 383 384 } // namespace 385 386 // static 387 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( 388 TickFunctionType ticker) { 389 TickFunctionType old = tick_function; 390 tick_function = ticker; 391 return old; 392 } 393 394 // static 395 TimeTicks TimeTicks::Now() { 396 return TimeTicks() + RolloverProtectedNow(); 397 } 398 399 // static 400 TimeTicks TimeTicks::HighResNow() { 401 return TimeTicks() + HighResNowSingleton::GetInstance()->Now(); 402 } 403 404 // static 405 int64 TimeTicks::GetQPCDriftMicroseconds() { 406 return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds(); 407 } 408 409 // static 410 bool TimeTicks::IsHighResClockWorking() { 411 return HighResNowSingleton::GetInstance()->IsUsingHighResClock(); 412 } 413