Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker.h"
     15 #include "llvm-c/Linker.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/IR/TypeFinder.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/Path.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Transforms/Utils/Cloning.h"
     29 #include "llvm/Transforms/Utils/ValueMapper.h"
     30 #include <cctype>
     31 using namespace llvm;
     32 
     33 //===----------------------------------------------------------------------===//
     34 // TypeMap implementation.
     35 //===----------------------------------------------------------------------===//
     36 
     37 namespace {
     38 class TypeMapTy : public ValueMapTypeRemapper {
     39   /// MappedTypes - This is a mapping from a source type to a destination type
     40   /// to use.
     41   DenseMap<Type*, Type*> MappedTypes;
     42 
     43   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
     44   /// we speculatively add types to MappedTypes, but keep track of them here in
     45   /// case we need to roll back.
     46   SmallVector<Type*, 16> SpeculativeTypes;
     47 
     48   /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
     49   /// source module that are mapped to an opaque struct in the destination
     50   /// module.
     51   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
     52 
     53   /// DstResolvedOpaqueTypes - This is the set of opaque types in the
     54   /// destination modules who are getting a body from the source module.
     55   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
     56 
     57 public:
     58   /// addTypeMapping - Indicate that the specified type in the destination
     59   /// module is conceptually equivalent to the specified type in the source
     60   /// module.
     61   void addTypeMapping(Type *DstTy, Type *SrcTy);
     62 
     63   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
     64   /// module from a type definition in the source module.
     65   void linkDefinedTypeBodies();
     66 
     67   /// get - Return the mapped type to use for the specified input type from the
     68   /// source module.
     69   Type *get(Type *SrcTy);
     70 
     71   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
     72 
     73   /// dump - Dump out the type map for debugging purposes.
     74   void dump() const {
     75     for (DenseMap<Type*, Type*>::const_iterator
     76            I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
     77       dbgs() << "TypeMap: ";
     78       I->first->dump();
     79       dbgs() << " => ";
     80       I->second->dump();
     81       dbgs() << '\n';
     82     }
     83   }
     84 
     85 private:
     86   Type *getImpl(Type *T);
     87   /// remapType - Implement the ValueMapTypeRemapper interface.
     88   Type *remapType(Type *SrcTy) {
     89     return get(SrcTy);
     90   }
     91 
     92   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     93 };
     94 }
     95 
     96 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     97   Type *&Entry = MappedTypes[SrcTy];
     98   if (Entry) return;
     99 
    100   if (DstTy == SrcTy) {
    101     Entry = DstTy;
    102     return;
    103   }
    104 
    105   // Check to see if these types are recursively isomorphic and establish a
    106   // mapping between them if so.
    107   if (!areTypesIsomorphic(DstTy, SrcTy)) {
    108     // Oops, they aren't isomorphic.  Just discard this request by rolling out
    109     // any speculative mappings we've established.
    110     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
    111       MappedTypes.erase(SpeculativeTypes[i]);
    112   }
    113   SpeculativeTypes.clear();
    114 }
    115 
    116 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
    117 /// if they are isomorphic, false if they are not.
    118 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    119   // Two types with differing kinds are clearly not isomorphic.
    120   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
    121 
    122   // If we have an entry in the MappedTypes table, then we have our answer.
    123   Type *&Entry = MappedTypes[SrcTy];
    124   if (Entry)
    125     return Entry == DstTy;
    126 
    127   // Two identical types are clearly isomorphic.  Remember this
    128   // non-speculatively.
    129   if (DstTy == SrcTy) {
    130     Entry = DstTy;
    131     return true;
    132   }
    133 
    134   // Okay, we have two types with identical kinds that we haven't seen before.
    135 
    136   // If this is an opaque struct type, special case it.
    137   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    138     // Mapping an opaque type to any struct, just keep the dest struct.
    139     if (SSTy->isOpaque()) {
    140       Entry = DstTy;
    141       SpeculativeTypes.push_back(SrcTy);
    142       return true;
    143     }
    144 
    145     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    146     // type that we're mapping onto this destination type then we succeed.  Keep
    147     // the dest, but fill it in later.  This doesn't need to be speculative.  If
    148     // this is the second (different) type that we're trying to map onto the
    149     // same opaque type then we fail.
    150     if (cast<StructType>(DstTy)->isOpaque()) {
    151       // We can only map one source type onto the opaque destination type.
    152       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
    153         return false;
    154       SrcDefinitionsToResolve.push_back(SSTy);
    155       Entry = DstTy;
    156       return true;
    157     }
    158   }
    159 
    160   // If the number of subtypes disagree between the two types, then we fail.
    161   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    162     return false;
    163 
    164   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    165   if (isa<IntegerType>(DstTy))
    166     return false;  // bitwidth disagrees.
    167   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    168     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    169       return false;
    170 
    171   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    172     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    173       return false;
    174   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    175     StructType *SSTy = cast<StructType>(SrcTy);
    176     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    177         DSTy->isPacked() != SSTy->isPacked())
    178       return false;
    179   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    180     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    181       return false;
    182   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    183     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
    184       return false;
    185   }
    186 
    187   // Otherwise, we speculate that these two types will line up and recursively
    188   // check the subelements.
    189   Entry = DstTy;
    190   SpeculativeTypes.push_back(SrcTy);
    191 
    192   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    193     if (!areTypesIsomorphic(DstTy->getContainedType(i),
    194                             SrcTy->getContainedType(i)))
    195       return false;
    196 
    197   // If everything seems to have lined up, then everything is great.
    198   return true;
    199 }
    200 
    201 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
    202 /// module from a type definition in the source module.
    203 void TypeMapTy::linkDefinedTypeBodies() {
    204   SmallVector<Type*, 16> Elements;
    205   SmallString<16> TmpName;
    206 
    207   // Note that processing entries in this loop (calling 'get') can add new
    208   // entries to the SrcDefinitionsToResolve vector.
    209   while (!SrcDefinitionsToResolve.empty()) {
    210     StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
    211     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    212 
    213     // TypeMap is a many-to-one mapping, if there were multiple types that
    214     // provide a body for DstSTy then previous iterations of this loop may have
    215     // already handled it.  Just ignore this case.
    216     if (!DstSTy->isOpaque()) continue;
    217     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    218 
    219     // Map the body of the source type over to a new body for the dest type.
    220     Elements.resize(SrcSTy->getNumElements());
    221     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
    222       Elements[i] = getImpl(SrcSTy->getElementType(i));
    223 
    224     DstSTy->setBody(Elements, SrcSTy->isPacked());
    225 
    226     // If DstSTy has no name or has a longer name than STy, then viciously steal
    227     // STy's name.
    228     if (!SrcSTy->hasName()) continue;
    229     StringRef SrcName = SrcSTy->getName();
    230 
    231     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
    232       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
    233       SrcSTy->setName("");
    234       DstSTy->setName(TmpName.str());
    235       TmpName.clear();
    236     }
    237   }
    238 
    239   DstResolvedOpaqueTypes.clear();
    240 }
    241 
    242 /// get - Return the mapped type to use for the specified input type from the
    243 /// source module.
    244 Type *TypeMapTy::get(Type *Ty) {
    245   Type *Result = getImpl(Ty);
    246 
    247   // If this caused a reference to any struct type, resolve it before returning.
    248   if (!SrcDefinitionsToResolve.empty())
    249     linkDefinedTypeBodies();
    250   return Result;
    251 }
    252 
    253 /// getImpl - This is the recursive version of get().
    254 Type *TypeMapTy::getImpl(Type *Ty) {
    255   // If we already have an entry for this type, return it.
    256   Type **Entry = &MappedTypes[Ty];
    257   if (*Entry) return *Entry;
    258 
    259   // If this is not a named struct type, then just map all of the elements and
    260   // then rebuild the type from inside out.
    261   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    262     // If there are no element types to map, then the type is itself.  This is
    263     // true for the anonymous {} struct, things like 'float', integers, etc.
    264     if (Ty->getNumContainedTypes() == 0)
    265       return *Entry = Ty;
    266 
    267     // Remap all of the elements, keeping track of whether any of them change.
    268     bool AnyChange = false;
    269     SmallVector<Type*, 4> ElementTypes;
    270     ElementTypes.resize(Ty->getNumContainedTypes());
    271     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
    272       ElementTypes[i] = getImpl(Ty->getContainedType(i));
    273       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    274     }
    275 
    276     // If we found our type while recursively processing stuff, just use it.
    277     Entry = &MappedTypes[Ty];
    278     if (*Entry) return *Entry;
    279 
    280     // If all of the element types mapped directly over, then the type is usable
    281     // as-is.
    282     if (!AnyChange)
    283       return *Entry = Ty;
    284 
    285     // Otherwise, rebuild a modified type.
    286     switch (Ty->getTypeID()) {
    287     default: llvm_unreachable("unknown derived type to remap");
    288     case Type::ArrayTyID:
    289       return *Entry = ArrayType::get(ElementTypes[0],
    290                                      cast<ArrayType>(Ty)->getNumElements());
    291     case Type::VectorTyID:
    292       return *Entry = VectorType::get(ElementTypes[0],
    293                                       cast<VectorType>(Ty)->getNumElements());
    294     case Type::PointerTyID:
    295       return *Entry = PointerType::get(ElementTypes[0],
    296                                       cast<PointerType>(Ty)->getAddressSpace());
    297     case Type::FunctionTyID:
    298       return *Entry = FunctionType::get(ElementTypes[0],
    299                                         makeArrayRef(ElementTypes).slice(1),
    300                                         cast<FunctionType>(Ty)->isVarArg());
    301     case Type::StructTyID:
    302       // Note that this is only reached for anonymous structs.
    303       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
    304                                       cast<StructType>(Ty)->isPacked());
    305     }
    306   }
    307 
    308   // Otherwise, this is an unmapped named struct.  If the struct can be directly
    309   // mapped over, just use it as-is.  This happens in a case when the linked-in
    310   // module has something like:
    311   //   %T = type {%T*, i32}
    312   //   @GV = global %T* null
    313   // where T does not exist at all in the destination module.
    314   //
    315   // The other case we watch for is when the type is not in the destination
    316   // module, but that it has to be rebuilt because it refers to something that
    317   // is already mapped.  For example, if the destination module has:
    318   //  %A = type { i32 }
    319   // and the source module has something like
    320   //  %A' = type { i32 }
    321   //  %B = type { %A'* }
    322   //  @GV = global %B* null
    323   // then we want to create a new type: "%B = type { %A*}" and have it take the
    324   // pristine "%B" name from the source module.
    325   //
    326   // To determine which case this is, we have to recursively walk the type graph
    327   // speculating that we'll be able to reuse it unmodified.  Only if this is
    328   // safe would we map the entire thing over.  Because this is an optimization,
    329   // and is not required for the prettiness of the linked module, we just skip
    330   // it and always rebuild a type here.
    331   StructType *STy = cast<StructType>(Ty);
    332 
    333   // If the type is opaque, we can just use it directly.
    334   if (STy->isOpaque())
    335     return *Entry = STy;
    336 
    337   // Otherwise we create a new type and resolve its body later.  This will be
    338   // resolved by the top level of get().
    339   SrcDefinitionsToResolve.push_back(STy);
    340   StructType *DTy = StructType::create(STy->getContext());
    341   DstResolvedOpaqueTypes.insert(DTy);
    342   return *Entry = DTy;
    343 }
    344 
    345 //===----------------------------------------------------------------------===//
    346 // ModuleLinker implementation.
    347 //===----------------------------------------------------------------------===//
    348 
    349 namespace {
    350   /// ModuleLinker - This is an implementation class for the LinkModules
    351   /// function, which is the entrypoint for this file.
    352   class ModuleLinker {
    353     Module *DstM, *SrcM;
    354 
    355     TypeMapTy TypeMap;
    356 
    357     /// ValueMap - Mapping of values from what they used to be in Src, to what
    358     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    359     /// some overhead due to the use of Value handles which the Linker doesn't
    360     /// actually need, but this allows us to reuse the ValueMapper code.
    361     ValueToValueMapTy ValueMap;
    362 
    363     struct AppendingVarInfo {
    364       GlobalVariable *NewGV;  // New aggregate global in dest module.
    365       Constant *DstInit;      // Old initializer from dest module.
    366       Constant *SrcInit;      // Old initializer from src module.
    367     };
    368 
    369     std::vector<AppendingVarInfo> AppendingVars;
    370 
    371     unsigned Mode; // Mode to treat source module.
    372 
    373     // Set of items not to link in from source.
    374     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
    375 
    376     // Vector of functions to lazily link in.
    377     std::vector<Function*> LazilyLinkFunctions;
    378 
    379   public:
    380     std::string ErrorMsg;
    381 
    382     ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
    383       : DstM(dstM), SrcM(srcM), Mode(mode) { }
    384 
    385     bool run();
    386 
    387   private:
    388     /// emitError - Helper method for setting a message and returning an error
    389     /// code.
    390     bool emitError(const Twine &Message) {
    391       ErrorMsg = Message.str();
    392       return true;
    393     }
    394 
    395     /// getLinkageResult - This analyzes the two global values and determines
    396     /// what the result will look like in the destination module.
    397     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    398                           GlobalValue::LinkageTypes &LT,
    399                           GlobalValue::VisibilityTypes &Vis,
    400                           bool &LinkFromSrc);
    401 
    402     /// getLinkedToGlobal - Given a global in the source module, return the
    403     /// global in the destination module that is being linked to, if any.
    404     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
    405       // If the source has no name it can't link.  If it has local linkage,
    406       // there is no name match-up going on.
    407       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    408         return 0;
    409 
    410       // Otherwise see if we have a match in the destination module's symtab.
    411       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    412       if (DGV == 0) return 0;
    413 
    414       // If we found a global with the same name in the dest module, but it has
    415       // internal linkage, we are really not doing any linkage here.
    416       if (DGV->hasLocalLinkage())
    417         return 0;
    418 
    419       // Otherwise, we do in fact link to the destination global.
    420       return DGV;
    421     }
    422 
    423     void computeTypeMapping();
    424 
    425     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    426     bool linkGlobalProto(GlobalVariable *SrcGV);
    427     bool linkFunctionProto(Function *SrcF);
    428     bool linkAliasProto(GlobalAlias *SrcA);
    429     bool linkModuleFlagsMetadata();
    430 
    431     void linkAppendingVarInit(const AppendingVarInfo &AVI);
    432     void linkGlobalInits();
    433     void linkFunctionBody(Function *Dst, Function *Src);
    434     void linkAliasBodies();
    435     void linkNamedMDNodes();
    436   };
    437 }
    438 
    439 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
    440 /// in the symbol table.  This is good for all clients except for us.  Go
    441 /// through the trouble to force this back.
    442 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    443   // If the global doesn't force its name or if it already has the right name,
    444   // there is nothing for us to do.
    445   if (GV->hasLocalLinkage() || GV->getName() == Name)
    446     return;
    447 
    448   Module *M = GV->getParent();
    449 
    450   // If there is a conflict, rename the conflict.
    451   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    452     GV->takeName(ConflictGV);
    453     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    454     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    455   } else {
    456     GV->setName(Name);              // Force the name back
    457   }
    458 }
    459 
    460 /// copyGVAttributes - copy additional attributes (those not needed to construct
    461 /// a GlobalValue) from the SrcGV to the DestGV.
    462 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    463   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
    464   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
    465   DestGV->copyAttributesFrom(SrcGV);
    466   DestGV->setAlignment(Alignment);
    467 
    468   forceRenaming(DestGV, SrcGV->getName());
    469 }
    470 
    471 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
    472                                GlobalValue::VisibilityTypes b) {
    473   if (a == GlobalValue::HiddenVisibility)
    474     return false;
    475   if (b == GlobalValue::HiddenVisibility)
    476     return true;
    477   if (a == GlobalValue::ProtectedVisibility)
    478     return false;
    479   if (b == GlobalValue::ProtectedVisibility)
    480     return true;
    481   return false;
    482 }
    483 
    484 /// getLinkageResult - This analyzes the two global values and determines what
    485 /// the result will look like in the destination module.  In particular, it
    486 /// computes the resultant linkage type and visibility, computes whether the
    487 /// global in the source should be copied over to the destination (replacing
    488 /// the existing one), and computes whether this linkage is an error or not.
    489 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    490                                     GlobalValue::LinkageTypes &LT,
    491                                     GlobalValue::VisibilityTypes &Vis,
    492                                     bool &LinkFromSrc) {
    493   assert(Dest && "Must have two globals being queried");
    494   assert(!Src->hasLocalLinkage() &&
    495          "If Src has internal linkage, Dest shouldn't be set!");
    496 
    497   bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
    498   bool DestIsDeclaration = Dest->isDeclaration();
    499 
    500   if (SrcIsDeclaration) {
    501     // If Src is external or if both Src & Dest are external..  Just link the
    502     // external globals, we aren't adding anything.
    503     if (Src->hasDLLImportLinkage()) {
    504       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
    505       if (DestIsDeclaration) {
    506         LinkFromSrc = true;
    507         LT = Src->getLinkage();
    508       }
    509     } else if (Dest->hasExternalWeakLinkage()) {
    510       // If the Dest is weak, use the source linkage.
    511       LinkFromSrc = true;
    512       LT = Src->getLinkage();
    513     } else {
    514       LinkFromSrc = false;
    515       LT = Dest->getLinkage();
    516     }
    517   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    518     // If Dest is external but Src is not:
    519     LinkFromSrc = true;
    520     LT = Src->getLinkage();
    521   } else if (Src->isWeakForLinker()) {
    522     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    523     // or DLL* linkage.
    524     if (Dest->hasExternalWeakLinkage() ||
    525         Dest->hasAvailableExternallyLinkage() ||
    526         (Dest->hasLinkOnceLinkage() &&
    527          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
    528       LinkFromSrc = true;
    529       LT = Src->getLinkage();
    530     } else {
    531       LinkFromSrc = false;
    532       LT = Dest->getLinkage();
    533     }
    534   } else if (Dest->isWeakForLinker()) {
    535     // At this point we know that Src has External* or DLL* linkage.
    536     if (Src->hasExternalWeakLinkage()) {
    537       LinkFromSrc = false;
    538       LT = Dest->getLinkage();
    539     } else {
    540       LinkFromSrc = true;
    541       LT = GlobalValue::ExternalLinkage;
    542     }
    543   } else {
    544     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
    545             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
    546            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
    547             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
    548            "Unexpected linkage type!");
    549     return emitError("Linking globals named '" + Src->getName() +
    550                  "': symbol multiply defined!");
    551   }
    552 
    553   // Compute the visibility. We follow the rules in the System V Application
    554   // Binary Interface.
    555   Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
    556     Dest->getVisibility() : Src->getVisibility();
    557   return false;
    558 }
    559 
    560 /// computeTypeMapping - Loop over all of the linked values to compute type
    561 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
    562 /// we have two struct types 'Foo' but one got renamed when the module was
    563 /// loaded into the same LLVMContext.
    564 void ModuleLinker::computeTypeMapping() {
    565   // Incorporate globals.
    566   for (Module::global_iterator I = SrcM->global_begin(),
    567        E = SrcM->global_end(); I != E; ++I) {
    568     GlobalValue *DGV = getLinkedToGlobal(I);
    569     if (DGV == 0) continue;
    570 
    571     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
    572       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    573       continue;
    574     }
    575 
    576     // Unify the element type of appending arrays.
    577     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    578     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    579     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    580   }
    581 
    582   // Incorporate functions.
    583   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    584     if (GlobalValue *DGV = getLinkedToGlobal(I))
    585       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    586   }
    587 
    588   // Incorporate types by name, scanning all the types in the source module.
    589   // At this point, the destination module may have a type "%foo = { i32 }" for
    590   // example.  When the source module got loaded into the same LLVMContext, if
    591   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    592   TypeFinder SrcStructTypes;
    593   SrcStructTypes.run(*SrcM, true);
    594   SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
    595                                                  SrcStructTypes.end());
    596 
    597   TypeFinder DstStructTypes;
    598   DstStructTypes.run(*DstM, true);
    599   SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
    600                                                  DstStructTypes.end());
    601 
    602   for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
    603     StructType *ST = SrcStructTypes[i];
    604     if (!ST->hasName()) continue;
    605 
    606     // Check to see if there is a dot in the name followed by a digit.
    607     size_t DotPos = ST->getName().rfind('.');
    608     if (DotPos == 0 || DotPos == StringRef::npos ||
    609         ST->getName().back() == '.' ||
    610         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
    611       continue;
    612 
    613     // Check to see if the destination module has a struct with the prefix name.
    614     if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
    615       // Don't use it if this actually came from the source module. They're in
    616       // the same LLVMContext after all. Also don't use it unless the type is
    617       // actually used in the destination module. This can happen in situations
    618       // like this:
    619       //
    620       //      Module A                         Module B
    621       //      --------                         --------
    622       //   %Z = type { %A }                %B = type { %C.1 }
    623       //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    624       //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    625       //   %C = type { i8* }               %B.3 = type { %C.1 }
    626       //
    627       // When we link Module B with Module A, the '%B' in Module B is
    628       // used. However, that would then use '%C.1'. But when we process '%C.1',
    629       // we prefer to take the '%C' version. So we are then left with both
    630       // '%C.1' and '%C' being used for the same types. This leads to some
    631       // variables using one type and some using the other.
    632       if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
    633         TypeMap.addTypeMapping(DST, ST);
    634   }
    635 
    636   // Don't bother incorporating aliases, they aren't generally typed well.
    637 
    638   // Now that we have discovered all of the type equivalences, get a body for
    639   // any 'opaque' types in the dest module that are now resolved.
    640   TypeMap.linkDefinedTypeBodies();
    641 }
    642 
    643 /// linkAppendingVarProto - If there were any appending global variables, link
    644 /// them together now.  Return true on error.
    645 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    646                                          GlobalVariable *SrcGV) {
    647 
    648   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    649     return emitError("Linking globals named '" + SrcGV->getName() +
    650            "': can only link appending global with another appending global!");
    651 
    652   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    653   ArrayType *SrcTy =
    654     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    655   Type *EltTy = DstTy->getElementType();
    656 
    657   // Check to see that they two arrays agree on type.
    658   if (EltTy != SrcTy->getElementType())
    659     return emitError("Appending variables with different element types!");
    660   if (DstGV->isConstant() != SrcGV->isConstant())
    661     return emitError("Appending variables linked with different const'ness!");
    662 
    663   if (DstGV->getAlignment() != SrcGV->getAlignment())
    664     return emitError(
    665              "Appending variables with different alignment need to be linked!");
    666 
    667   if (DstGV->getVisibility() != SrcGV->getVisibility())
    668     return emitError(
    669             "Appending variables with different visibility need to be linked!");
    670 
    671   if (DstGV->getSection() != SrcGV->getSection())
    672     return emitError(
    673           "Appending variables with different section name need to be linked!");
    674 
    675   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    676   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    677 
    678   // Create the new global variable.
    679   GlobalVariable *NG =
    680     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    681                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
    682                        DstGV->getThreadLocalMode(),
    683                        DstGV->getType()->getAddressSpace());
    684 
    685   // Propagate alignment, visibility and section info.
    686   copyGVAttributes(NG, DstGV);
    687 
    688   AppendingVarInfo AVI;
    689   AVI.NewGV = NG;
    690   AVI.DstInit = DstGV->getInitializer();
    691   AVI.SrcInit = SrcGV->getInitializer();
    692   AppendingVars.push_back(AVI);
    693 
    694   // Replace any uses of the two global variables with uses of the new
    695   // global.
    696   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    697 
    698   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    699   DstGV->eraseFromParent();
    700 
    701   // Track the source variable so we don't try to link it.
    702   DoNotLinkFromSource.insert(SrcGV);
    703 
    704   return false;
    705 }
    706 
    707 /// linkGlobalProto - Loop through the global variables in the src module and
    708 /// merge them into the dest module.
    709 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
    710   GlobalValue *DGV = getLinkedToGlobal(SGV);
    711   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    712 
    713   if (DGV) {
    714     // Concatenation of appending linkage variables is magic and handled later.
    715     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
    716       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    717 
    718     // Determine whether linkage of these two globals follows the source
    719     // module's definition or the destination module's definition.
    720     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    721     GlobalValue::VisibilityTypes NV;
    722     bool LinkFromSrc = false;
    723     if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
    724       return true;
    725     NewVisibility = NV;
    726 
    727     // If we're not linking from the source, then keep the definition that we
    728     // have.
    729     if (!LinkFromSrc) {
    730       // Special case for const propagation.
    731       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
    732         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
    733           DGVar->setConstant(true);
    734 
    735       // Set calculated linkage and visibility.
    736       DGV->setLinkage(NewLinkage);
    737       DGV->setVisibility(*NewVisibility);
    738 
    739       // Make sure to remember this mapping.
    740       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
    741 
    742       // Track the source global so that we don't attempt to copy it over when
    743       // processing global initializers.
    744       DoNotLinkFromSource.insert(SGV);
    745 
    746       return false;
    747     }
    748   }
    749 
    750   // No linking to be performed or linking from the source: simply create an
    751   // identical version of the symbol over in the dest module... the
    752   // initializer will be filled in later by LinkGlobalInits.
    753   GlobalVariable *NewDGV =
    754     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
    755                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
    756                        SGV->getName(), /*insertbefore*/0,
    757                        SGV->getThreadLocalMode(),
    758                        SGV->getType()->getAddressSpace());
    759   // Propagate alignment, visibility and section info.
    760   copyGVAttributes(NewDGV, SGV);
    761   if (NewVisibility)
    762     NewDGV->setVisibility(*NewVisibility);
    763 
    764   if (DGV) {
    765     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    766     DGV->eraseFromParent();
    767   }
    768 
    769   // Make sure to remember this mapping.
    770   ValueMap[SGV] = NewDGV;
    771   return false;
    772 }
    773 
    774 /// linkFunctionProto - Link the function in the source module into the
    775 /// destination module if needed, setting up mapping information.
    776 bool ModuleLinker::linkFunctionProto(Function *SF) {
    777   GlobalValue *DGV = getLinkedToGlobal(SF);
    778   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    779 
    780   if (DGV) {
    781     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    782     bool LinkFromSrc = false;
    783     GlobalValue::VisibilityTypes NV;
    784     if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
    785       return true;
    786     NewVisibility = NV;
    787 
    788     if (!LinkFromSrc) {
    789       // Set calculated linkage
    790       DGV->setLinkage(NewLinkage);
    791       DGV->setVisibility(*NewVisibility);
    792 
    793       // Make sure to remember this mapping.
    794       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
    795 
    796       // Track the function from the source module so we don't attempt to remap
    797       // it.
    798       DoNotLinkFromSource.insert(SF);
    799 
    800       return false;
    801     }
    802   }
    803 
    804   // If there is no linkage to be performed or we are linking from the source,
    805   // bring SF over.
    806   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
    807                                      SF->getLinkage(), SF->getName(), DstM);
    808   copyGVAttributes(NewDF, SF);
    809   if (NewVisibility)
    810     NewDF->setVisibility(*NewVisibility);
    811 
    812   if (DGV) {
    813     // Any uses of DF need to change to NewDF, with cast.
    814     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    815     DGV->eraseFromParent();
    816   } else {
    817     // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
    818     if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
    819         SF->hasAvailableExternallyLinkage()) {
    820       DoNotLinkFromSource.insert(SF);
    821       LazilyLinkFunctions.push_back(SF);
    822     }
    823   }
    824 
    825   ValueMap[SF] = NewDF;
    826   return false;
    827 }
    828 
    829 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
    830 /// source module.
    831 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
    832   GlobalValue *DGV = getLinkedToGlobal(SGA);
    833   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    834 
    835   if (DGV) {
    836     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    837     GlobalValue::VisibilityTypes NV;
    838     bool LinkFromSrc = false;
    839     if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
    840       return true;
    841     NewVisibility = NV;
    842 
    843     if (!LinkFromSrc) {
    844       // Set calculated linkage.
    845       DGV->setLinkage(NewLinkage);
    846       DGV->setVisibility(*NewVisibility);
    847 
    848       // Make sure to remember this mapping.
    849       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
    850 
    851       // Track the alias from the source module so we don't attempt to remap it.
    852       DoNotLinkFromSource.insert(SGA);
    853 
    854       return false;
    855     }
    856   }
    857 
    858   // If there is no linkage to be performed or we're linking from the source,
    859   // bring over SGA.
    860   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
    861                                        SGA->getLinkage(), SGA->getName(),
    862                                        /*aliasee*/0, DstM);
    863   copyGVAttributes(NewDA, SGA);
    864   if (NewVisibility)
    865     NewDA->setVisibility(*NewVisibility);
    866 
    867   if (DGV) {
    868     // Any uses of DGV need to change to NewDA, with cast.
    869     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    870     DGV->eraseFromParent();
    871   }
    872 
    873   ValueMap[SGA] = NewDA;
    874   return false;
    875 }
    876 
    877 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
    878   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
    879 
    880   for (unsigned i = 0; i != NumElements; ++i)
    881     Dest.push_back(C->getAggregateElement(i));
    882 }
    883 
    884 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
    885   // Merge the initializer.
    886   SmallVector<Constant*, 16> Elements;
    887   getArrayElements(AVI.DstInit, Elements);
    888 
    889   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
    890   getArrayElements(SrcInit, Elements);
    891 
    892   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
    893   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
    894 }
    895 
    896 /// linkGlobalInits - Update the initializers in the Dest module now that all
    897 /// globals that may be referenced are in Dest.
    898 void ModuleLinker::linkGlobalInits() {
    899   // Loop over all of the globals in the src module, mapping them over as we go
    900   for (Module::const_global_iterator I = SrcM->global_begin(),
    901        E = SrcM->global_end(); I != E; ++I) {
    902 
    903     // Only process initialized GV's or ones not already in dest.
    904     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
    905 
    906     // Grab destination global variable.
    907     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    908     // Figure out what the initializer looks like in the dest module.
    909     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
    910                                  RF_None, &TypeMap));
    911   }
    912 }
    913 
    914 /// linkFunctionBody - Copy the source function over into the dest function and
    915 /// fix up references to values.  At this point we know that Dest is an external
    916 /// function, and that Src is not.
    917 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
    918   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
    919 
    920   // Go through and convert function arguments over, remembering the mapping.
    921   Function::arg_iterator DI = Dst->arg_begin();
    922   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    923        I != E; ++I, ++DI) {
    924     DI->setName(I->getName());  // Copy the name over.
    925 
    926     // Add a mapping to our mapping.
    927     ValueMap[I] = DI;
    928   }
    929 
    930   if (Mode == Linker::DestroySource) {
    931     // Splice the body of the source function into the dest function.
    932     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    933 
    934     // At this point, all of the instructions and values of the function are now
    935     // copied over.  The only problem is that they are still referencing values in
    936     // the Source function as operands.  Loop through all of the operands of the
    937     // functions and patch them up to point to the local versions.
    938     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
    939       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    940         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    941 
    942   } else {
    943     // Clone the body of the function into the dest function.
    944     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    945     CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
    946   }
    947 
    948   // There is no need to map the arguments anymore.
    949   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    950        I != E; ++I)
    951     ValueMap.erase(I);
    952 
    953 }
    954 
    955 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
    956 void ModuleLinker::linkAliasBodies() {
    957   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
    958        I != E; ++I) {
    959     if (DoNotLinkFromSource.count(I))
    960       continue;
    961     if (Constant *Aliasee = I->getAliasee()) {
    962       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
    963       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
    964     }
    965   }
    966 }
    967 
    968 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
    969 /// module.
    970 void ModuleLinker::linkNamedMDNodes() {
    971   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
    972   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
    973        E = SrcM->named_metadata_end(); I != E; ++I) {
    974     // Don't link module flags here. Do them separately.
    975     if (&*I == SrcModFlags) continue;
    976     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    977     // Add Src elements into Dest node.
    978     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    979       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
    980                                    RF_None, &TypeMap));
    981   }
    982 }
    983 
    984 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
    985 /// module.
    986 bool ModuleLinker::linkModuleFlagsMetadata() {
    987   // If the source module has no module flags, we are done.
    988   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
    989   if (!SrcModFlags) return false;
    990 
    991   // If the destination module doesn't have module flags yet, then just copy
    992   // over the source module's flags.
    993   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
    994   if (DstModFlags->getNumOperands() == 0) {
    995     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
    996       DstModFlags->addOperand(SrcModFlags->getOperand(I));
    997 
    998     return false;
    999   }
   1000 
   1001   // First build a map of the existing module flags and requirements.
   1002   DenseMap<MDString*, MDNode*> Flags;
   1003   SmallSetVector<MDNode*, 16> Requirements;
   1004   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
   1005     MDNode *Op = DstModFlags->getOperand(I);
   1006     ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
   1007     MDString *ID = cast<MDString>(Op->getOperand(1));
   1008 
   1009     if (Behavior->getZExtValue() == Module::Require) {
   1010       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
   1011     } else {
   1012       Flags[ID] = Op;
   1013     }
   1014   }
   1015 
   1016   // Merge in the flags from the source module, and also collect its set of
   1017   // requirements.
   1018   bool HasErr = false;
   1019   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
   1020     MDNode *SrcOp = SrcModFlags->getOperand(I);
   1021     ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
   1022     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
   1023     MDNode *DstOp = Flags.lookup(ID);
   1024     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
   1025 
   1026     // If this is a requirement, add it and continue.
   1027     if (SrcBehaviorValue == Module::Require) {
   1028       // If the destination module does not already have this requirement, add
   1029       // it.
   1030       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
   1031         DstModFlags->addOperand(SrcOp);
   1032       }
   1033       continue;
   1034     }
   1035 
   1036     // If there is no existing flag with this ID, just add it.
   1037     if (!DstOp) {
   1038       Flags[ID] = SrcOp;
   1039       DstModFlags->addOperand(SrcOp);
   1040       continue;
   1041     }
   1042 
   1043     // Otherwise, perform a merge.
   1044     ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
   1045     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
   1046 
   1047     // If either flag has override behavior, handle it first.
   1048     if (DstBehaviorValue == Module::Override) {
   1049       // Diagnose inconsistent flags which both have override behavior.
   1050       if (SrcBehaviorValue == Module::Override &&
   1051           SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1052         HasErr |= emitError("linking module flags '" + ID->getString() +
   1053                             "': IDs have conflicting override values");
   1054       }
   1055       continue;
   1056     } else if (SrcBehaviorValue == Module::Override) {
   1057       // Update the destination flag to that of the source.
   1058       DstOp->replaceOperandWith(0, SrcBehavior);
   1059       DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
   1060       continue;
   1061     }
   1062 
   1063     // Diagnose inconsistent merge behavior types.
   1064     if (SrcBehaviorValue != DstBehaviorValue) {
   1065       HasErr |= emitError("linking module flags '" + ID->getString() +
   1066                           "': IDs have conflicting behaviors");
   1067       continue;
   1068     }
   1069 
   1070     // Perform the merge for standard behavior types.
   1071     switch (SrcBehaviorValue) {
   1072     case Module::Require:
   1073     case Module::Override: assert(0 && "not possible"); break;
   1074     case Module::Error: {
   1075       // Emit an error if the values differ.
   1076       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1077         HasErr |= emitError("linking module flags '" + ID->getString() +
   1078                             "': IDs have conflicting values");
   1079       }
   1080       continue;
   1081     }
   1082     case Module::Warning: {
   1083       // Emit a warning if the values differ.
   1084       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1085         errs() << "WARNING: linking module flags '" << ID->getString()
   1086                << "': IDs have conflicting values";
   1087       }
   1088       continue;
   1089     }
   1090     case Module::Append: {
   1091       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1092       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1093       unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
   1094       Value **VP, **Values = VP = new Value*[NumOps];
   1095       for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
   1096         *VP = DstValue->getOperand(i);
   1097       for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
   1098         *VP = SrcValue->getOperand(i);
   1099       DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
   1100                                                ArrayRef<Value*>(Values,
   1101                                                                 NumOps)));
   1102       delete[] Values;
   1103       break;
   1104     }
   1105     case Module::AppendUnique: {
   1106       SmallSetVector<Value*, 16> Elts;
   1107       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1108       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1109       for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
   1110         Elts.insert(DstValue->getOperand(i));
   1111       for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
   1112         Elts.insert(SrcValue->getOperand(i));
   1113       DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
   1114                                                ArrayRef<Value*>(Elts.begin(),
   1115                                                                 Elts.end())));
   1116       break;
   1117     }
   1118     }
   1119   }
   1120 
   1121   // Check all of the requirements.
   1122   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1123     MDNode *Requirement = Requirements[I];
   1124     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1125     Value *ReqValue = Requirement->getOperand(1);
   1126 
   1127     MDNode *Op = Flags[Flag];
   1128     if (!Op || Op->getOperand(2) != ReqValue) {
   1129       HasErr |= emitError("linking module flags '" + Flag->getString() +
   1130                           "': does not have the required value");
   1131       continue;
   1132     }
   1133   }
   1134 
   1135   return HasErr;
   1136 }
   1137 
   1138 bool ModuleLinker::run() {
   1139   assert(DstM && "Null destination module");
   1140   assert(SrcM && "Null source module");
   1141 
   1142   // Inherit the target data from the source module if the destination module
   1143   // doesn't have one already.
   1144   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
   1145     DstM->setDataLayout(SrcM->getDataLayout());
   1146 
   1147   // Copy the target triple from the source to dest if the dest's is empty.
   1148   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
   1149     DstM->setTargetTriple(SrcM->getTargetTriple());
   1150 
   1151   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
   1152       SrcM->getDataLayout() != DstM->getDataLayout())
   1153     errs() << "WARNING: Linking two modules of different data layouts!\n";
   1154   if (!SrcM->getTargetTriple().empty() &&
   1155       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
   1156     errs() << "WARNING: Linking two modules of different target triples: ";
   1157     if (!SrcM->getModuleIdentifier().empty())
   1158       errs() << SrcM->getModuleIdentifier() << ": ";
   1159     errs() << "'" << SrcM->getTargetTriple() << "' and '"
   1160            << DstM->getTargetTriple() << "'\n";
   1161   }
   1162 
   1163   // Append the module inline asm string.
   1164   if (!SrcM->getModuleInlineAsm().empty()) {
   1165     if (DstM->getModuleInlineAsm().empty())
   1166       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
   1167     else
   1168       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
   1169                                SrcM->getModuleInlineAsm());
   1170   }
   1171 
   1172   // Loop over all of the linked values to compute type mappings.
   1173   computeTypeMapping();
   1174 
   1175   // Insert all of the globals in src into the DstM module... without linking
   1176   // initializers (which could refer to functions not yet mapped over).
   1177   for (Module::global_iterator I = SrcM->global_begin(),
   1178        E = SrcM->global_end(); I != E; ++I)
   1179     if (linkGlobalProto(I))
   1180       return true;
   1181 
   1182   // Link the functions together between the two modules, without doing function
   1183   // bodies... this just adds external function prototypes to the DstM
   1184   // function...  We do this so that when we begin processing function bodies,
   1185   // all of the global values that may be referenced are available in our
   1186   // ValueMap.
   1187   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
   1188     if (linkFunctionProto(I))
   1189       return true;
   1190 
   1191   // If there were any aliases, link them now.
   1192   for (Module::alias_iterator I = SrcM->alias_begin(),
   1193        E = SrcM->alias_end(); I != E; ++I)
   1194     if (linkAliasProto(I))
   1195       return true;
   1196 
   1197   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
   1198     linkAppendingVarInit(AppendingVars[i]);
   1199 
   1200   // Update the initializers in the DstM module now that all globals that may
   1201   // be referenced are in DstM.
   1202   linkGlobalInits();
   1203 
   1204   // Link in the function bodies that are defined in the source module into
   1205   // DstM.
   1206   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
   1207     // Skip if not linking from source.
   1208     if (DoNotLinkFromSource.count(SF)) continue;
   1209 
   1210     // Skip if no body (function is external) or materialize.
   1211     if (SF->isDeclaration()) {
   1212       if (!SF->isMaterializable())
   1213         continue;
   1214       if (SF->Materialize(&ErrorMsg))
   1215         return true;
   1216     }
   1217 
   1218     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
   1219     SF->Dematerialize();
   1220   }
   1221 
   1222   // Resolve all uses of aliases with aliasees.
   1223   linkAliasBodies();
   1224 
   1225   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1226   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1227   // are properly remapped.
   1228   linkNamedMDNodes();
   1229 
   1230   // Merge the module flags into the DstM module.
   1231   if (linkModuleFlagsMetadata())
   1232     return true;
   1233 
   1234   // Process vector of lazily linked in functions.
   1235   bool LinkedInAnyFunctions;
   1236   do {
   1237     LinkedInAnyFunctions = false;
   1238 
   1239     for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
   1240         E = LazilyLinkFunctions.end(); I != E; ++I) {
   1241       if (!*I)
   1242         continue;
   1243 
   1244       Function *SF = *I;
   1245       Function *DF = cast<Function>(ValueMap[SF]);
   1246 
   1247       if (!DF->use_empty()) {
   1248 
   1249         // Materialize if necessary.
   1250         if (SF->isDeclaration()) {
   1251           if (!SF->isMaterializable())
   1252             continue;
   1253           if (SF->Materialize(&ErrorMsg))
   1254             return true;
   1255         }
   1256 
   1257         // Link in function body.
   1258         linkFunctionBody(DF, SF);
   1259         SF->Dematerialize();
   1260 
   1261         // "Remove" from vector by setting the element to 0.
   1262         *I = 0;
   1263 
   1264         // Set flag to indicate we may have more functions to lazily link in
   1265         // since we linked in a function.
   1266         LinkedInAnyFunctions = true;
   1267       }
   1268     }
   1269   } while (LinkedInAnyFunctions);
   1270 
   1271   // Remove any prototypes of functions that were not actually linked in.
   1272   for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
   1273       E = LazilyLinkFunctions.end(); I != E; ++I) {
   1274     if (!*I)
   1275       continue;
   1276 
   1277     Function *SF = *I;
   1278     Function *DF = cast<Function>(ValueMap[SF]);
   1279     if (DF->use_empty())
   1280       DF->eraseFromParent();
   1281   }
   1282 
   1283   // Now that all of the types from the source are used, resolve any structs
   1284   // copied over to the dest that didn't exist there.
   1285   TypeMap.linkDefinedTypeBodies();
   1286 
   1287   return false;
   1288 }
   1289 
   1290 //===----------------------------------------------------------------------===//
   1291 // LinkModules entrypoint.
   1292 //===----------------------------------------------------------------------===//
   1293 
   1294 /// LinkModules - This function links two modules together, with the resulting
   1295 /// Dest module modified to be the composite of the two input modules.  If an
   1296 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
   1297 /// the problem.  Upon failure, the Dest module could be in a modified state,
   1298 /// and shouldn't be relied on to be consistent.
   1299 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
   1300                          std::string *ErrorMsg) {
   1301   ModuleLinker TheLinker(Dest, Src, Mode);
   1302   if (TheLinker.run()) {
   1303     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
   1304     return true;
   1305   }
   1306 
   1307   return false;
   1308 }
   1309 
   1310 //===----------------------------------------------------------------------===//
   1311 // C API.
   1312 //===----------------------------------------------------------------------===//
   1313 
   1314 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
   1315                          LLVMLinkerMode Mode, char **OutMessages) {
   1316   std::string Messages;
   1317   LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
   1318                                         Mode, OutMessages? &Messages : 0);
   1319   if (OutMessages)
   1320     *OutMessages = strdup(Messages.c_str());
   1321   return Result;
   1322 }
   1323