1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2008 Google Inc. All rights reserved. 3 // http://code.google.com/p/protobuf/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // Author: kenton (at) google.com (Kenton Varda) 32 // Based on original Protocol Buffers design by 33 // Sanjay Ghemawat, Jeff Dean, and others. 34 // 35 // Defines Message, the abstract interface implemented by non-lite 36 // protocol message objects. Although it's possible to implement this 37 // interface manually, most users will use the protocol compiler to 38 // generate implementations. 39 // 40 // Example usage: 41 // 42 // Say you have a message defined as: 43 // 44 // message Foo { 45 // optional string text = 1; 46 // repeated int32 numbers = 2; 47 // } 48 // 49 // Then, if you used the protocol compiler to generate a class from the above 50 // definition, you could use it like so: 51 // 52 // string data; // Will store a serialized version of the message. 53 // 54 // { 55 // // Create a message and serialize it. 56 // Foo foo; 57 // foo.set_text("Hello World!"); 58 // foo.add_numbers(1); 59 // foo.add_numbers(5); 60 // foo.add_numbers(42); 61 // 62 // foo.SerializeToString(&data); 63 // } 64 // 65 // { 66 // // Parse the serialized message and check that it contains the 67 // // correct data. 68 // Foo foo; 69 // foo.ParseFromString(data); 70 // 71 // assert(foo.text() == "Hello World!"); 72 // assert(foo.numbers_size() == 3); 73 // assert(foo.numbers(0) == 1); 74 // assert(foo.numbers(1) == 5); 75 // assert(foo.numbers(2) == 42); 76 // } 77 // 78 // { 79 // // Same as the last block, but do it dynamically via the Message 80 // // reflection interface. 81 // Message* foo = new Foo; 82 // Descriptor* descriptor = foo->GetDescriptor(); 83 // 84 // // Get the descriptors for the fields we're interested in and verify 85 // // their types. 86 // FieldDescriptor* text_field = descriptor->FindFieldByName("text"); 87 // assert(text_field != NULL); 88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING); 89 // assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL); 90 // FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers"); 91 // assert(numbers_field != NULL); 92 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); 93 // assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED); 94 // 95 // // Parse the message. 96 // foo->ParseFromString(data); 97 // 98 // // Use the reflection interface to examine the contents. 99 // const Reflection* reflection = foo->GetReflection(); 100 // assert(reflection->GetString(foo, text_field) == "Hello World!"); 101 // assert(reflection->FieldSize(foo, numbers_field) == 3); 102 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1); 103 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5); 104 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42); 105 // 106 // delete foo; 107 // } 108 109 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ 110 #define GOOGLE_PROTOBUF_MESSAGE_H__ 111 112 #include <vector> 113 #include <string> 114 115 #ifdef __DECCXX 116 // HP C++'s iosfwd doesn't work. 117 #include <iostream> 118 #else 119 #include <iosfwd> 120 #endif 121 122 #include <google/protobuf/message_lite.h> 123 124 #include <google/protobuf/stubs/common.h> 125 126 #if defined(_WIN32) && defined(GetMessage) 127 // windows.h defines GetMessage() as a macro. Let's re-define it as an inline 128 // function. This is necessary because Reflection has a method called 129 // GetMessage() which we don't want overridden. The inline function should be 130 // equivalent for C++ users. 131 inline BOOL GetMessage_Win32( 132 LPMSG lpMsg, HWND hWnd, 133 UINT wMsgFilterMin, UINT wMsgFilterMax) { 134 return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); 135 } 136 #undef GetMessage 137 inline BOOL GetMessage( 138 LPMSG lpMsg, HWND hWnd, 139 UINT wMsgFilterMin, UINT wMsgFilterMax) { 140 return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); 141 } 142 #endif 143 144 145 namespace google { 146 namespace protobuf { 147 148 // Defined in this file. 149 class Message; 150 class Reflection; 151 class MessageFactory; 152 153 // Defined in other files. 154 class Descriptor; // descriptor.h 155 class FieldDescriptor; // descriptor.h 156 class EnumDescriptor; // descriptor.h 157 class EnumValueDescriptor; // descriptor.h 158 namespace io { 159 class ZeroCopyInputStream; // zero_copy_stream.h 160 class ZeroCopyOutputStream; // zero_copy_stream.h 161 class CodedInputStream; // coded_stream.h 162 class CodedOutputStream; // coded_stream.h 163 } 164 class UnknownFieldSet; // unknown_field_set.h 165 166 // A container to hold message metadata. 167 struct Metadata { 168 const Descriptor* descriptor; 169 const Reflection* reflection; 170 }; 171 172 // Returns the EnumDescriptor for enum type E, which must be a 173 // proto-declared enum type. Code generated by the protocol compiler 174 // will include specializations of this template for each enum type declared. 175 template <typename E> 176 const EnumDescriptor* GetEnumDescriptor(); 177 178 // Abstract interface for protocol messages. 179 // 180 // See also MessageLite, which contains most every-day operations. Message 181 // adds descriptors and reflection on top of that. 182 // 183 // The methods of this class that are virtual but not pure-virtual have 184 // default implementations based on reflection. Message classes which are 185 // optimized for speed will want to override these with faster implementations, 186 // but classes optimized for code size may be happy with keeping them. See 187 // the optimize_for option in descriptor.proto. 188 class LIBPROTOBUF_EXPORT Message : public MessageLite { 189 public: 190 inline Message() {} 191 virtual ~Message(); 192 193 // Basic Operations ------------------------------------------------ 194 195 // Construct a new instance of the same type. Ownership is passed to the 196 // caller. (This is also defined in MessageLite, but is defined again here 197 // for return-type covariance.) 198 virtual Message* New() const = 0; 199 200 // Make this message into a copy of the given message. The given message 201 // must have the same descriptor, but need not necessarily be the same class. 202 // By default this is just implemented as "Clear(); MergeFrom(from);". 203 virtual void CopyFrom(const Message& from); 204 205 // Merge the fields from the given message into this message. Singular 206 // fields will be overwritten, except for embedded messages which will 207 // be merged. Repeated fields will be concatenated. The given message 208 // must be of the same type as this message (i.e. the exact same class). 209 virtual void MergeFrom(const Message& from); 210 211 // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with 212 // a nice error message. 213 void CheckInitialized() const; 214 215 // Slowly build a list of all required fields that are not set. 216 // This is much, much slower than IsInitialized() as it is implemented 217 // purely via reflection. Generally, you should not call this unless you 218 // have already determined that an error exists by calling IsInitialized(). 219 void FindInitializationErrors(vector<string>* errors) const; 220 221 // Like FindInitializationErrors, but joins all the strings, delimited by 222 // commas, and returns them. 223 string InitializationErrorString() const; 224 225 // Clears all unknown fields from this message and all embedded messages. 226 // Normally, if unknown tag numbers are encountered when parsing a message, 227 // the tag and value are stored in the message's UnknownFieldSet and 228 // then written back out when the message is serialized. This allows servers 229 // which simply route messages to other servers to pass through messages 230 // that have new field definitions which they don't yet know about. However, 231 // this behavior can have security implications. To avoid it, call this 232 // method after parsing. 233 // 234 // See Reflection::GetUnknownFields() for more on unknown fields. 235 virtual void DiscardUnknownFields(); 236 237 // Computes (an estimate of) the total number of bytes currently used for 238 // storing the message in memory. The default implementation calls the 239 // Reflection object's SpaceUsed() method. 240 virtual int SpaceUsed() const; 241 242 // Debugging & Testing---------------------------------------------- 243 244 // Generates a human readable form of this message, useful for debugging 245 // and other purposes. 246 string DebugString() const; 247 // Like DebugString(), but with less whitespace. 248 string ShortDebugString() const; 249 // Like DebugString(), but do not escape UTF-8 byte sequences. 250 string Utf8DebugString() const; 251 // Convenience function useful in GDB. Prints DebugString() to stdout. 252 void PrintDebugString() const; 253 254 // Heavy I/O ------------------------------------------------------- 255 // Additional parsing and serialization methods not implemented by 256 // MessageLite because they are not supported by the lite library. 257 258 // Parse a protocol buffer from a file descriptor. If successful, the entire 259 // input will be consumed. 260 bool ParseFromFileDescriptor(int file_descriptor); 261 // Like ParseFromFileDescriptor(), but accepts messages that are missing 262 // required fields. 263 bool ParsePartialFromFileDescriptor(int file_descriptor); 264 // Parse a protocol buffer from a C++ istream. If successful, the entire 265 // input will be consumed. 266 bool ParseFromIstream(istream* input); 267 // Like ParseFromIstream(), but accepts messages that are missing 268 // required fields. 269 bool ParsePartialFromIstream(istream* input); 270 271 // Serialize the message and write it to the given file descriptor. All 272 // required fields must be set. 273 bool SerializeToFileDescriptor(int file_descriptor) const; 274 // Like SerializeToFileDescriptor(), but allows missing required fields. 275 bool SerializePartialToFileDescriptor(int file_descriptor) const; 276 // Serialize the message and write it to the given C++ ostream. All 277 // required fields must be set. 278 bool SerializeToOstream(ostream* output) const; 279 // Like SerializeToOstream(), but allows missing required fields. 280 bool SerializePartialToOstream(ostream* output) const; 281 282 283 // Reflection-based methods ---------------------------------------- 284 // These methods are pure-virtual in MessageLite, but Message provides 285 // reflection-based default implementations. 286 287 virtual string GetTypeName() const; 288 virtual void Clear(); 289 virtual bool IsInitialized() const; 290 virtual void CheckTypeAndMergeFrom(const MessageLite& other); 291 virtual bool MergePartialFromCodedStream(io::CodedInputStream* input); 292 virtual int ByteSize() const; 293 virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const; 294 295 private: 296 // This is called only by the default implementation of ByteSize(), to 297 // update the cached size. If you override ByteSize(), you do not need 298 // to override this. If you do not override ByteSize(), you MUST override 299 // this; the default implementation will crash. 300 // 301 // The method is private because subclasses should never call it; only 302 // override it. Yes, C++ lets you do that. Crazy, huh? 303 virtual void SetCachedSize(int size) const; 304 305 public: 306 307 // Introspection --------------------------------------------------- 308 309 // Typedef for backwards-compatibility. 310 typedef google::protobuf::Reflection Reflection; 311 312 // Get a Descriptor for this message's type. This describes what 313 // fields the message contains, the types of those fields, etc. 314 const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } 315 316 // Get the Reflection interface for this Message, which can be used to 317 // read and modify the fields of the Message dynamically (in other words, 318 // without knowing the message type at compile time). This object remains 319 // property of the Message. 320 // 321 // This method remains virtual in case a subclass does not implement 322 // reflection and wants to override the default behavior. 323 virtual const Reflection* GetReflection() const { 324 return GetMetadata().reflection; 325 } 326 327 protected: 328 // Get a struct containing the metadata for the Message. Most subclasses only 329 // need to implement this method, rather than the GetDescriptor() and 330 // GetReflection() wrappers. 331 virtual Metadata GetMetadata() const = 0; 332 333 334 private: 335 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); 336 }; 337 338 // This interface contains methods that can be used to dynamically access 339 // and modify the fields of a protocol message. Their semantics are 340 // similar to the accessors the protocol compiler generates. 341 // 342 // To get the Reflection for a given Message, call Message::GetReflection(). 343 // 344 // This interface is separate from Message only for efficiency reasons; 345 // the vast majority of implementations of Message will share the same 346 // implementation of Reflection (GeneratedMessageReflection, 347 // defined in generated_message.h), and all Messages of a particular class 348 // should share the same Reflection object (though you should not rely on 349 // the latter fact). 350 // 351 // There are several ways that these methods can be used incorrectly. For 352 // example, any of the following conditions will lead to undefined 353 // results (probably assertion failures): 354 // - The FieldDescriptor is not a field of this message type. 355 // - The method called is not appropriate for the field's type. For 356 // each field type in FieldDescriptor::TYPE_*, there is only one 357 // Get*() method, one Set*() method, and one Add*() method that is 358 // valid for that type. It should be obvious which (except maybe 359 // for TYPE_BYTES, which are represented using strings in C++). 360 // - A Get*() or Set*() method for singular fields is called on a repeated 361 // field. 362 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated 363 // field. 364 // - The Message object passed to any method is not of the right type for 365 // this Reflection object (i.e. message.GetReflection() != reflection). 366 // 367 // You might wonder why there is not any abstract representation for a field 368 // of arbitrary type. E.g., why isn't there just a "GetField()" method that 369 // returns "const Field&", where "Field" is some class with accessors like 370 // "GetInt32Value()". The problem is that someone would have to deal with 371 // allocating these Field objects. For generated message classes, having to 372 // allocate space for an additional object to wrap every field would at least 373 // double the message's memory footprint, probably worse. Allocating the 374 // objects on-demand, on the other hand, would be expensive and prone to 375 // memory leaks. So, instead we ended up with this flat interface. 376 // 377 // TODO(kenton): Create a utility class which callers can use to read and 378 // write fields from a Reflection without paying attention to the type. 379 class LIBPROTOBUF_EXPORT Reflection { 380 public: 381 // TODO(kenton): Remove parameter. 382 inline Reflection() {} 383 virtual ~Reflection(); 384 385 // Get the UnknownFieldSet for the message. This contains fields which 386 // were seen when the Message was parsed but were not recognized according 387 // to the Message's definition. 388 virtual const UnknownFieldSet& GetUnknownFields( 389 const Message& message) const = 0; 390 // Get a mutable pointer to the UnknownFieldSet for the message. This 391 // contains fields which were seen when the Message was parsed but were not 392 // recognized according to the Message's definition. 393 virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0; 394 395 // Estimate the amount of memory used by the message object. 396 virtual int SpaceUsed(const Message& message) const = 0; 397 398 // Check if the given non-repeated field is set. 399 virtual bool HasField(const Message& message, 400 const FieldDescriptor* field) const = 0; 401 402 // Get the number of elements of a repeated field. 403 virtual int FieldSize(const Message& message, 404 const FieldDescriptor* field) const = 0; 405 406 // Clear the value of a field, so that HasField() returns false or 407 // FieldSize() returns zero. 408 virtual void ClearField(Message* message, 409 const FieldDescriptor* field) const = 0; 410 411 // Remove the last element of a repeated field. 412 // We don't provide a way to remove any element other than the last 413 // because it invites inefficient use, such as O(n^2) filtering loops 414 // that should have been O(n). If you want to remove an element other 415 // than the last, the best way to do it is to re-arrange the elements 416 // (using Swap()) so that the one you want removed is at the end, then 417 // call RemoveLast(). 418 virtual void RemoveLast(Message* message, 419 const FieldDescriptor* field) const = 0; 420 421 // Swap the complete contents of two messages. 422 virtual void Swap(Message* message1, Message* message2) const = 0; 423 424 // Swap two elements of a repeated field. 425 virtual void SwapElements(Message* message, 426 const FieldDescriptor* field, 427 int index1, 428 int index2) const = 0; 429 430 // List all fields of the message which are currently set. This includes 431 // extensions. Singular fields will only be listed if HasField(field) would 432 // return true and repeated fields will only be listed if FieldSize(field) 433 // would return non-zero. Fields (both normal fields and extension fields) 434 // will be listed ordered by field number. 435 virtual void ListFields(const Message& message, 436 vector<const FieldDescriptor*>* output) const = 0; 437 438 // Singular field getters ------------------------------------------ 439 // These get the value of a non-repeated field. They return the default 440 // value for fields that aren't set. 441 442 virtual int32 GetInt32 (const Message& message, 443 const FieldDescriptor* field) const = 0; 444 virtual int64 GetInt64 (const Message& message, 445 const FieldDescriptor* field) const = 0; 446 virtual uint32 GetUInt32(const Message& message, 447 const FieldDescriptor* field) const = 0; 448 virtual uint64 GetUInt64(const Message& message, 449 const FieldDescriptor* field) const = 0; 450 virtual float GetFloat (const Message& message, 451 const FieldDescriptor* field) const = 0; 452 virtual double GetDouble(const Message& message, 453 const FieldDescriptor* field) const = 0; 454 virtual bool GetBool (const Message& message, 455 const FieldDescriptor* field) const = 0; 456 virtual string GetString(const Message& message, 457 const FieldDescriptor* field) const = 0; 458 virtual const EnumValueDescriptor* GetEnum( 459 const Message& message, const FieldDescriptor* field) const = 0; 460 // See MutableMessage() for the meaning of the "factory" parameter. 461 virtual const Message& GetMessage(const Message& message, 462 const FieldDescriptor* field, 463 MessageFactory* factory = NULL) const = 0; 464 465 // Get a string value without copying, if possible. 466 // 467 // GetString() necessarily returns a copy of the string. This can be 468 // inefficient when the string is already stored in a string object in the 469 // underlying message. GetStringReference() will return a reference to the 470 // underlying string in this case. Otherwise, it will copy the string into 471 // *scratch and return that. 472 // 473 // Note: It is perfectly reasonable and useful to write code like: 474 // str = reflection->GetStringReference(field, &str); 475 // This line would ensure that only one copy of the string is made 476 // regardless of the field's underlying representation. When initializing 477 // a newly-constructed string, though, it's just as fast and more readable 478 // to use code like: 479 // string str = reflection->GetString(field); 480 virtual const string& GetStringReference(const Message& message, 481 const FieldDescriptor* field, 482 string* scratch) const = 0; 483 484 485 // Singular field mutators ----------------------------------------- 486 // These mutate the value of a non-repeated field. 487 488 virtual void SetInt32 (Message* message, 489 const FieldDescriptor* field, int32 value) const = 0; 490 virtual void SetInt64 (Message* message, 491 const FieldDescriptor* field, int64 value) const = 0; 492 virtual void SetUInt32(Message* message, 493 const FieldDescriptor* field, uint32 value) const = 0; 494 virtual void SetUInt64(Message* message, 495 const FieldDescriptor* field, uint64 value) const = 0; 496 virtual void SetFloat (Message* message, 497 const FieldDescriptor* field, float value) const = 0; 498 virtual void SetDouble(Message* message, 499 const FieldDescriptor* field, double value) const = 0; 500 virtual void SetBool (Message* message, 501 const FieldDescriptor* field, bool value) const = 0; 502 virtual void SetString(Message* message, 503 const FieldDescriptor* field, 504 const string& value) const = 0; 505 virtual void SetEnum (Message* message, 506 const FieldDescriptor* field, 507 const EnumValueDescriptor* value) const = 0; 508 // Get a mutable pointer to a field with a message type. If a MessageFactory 509 // is provided, it will be used to construct instances of the sub-message; 510 // otherwise, the default factory is used. If the field is an extension that 511 // does not live in the same pool as the containing message's descriptor (e.g. 512 // it lives in an overlay pool), then a MessageFactory must be provided. 513 // If you have no idea what that meant, then you probably don't need to worry 514 // about it (don't provide a MessageFactory). WARNING: If the 515 // FieldDescriptor is for a compiled-in extension, then 516 // factory->GetPrototype(field->message_type() MUST return an instance of the 517 // compiled-in class for this type, NOT DynamicMessage. 518 virtual Message* MutableMessage(Message* message, 519 const FieldDescriptor* field, 520 MessageFactory* factory = NULL) const = 0; 521 522 523 // Repeated field getters ------------------------------------------ 524 // These get the value of one element of a repeated field. 525 526 virtual int32 GetRepeatedInt32 (const Message& message, 527 const FieldDescriptor* field, 528 int index) const = 0; 529 virtual int64 GetRepeatedInt64 (const Message& message, 530 const FieldDescriptor* field, 531 int index) const = 0; 532 virtual uint32 GetRepeatedUInt32(const Message& message, 533 const FieldDescriptor* field, 534 int index) const = 0; 535 virtual uint64 GetRepeatedUInt64(const Message& message, 536 const FieldDescriptor* field, 537 int index) const = 0; 538 virtual float GetRepeatedFloat (const Message& message, 539 const FieldDescriptor* field, 540 int index) const = 0; 541 virtual double GetRepeatedDouble(const Message& message, 542 const FieldDescriptor* field, 543 int index) const = 0; 544 virtual bool GetRepeatedBool (const Message& message, 545 const FieldDescriptor* field, 546 int index) const = 0; 547 virtual string GetRepeatedString(const Message& message, 548 const FieldDescriptor* field, 549 int index) const = 0; 550 virtual const EnumValueDescriptor* GetRepeatedEnum( 551 const Message& message, 552 const FieldDescriptor* field, int index) const = 0; 553 virtual const Message& GetRepeatedMessage( 554 const Message& message, 555 const FieldDescriptor* field, int index) const = 0; 556 557 // See GetStringReference(), above. 558 virtual const string& GetRepeatedStringReference( 559 const Message& message, const FieldDescriptor* field, 560 int index, string* scratch) const = 0; 561 562 563 // Repeated field mutators ----------------------------------------- 564 // These mutate the value of one element of a repeated field. 565 566 virtual void SetRepeatedInt32 (Message* message, 567 const FieldDescriptor* field, 568 int index, int32 value) const = 0; 569 virtual void SetRepeatedInt64 (Message* message, 570 const FieldDescriptor* field, 571 int index, int64 value) const = 0; 572 virtual void SetRepeatedUInt32(Message* message, 573 const FieldDescriptor* field, 574 int index, uint32 value) const = 0; 575 virtual void SetRepeatedUInt64(Message* message, 576 const FieldDescriptor* field, 577 int index, uint64 value) const = 0; 578 virtual void SetRepeatedFloat (Message* message, 579 const FieldDescriptor* field, 580 int index, float value) const = 0; 581 virtual void SetRepeatedDouble(Message* message, 582 const FieldDescriptor* field, 583 int index, double value) const = 0; 584 virtual void SetRepeatedBool (Message* message, 585 const FieldDescriptor* field, 586 int index, bool value) const = 0; 587 virtual void SetRepeatedString(Message* message, 588 const FieldDescriptor* field, 589 int index, const string& value) const = 0; 590 virtual void SetRepeatedEnum(Message* message, 591 const FieldDescriptor* field, int index, 592 const EnumValueDescriptor* value) const = 0; 593 // Get a mutable pointer to an element of a repeated field with a message 594 // type. 595 virtual Message* MutableRepeatedMessage( 596 Message* message, const FieldDescriptor* field, int index) const = 0; 597 598 599 // Repeated field adders ------------------------------------------- 600 // These add an element to a repeated field. 601 602 virtual void AddInt32 (Message* message, 603 const FieldDescriptor* field, int32 value) const = 0; 604 virtual void AddInt64 (Message* message, 605 const FieldDescriptor* field, int64 value) const = 0; 606 virtual void AddUInt32(Message* message, 607 const FieldDescriptor* field, uint32 value) const = 0; 608 virtual void AddUInt64(Message* message, 609 const FieldDescriptor* field, uint64 value) const = 0; 610 virtual void AddFloat (Message* message, 611 const FieldDescriptor* field, float value) const = 0; 612 virtual void AddDouble(Message* message, 613 const FieldDescriptor* field, double value) const = 0; 614 virtual void AddBool (Message* message, 615 const FieldDescriptor* field, bool value) const = 0; 616 virtual void AddString(Message* message, 617 const FieldDescriptor* field, 618 const string& value) const = 0; 619 virtual void AddEnum (Message* message, 620 const FieldDescriptor* field, 621 const EnumValueDescriptor* value) const = 0; 622 // See MutableMessage() for comments on the "factory" parameter. 623 virtual Message* AddMessage(Message* message, 624 const FieldDescriptor* field, 625 MessageFactory* factory = NULL) const = 0; 626 627 628 // Extensions ------------------------------------------------------ 629 630 // Try to find an extension of this message type by fully-qualified field 631 // name. Returns NULL if no extension is known for this name or number. 632 virtual const FieldDescriptor* FindKnownExtensionByName( 633 const string& name) const = 0; 634 635 // Try to find an extension of this message type by field number. 636 // Returns NULL if no extension is known for this name or number. 637 virtual const FieldDescriptor* FindKnownExtensionByNumber( 638 int number) const = 0; 639 640 private: 641 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); 642 }; 643 644 // Abstract interface for a factory for message objects. 645 class LIBPROTOBUF_EXPORT MessageFactory { 646 public: 647 inline MessageFactory() {} 648 virtual ~MessageFactory(); 649 650 // Given a Descriptor, gets or constructs the default (prototype) Message 651 // of that type. You can then call that message's New() method to construct 652 // a mutable message of that type. 653 // 654 // Calling this method twice with the same Descriptor returns the same 655 // object. The returned object remains property of the factory. Also, any 656 // objects created by calling the prototype's New() method share some data 657 // with the prototype, so these must be destoyed before the MessageFactory 658 // is destroyed. 659 // 660 // The given descriptor must outlive the returned message, and hence must 661 // outlive the MessageFactory. 662 // 663 // Some implementations do not support all types. GetPrototype() will 664 // return NULL if the descriptor passed in is not supported. 665 // 666 // This method may or may not be thread-safe depending on the implementation. 667 // Each implementation should document its own degree thread-safety. 668 virtual const Message* GetPrototype(const Descriptor* type) = 0; 669 670 // Gets a MessageFactory which supports all generated, compiled-in messages. 671 // In other words, for any compiled-in type FooMessage, the following is true: 672 // MessageFactory::generated_factory()->GetPrototype( 673 // FooMessage::descriptor()) == FooMessage::default_instance() 674 // This factory supports all types which are found in 675 // DescriptorPool::generated_pool(). If given a descriptor from any other 676 // pool, GetPrototype() will return NULL. (You can also check if a 677 // descriptor is for a generated message by checking if 678 // descriptor->file()->pool() == DescriptorPool::generated_pool().) 679 // 680 // This factory is 100% thread-safe; calling GetPrototype() does not modify 681 // any shared data. 682 // 683 // This factory is a singleton. The caller must not delete the object. 684 static MessageFactory* generated_factory(); 685 686 // For internal use only: Registers a .proto file at static initialization 687 // time, to be placed in generated_factory. The first time GetPrototype() 688 // is called with a descriptor from this file, |register_messages| will be 689 // called, with the file name as the parameter. It must call 690 // InternalRegisterGeneratedMessage() (below) to register each message type 691 // in the file. This strange mechanism is necessary because descriptors are 692 // built lazily, so we can't register types by their descriptor until we 693 // know that the descriptor exists. |filename| must be a permanent string. 694 static void InternalRegisterGeneratedFile( 695 const char* filename, void (*register_messages)(const string&)); 696 697 // For internal use only: Registers a message type. Called only by the 698 // functions which are registered with InternalRegisterGeneratedFile(), 699 // above. 700 static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, 701 const Message* prototype); 702 703 private: 704 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); 705 }; 706 707 } // namespace protobuf 708 709 } // namespace google 710 #endif // GOOGLE_PROTOBUF_MESSAGE_H__ 711