Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // CodeGenMapTable provides functionality for the TabelGen to create
     10 // relation mapping between instructions. Relation models are defined using
     11 // InstrMapping as a base class. This file implements the functionality which
     12 // parses these definitions and generates relation maps using the information
     13 // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
     14 // file along with the functions to query them.
     15 //
     16 // A relationship model to relate non-predicate instructions with their
     17 // predicated true/false forms can be defined as follows:
     18 //
     19 // def getPredOpcode : InstrMapping {
     20 //  let FilterClass = "PredRel";
     21 //  let RowFields = ["BaseOpcode"];
     22 //  let ColFields = ["PredSense"];
     23 //  let KeyCol = ["none"];
     24 //  let ValueCols = [["true"], ["false"]]; }
     25 //
     26 // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
     27 // file that contains the instructions modeling this relationship. This table
     28 // is defined in the function
     29 // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
     30 // that can be used to retrieve the predicated form of the instruction by
     31 // passing its opcode value and the predicate sense (true/false) of the desired
     32 // instruction as arguments.
     33 //
     34 // Short description of the algorithm:
     35 //
     36 // 1) Iterate through all the records that derive from "InstrMapping" class.
     37 // 2) For each record, filter out instructions based on the FilterClass value.
     38 // 3) Iterate through this set of instructions and insert them into
     39 // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
     40 // vector of RowFields values and contains vectors of Records (instructions) as
     41 // values. RowFields is a list of fields that are required to have the same
     42 // values for all the instructions appearing in the same row of the relation
     43 // table. All the instructions in a given row of the relation table have some
     44 // sort of relationship with the key instruction defined by the corresponding
     45 // relationship model.
     46 //
     47 // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
     48 // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
     49 // RowFields. These groups of instructions are later matched against ValueCols
     50 // to determine the column they belong to, if any.
     51 //
     52 // While building the RowInstrMap map, collect all the key instructions in
     53 // KeyInstrVec. These are the instructions having the same values as KeyCol
     54 // for all the fields listed in ColFields.
     55 //
     56 // For Example:
     57 //
     58 // Relate non-predicate instructions with their predicated true/false forms.
     59 //
     60 // def getPredOpcode : InstrMapping {
     61 //  let FilterClass = "PredRel";
     62 //  let RowFields = ["BaseOpcode"];
     63 //  let ColFields = ["PredSense"];
     64 //  let KeyCol = ["none"];
     65 //  let ValueCols = [["true"], ["false"]]; }
     66 //
     67 // Here, only instructions that have "none" as PredSense will be selected as key
     68 // instructions.
     69 //
     70 // 4) For each key instruction, get the group of instructions that share the
     71 // same key-value as the key instruction from RowInstrMap. Iterate over the list
     72 // of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
     73 // it can specify multi-column relationships). For each column, find the
     74 // instruction from the group that matches all the values for the column.
     75 // Multiple matches are not allowed.
     76 //
     77 //===----------------------------------------------------------------------===//
     78 
     79 #include "CodeGenTarget.h"
     80 #include "llvm/Support/Format.h"
     81 #include "llvm/TableGen/Error.h"
     82 using namespace llvm;
     83 typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;
     84 
     85 typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;
     86 
     87 namespace {
     88 
     89 //===----------------------------------------------------------------------===//
     90 // This class is used to represent InstrMapping class defined in Target.td file.
     91 class InstrMap {
     92 private:
     93   std::string Name;
     94   std::string FilterClass;
     95   ListInit *RowFields;
     96   ListInit *ColFields;
     97   ListInit *KeyCol;
     98   std::vector<ListInit*> ValueCols;
     99 
    100 public:
    101   InstrMap(Record* MapRec) {
    102     Name = MapRec->getName();
    103 
    104     // FilterClass - It's used to reduce the search space only to the
    105     // instructions that define the kind of relationship modeled by
    106     // this InstrMapping object/record.
    107     const RecordVal *Filter = MapRec->getValue("FilterClass");
    108     FilterClass = Filter->getValue()->getAsUnquotedString();
    109 
    110     // List of fields/attributes that need to be same across all the
    111     // instructions in a row of the relation table.
    112     RowFields = MapRec->getValueAsListInit("RowFields");
    113 
    114     // List of fields/attributes that are constant across all the instruction
    115     // in a column of the relation table. Ex: ColFields = 'predSense'
    116     ColFields = MapRec->getValueAsListInit("ColFields");
    117 
    118     // Values for the fields/attributes listed in 'ColFields'.
    119     // Ex: KeyCol = 'noPred' -- key instruction is non predicated
    120     KeyCol = MapRec->getValueAsListInit("KeyCol");
    121 
    122     // List of values for the fields/attributes listed in 'ColFields', one for
    123     // each column in the relation table.
    124     //
    125     // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
    126     // table. First column requires all the instructions to have predSense
    127     // set to 'true' and second column requires it to be 'false'.
    128     ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");
    129 
    130     // Each instruction map must specify at least one column for it to be valid.
    131     if (ColValList->getSize() == 0)
    132       PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
    133         MapRec->getName() + "' has empty " + "`ValueCols' field!");
    134 
    135     for (unsigned i = 0, e = ColValList->getSize(); i < e; i++) {
    136       ListInit *ColI = dyn_cast<ListInit>(ColValList->getElement(i));
    137 
    138       // Make sure that all the sub-lists in 'ValueCols' have same number of
    139       // elements as the fields in 'ColFields'.
    140       if (ColI->getSize() != ColFields->getSize())
    141         PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
    142           "', field `ValueCols' entries don't match with " +
    143           " the entries in 'ColFields'!");
    144       ValueCols.push_back(ColI);
    145     }
    146   }
    147 
    148   std::string getName() const {
    149     return Name;
    150   }
    151 
    152   std::string getFilterClass() {
    153     return FilterClass;
    154   }
    155 
    156   ListInit *getRowFields() const {
    157     return RowFields;
    158   }
    159 
    160   ListInit *getColFields() const {
    161     return ColFields;
    162   }
    163 
    164   ListInit *getKeyCol() const {
    165     return KeyCol;
    166   }
    167 
    168   const std::vector<ListInit*> &getValueCols() const {
    169     return ValueCols;
    170   }
    171 };
    172 } // End anonymous namespace.
    173 
    174 
    175 //===----------------------------------------------------------------------===//
    176 // class MapTableEmitter : It builds the instruction relation maps using
    177 // the information provided in InstrMapping records. It outputs these
    178 // relationship maps as tables into XXXGenInstrInfo.inc file along with the
    179 // functions to query them.
    180 
    181 namespace {
    182 class MapTableEmitter {
    183 private:
    184 //  std::string TargetName;
    185   const CodeGenTarget &Target;
    186   // InstrMapDesc - InstrMapping record to be processed.
    187   InstrMap InstrMapDesc;
    188 
    189   // InstrDefs - list of instructions filtered using FilterClass defined
    190   // in InstrMapDesc.
    191   std::vector<Record*> InstrDefs;
    192 
    193   // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
    194   // values of the row fields and contains vector of records as values.
    195   RowInstrMapTy RowInstrMap;
    196 
    197   // KeyInstrVec - list of key instructions.
    198   std::vector<Record*> KeyInstrVec;
    199   DenseMap<Record*, std::vector<Record*> > MapTable;
    200 
    201 public:
    202   MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
    203                   Target(Target), InstrMapDesc(IMRec) {
    204     const std::string FilterClass = InstrMapDesc.getFilterClass();
    205     InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
    206   }
    207 
    208   void buildRowInstrMap();
    209 
    210   // Returns true if an instruction is a key instruction, i.e., its ColFields
    211   // have same values as KeyCol.
    212   bool isKeyColInstr(Record* CurInstr);
    213 
    214   // Find column instruction corresponding to a key instruction based on the
    215   // constraints for that column.
    216   Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);
    217 
    218   // Find column instructions for each key instruction based
    219   // on ValueCols and store them into MapTable.
    220   void buildMapTable();
    221 
    222   void emitBinSearch(raw_ostream &OS, unsigned TableSize);
    223   void emitTablesWithFunc(raw_ostream &OS);
    224   unsigned emitBinSearchTable(raw_ostream &OS);
    225 
    226   // Lookup functions to query binary search tables.
    227   void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);
    228 
    229 };
    230 } // End anonymous namespace.
    231 
    232 
    233 //===----------------------------------------------------------------------===//
    234 // Process all the instructions that model this relation (alreday present in
    235 // InstrDefs) and insert them into RowInstrMap which is keyed by the values of
    236 // the fields listed as RowFields. It stores vectors of records as values.
    237 // All the related instructions have the same values for the RowFields thus are
    238 // part of the same key-value pair.
    239 //===----------------------------------------------------------------------===//
    240 
    241 void MapTableEmitter::buildRowInstrMap() {
    242   for (unsigned i = 0, e = InstrDefs.size(); i < e; i++) {
    243     std::vector<Record*> InstrList;
    244     Record *CurInstr = InstrDefs[i];
    245     std::vector<Init*> KeyValue;
    246     ListInit *RowFields = InstrMapDesc.getRowFields();
    247     for (unsigned j = 0, endRF = RowFields->getSize(); j < endRF; j++) {
    248       Init *RowFieldsJ = RowFields->getElement(j);
    249       Init *CurInstrVal = CurInstr->getValue(RowFieldsJ)->getValue();
    250       KeyValue.push_back(CurInstrVal);
    251     }
    252 
    253     // Collect key instructions into KeyInstrVec. Later, these instructions are
    254     // processed to assign column position to the instructions sharing
    255     // their KeyValue in RowInstrMap.
    256     if (isKeyColInstr(CurInstr))
    257       KeyInstrVec.push_back(CurInstr);
    258 
    259     RowInstrMap[KeyValue].push_back(CurInstr);
    260   }
    261 }
    262 
    263 //===----------------------------------------------------------------------===//
    264 // Return true if an instruction is a KeyCol instruction.
    265 //===----------------------------------------------------------------------===//
    266 
    267 bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
    268   ListInit *ColFields = InstrMapDesc.getColFields();
    269   ListInit *KeyCol = InstrMapDesc.getKeyCol();
    270 
    271   // Check if the instruction is a KeyCol instruction.
    272   bool MatchFound = true;
    273   for (unsigned j = 0, endCF = ColFields->getSize();
    274       (j < endCF) && MatchFound; j++) {
    275     RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
    276     std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
    277     std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
    278     MatchFound = (CurInstrVal == KeyColValue);
    279   }
    280   return MatchFound;
    281 }
    282 
    283 //===----------------------------------------------------------------------===//
    284 // Build a map to link key instructions with the column instructions arranged
    285 // according to their column positions.
    286 //===----------------------------------------------------------------------===//
    287 
    288 void MapTableEmitter::buildMapTable() {
    289   // Find column instructions for a given key based on the ColField
    290   // constraints.
    291   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    292   unsigned NumOfCols = ValueCols.size();
    293   for (unsigned j = 0, endKI = KeyInstrVec.size(); j < endKI; j++) {
    294     Record *CurKeyInstr = KeyInstrVec[j];
    295     std::vector<Record*> ColInstrVec(NumOfCols);
    296 
    297     // Find the column instruction based on the constraints for the column.
    298     for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
    299       ListInit *CurValueCol = ValueCols[ColIdx];
    300       Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
    301       ColInstrVec[ColIdx] = ColInstr;
    302     }
    303     MapTable[CurKeyInstr] = ColInstrVec;
    304   }
    305 }
    306 
    307 //===----------------------------------------------------------------------===//
    308 // Find column instruction based on the constraints for that column.
    309 //===----------------------------------------------------------------------===//
    310 
    311 Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
    312                                            ListInit *CurValueCol) {
    313   ListInit *RowFields = InstrMapDesc.getRowFields();
    314   std::vector<Init*> KeyValue;
    315 
    316   // Construct KeyValue using KeyInstr's values for RowFields.
    317   for (unsigned j = 0, endRF = RowFields->getSize(); j < endRF; j++) {
    318     Init *RowFieldsJ = RowFields->getElement(j);
    319     Init *KeyInstrVal = KeyInstr->getValue(RowFieldsJ)->getValue();
    320     KeyValue.push_back(KeyInstrVal);
    321   }
    322 
    323   // Get all the instructions that share the same KeyValue as the KeyInstr
    324   // in RowInstrMap. We search through these instructions to find a match
    325   // for the current column, i.e., the instruction which has the same values
    326   // as CurValueCol for all the fields in ColFields.
    327   const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];
    328 
    329   ListInit *ColFields = InstrMapDesc.getColFields();
    330   Record *MatchInstr = NULL;
    331 
    332   for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
    333     bool MatchFound = true;
    334     Record *CurInstr = RelatedInstrVec[i];
    335     for (unsigned j = 0, endCF = ColFields->getSize();
    336         (j < endCF) && MatchFound; j++) {
    337       Init *ColFieldJ = ColFields->getElement(j);
    338       Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
    339       std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
    340       Init *ColFieldJVallue = CurValueCol->getElement(j);
    341       MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
    342     }
    343 
    344     if (MatchFound) {
    345       if (MatchInstr) // Already had a match
    346         // Error if multiple matches are found for a column.
    347         PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
    348               "', for the relation `" + InstrMapDesc.getName());
    349       MatchInstr = CurInstr;
    350     }
    351   }
    352   return MatchInstr;
    353 }
    354 
    355 //===----------------------------------------------------------------------===//
    356 // Emit one table per relation. Only instructions with a valid relation of a
    357 // given type are included in the table sorted by their enum values (opcodes).
    358 // Binary search is used for locating instructions in the table.
    359 //===----------------------------------------------------------------------===//
    360 
    361 unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {
    362 
    363   const std::vector<const CodeGenInstruction*> &NumberedInstructions =
    364                                             Target.getInstructionsByEnumValue();
    365   std::string TargetName = Target.getName();
    366   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    367   unsigned NumCol = ValueCols.size();
    368   unsigned TotalNumInstr = NumberedInstructions.size();
    369   unsigned TableSize = 0;
    370 
    371   OS << "static const uint16_t "<<InstrMapDesc.getName();
    372   // Number of columns in the table are NumCol+1 because key instructions are
    373   // emitted as first column.
    374   OS << "Table[]["<< NumCol+1 << "] = {\n";
    375   for (unsigned i = 0; i < TotalNumInstr; i++) {
    376     Record *CurInstr = NumberedInstructions[i]->TheDef;
    377     std::vector<Record*> ColInstrs = MapTable[CurInstr];
    378     std::string OutStr("");
    379     unsigned RelExists = 0;
    380     if (ColInstrs.size()) {
    381       for (unsigned j = 0; j < NumCol; j++) {
    382         if (ColInstrs[j] != NULL) {
    383           RelExists = 1;
    384           OutStr += ", ";
    385           OutStr += TargetName;
    386           OutStr += "::";
    387           OutStr += ColInstrs[j]->getName();
    388         } else { OutStr += ", -1";}
    389       }
    390 
    391       if (RelExists) {
    392         OS << "  { " << TargetName << "::" << CurInstr->getName();
    393         OS << OutStr <<" },\n";
    394         TableSize++;
    395       }
    396     }
    397   }
    398   if (!TableSize) {
    399     OS << "  { " << TargetName << "::" << "INSTRUCTION_LIST_END, ";
    400     OS << TargetName << "::" << "INSTRUCTION_LIST_END }";
    401   }
    402   OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
    403   return TableSize;
    404 }
    405 
    406 //===----------------------------------------------------------------------===//
    407 // Emit binary search algorithm as part of the functions used to query
    408 // relation tables.
    409 //===----------------------------------------------------------------------===//
    410 
    411 void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
    412   OS << "  unsigned mid;\n";
    413   OS << "  unsigned start = 0;\n";
    414   OS << "  unsigned end = " << TableSize << ";\n";
    415   OS << "  while (start < end) {\n";
    416   OS << "    mid = start + (end - start)/2;\n";
    417   OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
    418   OS << "      break;\n";
    419   OS << "    }\n";
    420   OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
    421   OS << "      end = mid;\n";
    422   OS << "    else\n";
    423   OS << "      start = mid + 1;\n";
    424   OS << "  }\n";
    425   OS << "  if (start == end)\n";
    426   OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
    427 }
    428 
    429 //===----------------------------------------------------------------------===//
    430 // Emit functions to query relation tables.
    431 //===----------------------------------------------------------------------===//
    432 
    433 void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
    434                                            unsigned TableSize) {
    435 
    436   ListInit *ColFields = InstrMapDesc.getColFields();
    437   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    438 
    439   // Emit binary search algorithm to locate instructions in the
    440   // relation table. If found, return opcode value from the appropriate column
    441   // of the table.
    442   emitBinSearch(OS, TableSize);
    443 
    444   if (ValueCols.size() > 1) {
    445     for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
    446       ListInit *ColumnI = ValueCols[i];
    447       for (unsigned j = 0, ColSize = ColumnI->getSize(); j < ColSize; j++) {
    448         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
    449         OS << "  if (in" << ColName;
    450         OS << " == ";
    451         OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
    452         if (j < ColumnI->getSize() - 1) OS << " && ";
    453         else OS << ")\n";
    454       }
    455       OS << "    return " << InstrMapDesc.getName();
    456       OS << "Table[mid]["<<i+1<<"];\n";
    457     }
    458     OS << "  return -1;";
    459   }
    460   else
    461     OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";
    462 
    463   OS <<"}\n\n";
    464 }
    465 
    466 //===----------------------------------------------------------------------===//
    467 // Emit relation tables and the functions to query them.
    468 //===----------------------------------------------------------------------===//
    469 
    470 void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {
    471 
    472   // Emit function name and the input parameters : mostly opcode value of the
    473   // current instruction. However, if a table has multiple columns (more than 2
    474   // since first column is used for the key instructions), then we also need
    475   // to pass another input to indicate the column to be selected.
    476 
    477   ListInit *ColFields = InstrMapDesc.getColFields();
    478   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    479   OS << "// "<< InstrMapDesc.getName() << "\n";
    480   OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
    481   if (ValueCols.size() > 1) {
    482     for (unsigned i = 0, e = ColFields->getSize(); i < e; i++) {
    483       std::string ColName = ColFields->getElement(i)->getAsUnquotedString();
    484       OS << ", enum " << ColName << " in" << ColName << ") {\n";
    485     }
    486   } else { OS << ") {\n"; }
    487 
    488   // Emit map table.
    489   unsigned TableSize = emitBinSearchTable(OS);
    490 
    491   // Emit rest of the function body.
    492   emitMapFuncBody(OS, TableSize);
    493 }
    494 
    495 //===----------------------------------------------------------------------===//
    496 // Emit enums for the column fields across all the instruction maps.
    497 //===----------------------------------------------------------------------===//
    498 
    499 static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {
    500 
    501   std::vector<Record*> InstrMapVec;
    502   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
    503   std::map<std::string, std::vector<Init*> > ColFieldValueMap;
    504 
    505   // Iterate over all InstrMapping records and create a map between column
    506   // fields and their possible values across all records.
    507   for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
    508     Record *CurMap = InstrMapVec[i];
    509     ListInit *ColFields;
    510     ColFields = CurMap->getValueAsListInit("ColFields");
    511     ListInit *List = CurMap->getValueAsListInit("ValueCols");
    512     std::vector<ListInit*> ValueCols;
    513     unsigned ListSize = List->getSize();
    514 
    515     for (unsigned j = 0; j < ListSize; j++) {
    516       ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j));
    517 
    518       if (ListJ->getSize() != ColFields->getSize())
    519         PrintFatalError("Record `" + CurMap->getName() + "', field "
    520           "`ValueCols' entries don't match with the entries in 'ColFields' !");
    521       ValueCols.push_back(ListJ);
    522     }
    523 
    524     for (unsigned j = 0, endCF = ColFields->getSize(); j < endCF; j++) {
    525       for (unsigned k = 0; k < ListSize; k++){
    526         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
    527         ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
    528       }
    529     }
    530   }
    531 
    532   for (std::map<std::string, std::vector<Init*> >::iterator
    533        II = ColFieldValueMap.begin(), IE = ColFieldValueMap.end();
    534        II != IE; II++) {
    535     std::vector<Init*> FieldValues = (*II).second;
    536 
    537     // Delete duplicate entries from ColFieldValueMap
    538     for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
    539       Init *CurVal = FieldValues[i];
    540       for (unsigned j = i+1; j < FieldValues.size(); j++) {
    541         if (CurVal == FieldValues[j]) {
    542           FieldValues.erase(FieldValues.begin()+j);
    543         }
    544       }
    545     }
    546 
    547     // Emit enumerated values for the column fields.
    548     OS << "enum " << (*II).first << " {\n";
    549     for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
    550       OS << "\t" << (*II).first << "_" << FieldValues[i]->getAsUnquotedString();
    551       if (i != endFV - 1)
    552         OS << ",\n";
    553       else
    554         OS << "\n};\n\n";
    555     }
    556   }
    557 }
    558 
    559 namespace llvm {
    560 //===----------------------------------------------------------------------===//
    561 // Parse 'InstrMapping' records and use the information to form relationship
    562 // between instructions. These relations are emitted as a tables along with the
    563 // functions to query them.
    564 //===----------------------------------------------------------------------===//
    565 void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
    566   CodeGenTarget Target(Records);
    567   std::string TargetName = Target.getName();
    568   std::vector<Record*> InstrMapVec;
    569   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
    570 
    571   if (!InstrMapVec.size())
    572     return;
    573 
    574   OS << "#ifdef GET_INSTRMAP_INFO\n";
    575   OS << "#undef GET_INSTRMAP_INFO\n";
    576   OS << "namespace llvm {\n\n";
    577   OS << "namespace " << TargetName << " {\n\n";
    578 
    579   // Emit coulumn field names and their values as enums.
    580   emitEnums(OS, Records);
    581 
    582   // Iterate over all instruction mapping records and construct relationship
    583   // maps based on the information specified there.
    584   //
    585   for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
    586     MapTableEmitter IMap(Target, Records, InstrMapVec[i]);
    587 
    588     // Build RowInstrMap to group instructions based on their values for
    589     // RowFields. In the process, also collect key instructions into
    590     // KeyInstrVec.
    591     IMap.buildRowInstrMap();
    592 
    593     // Build MapTable to map key instructions with the corresponding column
    594     // instructions.
    595     IMap.buildMapTable();
    596 
    597     // Emit map tables and the functions to query them.
    598     IMap.emitTablesWithFunc(OS);
    599   }
    600   OS << "} // End " << TargetName << " namespace\n";
    601   OS << "} // End llvm namespace\n";
    602   OS << "#endif // GET_INSTRMAP_INFO\n\n";
    603 }
    604 
    605 } // End llvm namespace
    606