Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/ADT/StringMap.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include <utility>
     19 using namespace llvm;
     20 
     21 
     22 /// getRegisterValueType - Look up and return the ValueType of the specified
     23 /// register. If the register is a member of multiple register classes which
     24 /// have different associated types, return MVT::Other.
     25 static MVT::SimpleValueType getRegisterValueType(Record *R,
     26                                                  const CodeGenTarget &T) {
     27   bool FoundRC = false;
     28   MVT::SimpleValueType VT = MVT::Other;
     29   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     30   ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
     31 
     32   for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
     33     const CodeGenRegisterClass &RC = *RCs[rc];
     34     if (!RC.contains(Reg))
     35       continue;
     36 
     37     if (!FoundRC) {
     38       FoundRC = true;
     39       VT = RC.getValueTypeNum(0);
     40       continue;
     41     }
     42 
     43     // If this occurs in multiple register classes, they all have to agree.
     44     assert(VT == RC.getValueTypeNum(0));
     45   }
     46   return VT;
     47 }
     48 
     49 
     50 namespace {
     51   class MatcherGen {
     52     const PatternToMatch &Pattern;
     53     const CodeGenDAGPatterns &CGP;
     54 
     55     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     56     /// out with all of the types removed.  This allows us to insert type checks
     57     /// as we scan the tree.
     58     TreePatternNode *PatWithNoTypes;
     59 
     60     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     61     /// number that they were captured as.  These are biased by 1 to make
     62     /// insertion easier.
     63     StringMap<unsigned> VariableMap;
     64 
     65     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     66     /// the RecordedNodes array, this keeps track of which slot will be next to
     67     /// record into.
     68     unsigned NextRecordedOperandNo;
     69 
     70     /// MatchedChainNodes - This maintains the position in the recorded nodes
     71     /// array of all of the recorded input nodes that have chains.
     72     SmallVector<unsigned, 2> MatchedChainNodes;
     73 
     74     /// MatchedGlueResultNodes - This maintains the position in the recorded
     75     /// nodes array of all of the recorded input nodes that have glue results.
     76     SmallVector<unsigned, 2> MatchedGlueResultNodes;
     77 
     78     /// MatchedComplexPatterns - This maintains a list of all of the
     79     /// ComplexPatterns that we need to check.  The patterns are known to have
     80     /// names which were recorded.  The second element of each pair is the first
     81     /// slot number that the OPC_CheckComplexPat opcode drops the matched
     82     /// results into.
     83     SmallVector<std::pair<const TreePatternNode*,
     84                           unsigned>, 2> MatchedComplexPatterns;
     85 
     86     /// PhysRegInputs - List list has an entry for each explicitly specified
     87     /// physreg input to the pattern.  The first elt is the Register node, the
     88     /// second is the recorded slot number the input pattern match saved it in.
     89     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     90 
     91     /// Matcher - This is the top level of the generated matcher, the result.
     92     Matcher *TheMatcher;
     93 
     94     /// CurPredicate - As we emit matcher nodes, this points to the latest check
     95     /// which should have future checks stuck into its Next position.
     96     Matcher *CurPredicate;
     97   public:
     98     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
     99 
    100     ~MatcherGen() {
    101       delete PatWithNoTypes;
    102     }
    103 
    104     bool EmitMatcherCode(unsigned Variant);
    105     void EmitResultCode();
    106 
    107     Matcher *GetMatcher() const { return TheMatcher; }
    108   private:
    109     void AddMatcher(Matcher *NewNode);
    110     void InferPossibleTypes();
    111 
    112     // Matcher Generation.
    113     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    114     void EmitLeafMatchCode(const TreePatternNode *N);
    115     void EmitOperatorMatchCode(const TreePatternNode *N,
    116                                TreePatternNode *NodeNoTypes);
    117 
    118     // Result Code Generation.
    119     unsigned getNamedArgumentSlot(StringRef Name) {
    120       unsigned VarMapEntry = VariableMap[Name];
    121       assert(VarMapEntry != 0 &&
    122              "Variable referenced but not defined and not caught earlier!");
    123       return VarMapEntry-1;
    124     }
    125 
    126     /// GetInstPatternNode - Get the pattern for an instruction.
    127     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    128                                               const TreePatternNode *N);
    129 
    130     void EmitResultOperand(const TreePatternNode *N,
    131                            SmallVectorImpl<unsigned> &ResultOps);
    132     void EmitResultOfNamedOperand(const TreePatternNode *N,
    133                                   SmallVectorImpl<unsigned> &ResultOps);
    134     void EmitResultLeafAsOperand(const TreePatternNode *N,
    135                                  SmallVectorImpl<unsigned> &ResultOps);
    136     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    137                                         SmallVectorImpl<unsigned> &ResultOps);
    138     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    139                                         SmallVectorImpl<unsigned> &ResultOps);
    140     };
    141 
    142 } // end anon namespace.
    143 
    144 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    145                        const CodeGenDAGPatterns &cgp)
    146 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    147   TheMatcher(0), CurPredicate(0) {
    148   // We need to produce the matcher tree for the patterns source pattern.  To do
    149   // this we need to match the structure as well as the types.  To do the type
    150   // matching, we want to figure out the fewest number of type checks we need to
    151   // emit.  For example, if there is only one integer type supported by a
    152   // target, there should be no type comparisons at all for integer patterns!
    153   //
    154   // To figure out the fewest number of type checks needed, clone the pattern,
    155   // remove the types, then perform type inference on the pattern as a whole.
    156   // If there are unresolved types, emit an explicit check for those types,
    157   // apply the type to the tree, then rerun type inference.  Iterate until all
    158   // types are resolved.
    159   //
    160   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    161   PatWithNoTypes->RemoveAllTypes();
    162 
    163   // If there are types that are manifestly known, infer them.
    164   InferPossibleTypes();
    165 }
    166 
    167 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    168 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    169 /// want to propagate implied types as far throughout the tree as possible so
    170 /// that we avoid doing redundant type checks.  This does the type propagation.
    171 void MatcherGen::InferPossibleTypes() {
    172   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    173   // diagnostics, which we know are impossible at this point.
    174   TreePattern &TP = *CGP.pf_begin()->second;
    175 
    176   bool MadeChange = true;
    177   while (MadeChange)
    178     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    179                                               true/*Ignore reg constraints*/);
    180 }
    181 
    182 
    183 /// AddMatcher - Add a matcher node to the current graph we're building.
    184 void MatcherGen::AddMatcher(Matcher *NewNode) {
    185   if (CurPredicate != 0)
    186     CurPredicate->setNext(NewNode);
    187   else
    188     TheMatcher = NewNode;
    189   CurPredicate = NewNode;
    190 }
    191 
    192 
    193 //===----------------------------------------------------------------------===//
    194 // Pattern Match Generation
    195 //===----------------------------------------------------------------------===//
    196 
    197 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    198 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    199   assert(N->isLeaf() && "Not a leaf?");
    200 
    201   // Direct match against an integer constant.
    202   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    203     // If this is the root of the dag we're matching, we emit a redundant opcode
    204     // check to ensure that this gets folded into the normal top-level
    205     // OpcodeSwitch.
    206     if (N == Pattern.getSrcPattern()) {
    207       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    208       AddMatcher(new CheckOpcodeMatcher(NI));
    209     }
    210 
    211     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    212   }
    213 
    214   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    215   if (DI == 0) {
    216     errs() << "Unknown leaf kind: " << *N << "\n";
    217     abort();
    218   }
    219 
    220   Record *LeafRec = DI->getDef();
    221   if (// Handle register references.  Nothing to do here, they always match.
    222       LeafRec->isSubClassOf("RegisterClass") ||
    223       LeafRec->isSubClassOf("RegisterOperand") ||
    224       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    225       LeafRec->isSubClassOf("SubRegIndex") ||
    226       // Place holder for SRCVALUE nodes. Nothing to do here.
    227       LeafRec->getName() == "srcvalue")
    228     return;
    229 
    230   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    231   // record the register
    232   if (LeafRec->isSubClassOf("Register")) {
    233     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    234                                  NextRecordedOperandNo));
    235     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    236     return;
    237   }
    238 
    239   if (LeafRec->isSubClassOf("ValueType"))
    240     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    241 
    242   if (LeafRec->isSubClassOf("CondCode"))
    243     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    244 
    245   if (LeafRec->isSubClassOf("ComplexPattern")) {
    246     // We can't model ComplexPattern uses that don't have their name taken yet.
    247     // The OPC_CheckComplexPattern operation implicitly records the results.
    248     if (N->getName().empty()) {
    249       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
    250       exit(1);
    251     }
    252 
    253     // Remember this ComplexPattern so that we can emit it after all the other
    254     // structural matches are done.
    255     MatchedComplexPatterns.push_back(std::make_pair(N, 0));
    256     return;
    257   }
    258 
    259   errs() << "Unknown leaf kind: " << *N << "\n";
    260   abort();
    261 }
    262 
    263 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    264                                        TreePatternNode *NodeNoTypes) {
    265   assert(!N->isLeaf() && "Not an operator?");
    266   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    267 
    268   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    269   // a constant without a predicate fn that has more that one bit set, handle
    270   // this as a special case.  This is usually for targets that have special
    271   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    272   // handling stuff).  Using these instructions is often far more efficient
    273   // than materializing the constant.  Unfortunately, both the instcombiner
    274   // and the dag combiner can often infer that bits are dead, and thus drop
    275   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    276   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    277   // to handle this.
    278   if ((N->getOperator()->getName() == "and" ||
    279        N->getOperator()->getName() == "or") &&
    280       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    281       N->getPredicateFns().empty()) {
    282     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    283       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    284         // If this is at the root of the pattern, we emit a redundant
    285         // CheckOpcode so that the following checks get factored properly under
    286         // a single opcode check.
    287         if (N == Pattern.getSrcPattern())
    288           AddMatcher(new CheckOpcodeMatcher(CInfo));
    289 
    290         // Emit the CheckAndImm/CheckOrImm node.
    291         if (N->getOperator()->getName() == "and")
    292           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    293         else
    294           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    295 
    296         // Match the LHS of the AND as appropriate.
    297         AddMatcher(new MoveChildMatcher(0));
    298         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    299         AddMatcher(new MoveParentMatcher());
    300         return;
    301       }
    302     }
    303   }
    304 
    305   // Check that the current opcode lines up.
    306   AddMatcher(new CheckOpcodeMatcher(CInfo));
    307 
    308   // If this node has memory references (i.e. is a load or store), tell the
    309   // interpreter to capture them in the memref array.
    310   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    311     AddMatcher(new RecordMemRefMatcher());
    312 
    313   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    314   // the child numbers of the node are all offset by one.
    315   unsigned OpNo = 0;
    316   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    317     // Record the node and remember it in our chained nodes list.
    318     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    319                                          "' chained node",
    320                                  NextRecordedOperandNo));
    321     // Remember all of the input chains our pattern will match.
    322     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    323 
    324     // Don't look at the input chain when matching the tree pattern to the
    325     // SDNode.
    326     OpNo = 1;
    327 
    328     // If this node is not the root and the subtree underneath it produces a
    329     // chain, then the result of matching the node is also produce a chain.
    330     // Beyond that, this means that we're also folding (at least) the root node
    331     // into the node that produce the chain (for example, matching
    332     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    333     // problematic, if the 'reg' node also uses the load (say, its chain).
    334     // Graphically:
    335     //
    336     //         [LD]
    337     //         ^  ^
    338     //         |  \                              DAG's like cheese.
    339     //        /    |
    340     //       /    [YY]
    341     //       |     ^
    342     //      [XX]--/
    343     //
    344     // It would be invalid to fold XX and LD.  In this case, folding the two
    345     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    346     // To prevent this, we emit a dynamic check for legality before allowing
    347     // this to be folded.
    348     //
    349     const TreePatternNode *Root = Pattern.getSrcPattern();
    350     if (N != Root) {                             // Not the root of the pattern.
    351       // If there is a node between the root and this node, then we definitely
    352       // need to emit the check.
    353       bool NeedCheck = !Root->hasChild(N);
    354 
    355       // If it *is* an immediate child of the root, we can still need a check if
    356       // the root SDNode has multiple inputs.  For us, this means that it is an
    357       // intrinsic, has multiple operands, or has other inputs like chain or
    358       // glue).
    359       if (!NeedCheck) {
    360         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    361         NeedCheck =
    362           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    363           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    364           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    365           PInfo.getNumOperands() > 1 ||
    366           PInfo.hasProperty(SDNPHasChain) ||
    367           PInfo.hasProperty(SDNPInGlue) ||
    368           PInfo.hasProperty(SDNPOptInGlue);
    369       }
    370 
    371       if (NeedCheck)
    372         AddMatcher(new CheckFoldableChainNodeMatcher());
    373     }
    374   }
    375 
    376   // If this node has an output glue and isn't the root, remember it.
    377   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    378       N != Pattern.getSrcPattern()) {
    379     // TODO: This redundantly records nodes with both glues and chains.
    380 
    381     // Record the node and remember it in our chained nodes list.
    382     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    383                                          "' glue output node",
    384                                  NextRecordedOperandNo));
    385     // Remember all of the nodes with output glue our pattern will match.
    386     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
    387   }
    388 
    389   // If this node is known to have an input glue or if it *might* have an input
    390   // glue, capture it as the glue input of the pattern.
    391   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    392       N->NodeHasProperty(SDNPInGlue, CGP))
    393     AddMatcher(new CaptureGlueInputMatcher());
    394 
    395   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    396     // Get the code suitable for matching this child.  Move to the child, check
    397     // it then move back to the parent.
    398     AddMatcher(new MoveChildMatcher(OpNo));
    399     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    400     AddMatcher(new MoveParentMatcher());
    401   }
    402 }
    403 
    404 
    405 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    406                                TreePatternNode *NodeNoTypes) {
    407   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    408   // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
    409   // reinfer any correlated types.
    410   SmallVector<unsigned, 2> ResultsToTypeCheck;
    411 
    412   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    413     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    414     NodeNoTypes->setType(i, N->getExtType(i));
    415     InferPossibleTypes();
    416     ResultsToTypeCheck.push_back(i);
    417   }
    418 
    419   // If this node has a name associated with it, capture it in VariableMap. If
    420   // we already saw this in the pattern, emit code to verify dagness.
    421   if (!N->getName().empty()) {
    422     unsigned &VarMapEntry = VariableMap[N->getName()];
    423     if (VarMapEntry == 0) {
    424       // If it is a named node, we must emit a 'Record' opcode.
    425       AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
    426       VarMapEntry = ++NextRecordedOperandNo;
    427     } else {
    428       // If we get here, this is a second reference to a specific name.  Since
    429       // we already have checked that the first reference is valid, we don't
    430       // have to recursively match it, just check that it's the same as the
    431       // previously named thing.
    432       AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    433       return;
    434     }
    435   }
    436 
    437   if (N->isLeaf())
    438     EmitLeafMatchCode(N);
    439   else
    440     EmitOperatorMatchCode(N, NodeNoTypes);
    441 
    442   // If there are node predicates for this node, generate their checks.
    443   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    444     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    445 
    446   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    447     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    448                                     ResultsToTypeCheck[i]));
    449 }
    450 
    451 /// EmitMatcherCode - Generate the code that matches the predicate of this
    452 /// pattern for the specified Variant.  If the variant is invalid this returns
    453 /// true and does not generate code, if it is valid, it returns false.
    454 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    455   // If the root of the pattern is a ComplexPattern and if it is specified to
    456   // match some number of root opcodes, these are considered to be our variants.
    457   // Depending on which variant we're generating code for, emit the root opcode
    458   // check.
    459   if (const ComplexPattern *CP =
    460                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    461     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    462     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    463     if (Variant >= OpNodes.size()) return true;
    464 
    465     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    466   } else {
    467     if (Variant != 0) return true;
    468   }
    469 
    470   // Emit the matcher for the pattern structure and types.
    471   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    472 
    473   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    474   // feature is around, do the check).
    475   if (!Pattern.getPredicateCheck().empty())
    476     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    477 
    478   // Now that we've completed the structural type match, emit any ComplexPattern
    479   // checks (e.g. addrmode matches).  We emit this after the structural match
    480   // because they are generally more expensive to evaluate and more difficult to
    481   // factor.
    482   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    483     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    484 
    485     // Remember where the results of this match get stuck.
    486     MatchedComplexPatterns[i].second = NextRecordedOperandNo;
    487 
    488     // Get the slot we recorded the value in from the name on the node.
    489     unsigned RecNodeEntry = VariableMap[N->getName()];
    490     assert(!N->getName().empty() && RecNodeEntry &&
    491            "Complex pattern should have a name and slot");
    492     --RecNodeEntry;  // Entries in VariableMap are biased.
    493 
    494     const ComplexPattern &CP =
    495       CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
    496 
    497     // Emit a CheckComplexPat operation, which does the match (aborting if it
    498     // fails) and pushes the matched operands onto the recorded nodes list.
    499     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    500                                           N->getName(), NextRecordedOperandNo));
    501 
    502     // Record the right number of operands.
    503     NextRecordedOperandNo += CP.getNumOperands();
    504     if (CP.hasProperty(SDNPHasChain)) {
    505       // If the complex pattern has a chain, then we need to keep track of the
    506       // fact that we just recorded a chain input.  The chain input will be
    507       // matched as the last operand of the predicate if it was successful.
    508       ++NextRecordedOperandNo; // Chained node operand.
    509 
    510       // It is the last operand recorded.
    511       assert(NextRecordedOperandNo > 1 &&
    512              "Should have recorded input/result chains at least!");
    513       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    514     }
    515 
    516     // TODO: Complex patterns can't have output glues, if they did, we'd want
    517     // to record them.
    518   }
    519 
    520   return false;
    521 }
    522 
    523 
    524 //===----------------------------------------------------------------------===//
    525 // Node Result Generation
    526 //===----------------------------------------------------------------------===//
    527 
    528 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    529                                           SmallVectorImpl<unsigned> &ResultOps){
    530   assert(!N->getName().empty() && "Operand not named!");
    531 
    532   // A reference to a complex pattern gets all of the results of the complex
    533   // pattern's match.
    534   if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
    535     unsigned SlotNo = 0;
    536     for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
    537       if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
    538         SlotNo = MatchedComplexPatterns[i].second;
    539         break;
    540       }
    541     assert(SlotNo != 0 && "Didn't get a slot number assigned?");
    542 
    543     // The first slot entry is the node itself, the subsequent entries are the
    544     // matched values.
    545     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    546       ResultOps.push_back(SlotNo+i);
    547     return;
    548   }
    549 
    550   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    551 
    552   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    553   // version of the immediate so that it doesn't get selected due to some other
    554   // node use.
    555   if (!N->isLeaf()) {
    556     StringRef OperatorName = N->getOperator()->getName();
    557     if (OperatorName == "imm" || OperatorName == "fpimm") {
    558       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    559       ResultOps.push_back(NextRecordedOperandNo++);
    560       return;
    561     }
    562   }
    563 
    564   ResultOps.push_back(SlotNo);
    565 }
    566 
    567 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    568                                          SmallVectorImpl<unsigned> &ResultOps) {
    569   assert(N->isLeaf() && "Must be a leaf");
    570 
    571   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    572     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    573     ResultOps.push_back(NextRecordedOperandNo++);
    574     return;
    575   }
    576 
    577   // If this is an explicit register reference, handle it.
    578   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    579     Record *Def = DI->getDef();
    580     if (Def->isSubClassOf("Register")) {
    581       const CodeGenRegister *Reg =
    582         CGP.getTargetInfo().getRegBank().getReg(Def);
    583       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    584       ResultOps.push_back(NextRecordedOperandNo++);
    585       return;
    586     }
    587 
    588     if (Def->getName() == "zero_reg") {
    589       AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
    590       ResultOps.push_back(NextRecordedOperandNo++);
    591       return;
    592     }
    593 
    594     // Handle a reference to a register class. This is used
    595     // in COPY_TO_SUBREG instructions.
    596     if (Def->isSubClassOf("RegisterOperand"))
    597       Def = Def->getValueAsDef("RegClass");
    598     if (Def->isSubClassOf("RegisterClass")) {
    599       std::string Value = getQualifiedName(Def) + "RegClassID";
    600       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    601       ResultOps.push_back(NextRecordedOperandNo++);
    602       return;
    603     }
    604 
    605     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    606     if (Def->isSubClassOf("SubRegIndex")) {
    607       std::string Value = getQualifiedName(Def);
    608       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    609       ResultOps.push_back(NextRecordedOperandNo++);
    610       return;
    611     }
    612   }
    613 
    614   errs() << "unhandled leaf node: \n";
    615   N->dump();
    616 }
    617 
    618 /// GetInstPatternNode - Get the pattern for an instruction.
    619 ///
    620 const TreePatternNode *MatcherGen::
    621 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    622   const TreePattern *InstPat = Inst.getPattern();
    623 
    624   // FIXME2?: Assume actual pattern comes before "implicit".
    625   TreePatternNode *InstPatNode;
    626   if (InstPat)
    627     InstPatNode = InstPat->getTree(0);
    628   else if (/*isRoot*/ N == Pattern.getDstPattern())
    629     InstPatNode = Pattern.getSrcPattern();
    630   else
    631     return 0;
    632 
    633   if (InstPatNode && !InstPatNode->isLeaf() &&
    634       InstPatNode->getOperator()->getName() == "set")
    635     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    636 
    637   return InstPatNode;
    638 }
    639 
    640 static bool
    641 mayInstNodeLoadOrStore(const TreePatternNode *N,
    642                        const CodeGenDAGPatterns &CGP) {
    643   Record *Op = N->getOperator();
    644   const CodeGenTarget &CGT = CGP.getTargetInfo();
    645   CodeGenInstruction &II = CGT.getInstruction(Op);
    646   return II.mayLoad || II.mayStore;
    647 }
    648 
    649 static unsigned
    650 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    651                            const CodeGenDAGPatterns &CGP) {
    652   if (N->isLeaf())
    653     return 0;
    654 
    655   Record *OpRec = N->getOperator();
    656   if (!OpRec->isSubClassOf("Instruction"))
    657     return 0;
    658 
    659   unsigned Count = 0;
    660   if (mayInstNodeLoadOrStore(N, CGP))
    661     ++Count;
    662 
    663   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    664     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    665 
    666   return Count;
    667 }
    668 
    669 void MatcherGen::
    670 EmitResultInstructionAsOperand(const TreePatternNode *N,
    671                                SmallVectorImpl<unsigned> &OutputOps) {
    672   Record *Op = N->getOperator();
    673   const CodeGenTarget &CGT = CGP.getTargetInfo();
    674   CodeGenInstruction &II = CGT.getInstruction(Op);
    675   const DAGInstruction &Inst = CGP.getInstruction(Op);
    676 
    677   // If we can, get the pattern for the instruction we're generating.  We derive
    678   // a variety of information from this pattern, such as whether it has a chain.
    679   //
    680   // FIXME2: This is extremely dubious for several reasons, not the least of
    681   // which it gives special status to instructions with patterns that Pat<>
    682   // nodes can't duplicate.
    683   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    684 
    685   // NodeHasChain - Whether the instruction node we're creating takes chains.
    686   bool NodeHasChain = InstPatNode &&
    687                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    688 
    689   // Instructions which load and store from memory should have a chain,
    690   // regardless of whether they happen to have an internal pattern saying so.
    691   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
    692       && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    693           II.hasSideEffects))
    694       NodeHasChain = true;
    695 
    696   bool isRoot = N == Pattern.getDstPattern();
    697 
    698   // TreeHasOutGlue - True if this tree has glue.
    699   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    700   if (isRoot) {
    701     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    702     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    703                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    704 
    705     // FIXME2: this is checking the entire pattern, not just the node in
    706     // question, doing this just for the root seems like a total hack.
    707     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    708   }
    709 
    710   // NumResults - This is the number of results produced by the instruction in
    711   // the "outs" list.
    712   unsigned NumResults = Inst.getNumResults();
    713 
    714   // Loop over all of the operands of the instruction pattern, emitting code
    715   // to fill them all in.  The node 'N' usually has number children equal to
    716   // the number of input operands of the instruction.  However, in cases
    717   // where there are predicate operands for an instruction, we need to fill
    718   // in the 'execute always' values.  Match up the node operands to the
    719   // instruction operands to do this.
    720   SmallVector<unsigned, 8> InstOps;
    721   for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
    722        InstOpNo != e; ++InstOpNo) {
    723 
    724     // Determine what to emit for this operand.
    725     Record *OperandNode = II.Operands[InstOpNo].Rec;
    726     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    727         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    728       // This is a predicate or optional def operand; emit the
    729       // 'default ops' operands.
    730       const DAGDefaultOperand &DefaultOp
    731         = CGP.getDefaultOperand(OperandNode);
    732       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    733         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    734       continue;
    735     }
    736 
    737     const TreePatternNode *Child = N->getChild(ChildNo);
    738 
    739     // Otherwise this is a normal operand or a predicate operand without
    740     // 'execute always'; emit it.
    741     unsigned BeforeAddingNumOps = InstOps.size();
    742     EmitResultOperand(Child, InstOps);
    743     assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    744 
    745     // If the operand is an instruction and it produced multiple results, just
    746     // take the first one.
    747     if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    748       InstOps.resize(BeforeAddingNumOps+1);
    749 
    750     ++ChildNo;
    751   }
    752 
    753   // If this node has input glue or explicitly specified input physregs, we
    754   // need to add chained and glued copyfromreg nodes and materialize the glue
    755   // input.
    756   if (isRoot && !PhysRegInputs.empty()) {
    757     // Emit all of the CopyToReg nodes for the input physical registers.  These
    758     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    759     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    760       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    761                                           PhysRegInputs[i].first));
    762     // Even if the node has no other glue inputs, the resultant node must be
    763     // glued to the CopyFromReg nodes we just generated.
    764     TreeHasInGlue = true;
    765   }
    766 
    767   // Result order: node results, chain, glue
    768 
    769   // Determine the result types.
    770   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    771   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    772     ResultVTs.push_back(N->getType(i));
    773 
    774   // If this is the root instruction of a pattern that has physical registers in
    775   // its result pattern, add output VTs for them.  For example, X86 has:
    776   //   (set AL, (mul ...))
    777   // This also handles implicit results like:
    778   //   (implicit EFLAGS)
    779   if (isRoot && !Pattern.getDstRegs().empty()) {
    780     // If the root came from an implicit def in the instruction handling stuff,
    781     // don't re-add it.
    782     Record *HandledReg = 0;
    783     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    784       HandledReg = II.ImplicitDefs[0];
    785 
    786     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    787       Record *Reg = Pattern.getDstRegs()[i];
    788       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    789       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    790     }
    791   }
    792 
    793   // If this is the root of the pattern and the pattern we're matching includes
    794   // a node that is variadic, mark the generated node as variadic so that it
    795   // gets the excess operands from the input DAG.
    796   int NumFixedArityOperands = -1;
    797   if (isRoot &&
    798       (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
    799     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    800 
    801   // If this is the root node and multiple matched nodes in the input pattern
    802   // have MemRefs in them, have the interpreter collect them and plop them onto
    803   // this node. If there is just one node with MemRefs, leave them on that node
    804   // even if it is not the root.
    805   //
    806   // FIXME3: This is actively incorrect for result patterns with multiple
    807   // memory-referencing instructions.
    808   bool PatternHasMemOperands =
    809     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    810 
    811   bool NodeHasMemRefs = false;
    812   if (PatternHasMemOperands) {
    813     unsigned NumNodesThatLoadOrStore =
    814       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    815     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    816                                    NumNodesThatLoadOrStore == 1;
    817     NodeHasMemRefs =
    818       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    819                                              NumNodesThatLoadOrStore != 1));
    820   }
    821 
    822   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    823          "Node has no result");
    824 
    825   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    826                                  ResultVTs.data(), ResultVTs.size(),
    827                                  InstOps.data(), InstOps.size(),
    828                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    829                                  NodeHasMemRefs, NumFixedArityOperands,
    830                                  NextRecordedOperandNo));
    831 
    832   // The non-chain and non-glue results of the newly emitted node get recorded.
    833   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    834     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    835     OutputOps.push_back(NextRecordedOperandNo++);
    836   }
    837 }
    838 
    839 void MatcherGen::
    840 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    841                                SmallVectorImpl<unsigned> &ResultOps) {
    842   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    843 
    844   // Emit the operand.
    845   SmallVector<unsigned, 8> InputOps;
    846 
    847   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    848   // to the SDNodeXForm.  For now we just support one input and one output like
    849   // the old instruction selector.
    850   assert(N->getNumChildren() == 1);
    851   EmitResultOperand(N->getChild(0), InputOps);
    852 
    853   // The input currently must have produced exactly one result.
    854   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    855 
    856   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    857   ResultOps.push_back(NextRecordedOperandNo++);
    858 }
    859 
    860 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    861                                    SmallVectorImpl<unsigned> &ResultOps) {
    862   // This is something selected from the pattern we matched.
    863   if (!N->getName().empty())
    864     return EmitResultOfNamedOperand(N, ResultOps);
    865 
    866   if (N->isLeaf())
    867     return EmitResultLeafAsOperand(N, ResultOps);
    868 
    869   Record *OpRec = N->getOperator();
    870   if (OpRec->isSubClassOf("Instruction"))
    871     return EmitResultInstructionAsOperand(N, ResultOps);
    872   if (OpRec->isSubClassOf("SDNodeXForm"))
    873     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    874   errs() << "Unknown result node to emit code for: " << *N << '\n';
    875   PrintFatalError("Unknown node in result pattern!");
    876 }
    877 
    878 void MatcherGen::EmitResultCode() {
    879   // Patterns that match nodes with (potentially multiple) chain inputs have to
    880   // merge them together into a token factor.  This informs the generated code
    881   // what all the chained nodes are.
    882   if (!MatchedChainNodes.empty())
    883     AddMatcher(new EmitMergeInputChainsMatcher
    884                (MatchedChainNodes.data(), MatchedChainNodes.size()));
    885 
    886   // Codegen the root of the result pattern, capturing the resulting values.
    887   SmallVector<unsigned, 8> Ops;
    888   EmitResultOperand(Pattern.getDstPattern(), Ops);
    889 
    890   // At this point, we have however many values the result pattern produces.
    891   // However, the input pattern might not need all of these.  If there are
    892   // excess values at the end (such as implicit defs of condition codes etc)
    893   // just lop them off.  This doesn't need to worry about glue or chains, just
    894   // explicit results.
    895   //
    896   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    897 
    898   // If the pattern also has (implicit) results, count them as well.
    899   if (!Pattern.getDstRegs().empty()) {
    900     // If the root came from an implicit def in the instruction handling stuff,
    901     // don't re-add it.
    902     Record *HandledReg = 0;
    903     const TreePatternNode *DstPat = Pattern.getDstPattern();
    904     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    905       const CodeGenTarget &CGT = CGP.getTargetInfo();
    906       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    907 
    908       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    909         HandledReg = II.ImplicitDefs[0];
    910     }
    911 
    912     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    913       Record *Reg = Pattern.getDstRegs()[i];
    914       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    915       ++NumSrcResults;
    916     }
    917   }
    918 
    919   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    920   Ops.resize(NumSrcResults);
    921 
    922   // If the matched pattern covers nodes which define a glue result, emit a node
    923   // that tells the matcher about them so that it can update their results.
    924   if (!MatchedGlueResultNodes.empty())
    925     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
    926                                           MatchedGlueResultNodes.size()));
    927 
    928   AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
    929 }
    930 
    931 
    932 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    933 /// the specified variant.  If the variant number is invalid, this returns null.
    934 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    935                                        unsigned Variant,
    936                                        const CodeGenDAGPatterns &CGP) {
    937   MatcherGen Gen(Pattern, CGP);
    938 
    939   // Generate the code for the matcher.
    940   if (Gen.EmitMatcherCode(Variant))
    941     return 0;
    942 
    943   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
    944   // FIXME2: Split result code out to another table, and make the matcher end
    945   // with an "Emit <index>" command.  This allows result generation stuff to be
    946   // shared and factored?
    947 
    948   // If the match succeeds, then we generate Pattern.
    949   Gen.EmitResultCode();
    950 
    951   // Unconditional match.
    952   return Gen.GetMatcher();
    953 }
    954