1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifdef __KERNEL__ 5 #ifndef __ASSEMBLY__ 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/cache.h> 11 #include <linux/threads.h> 12 #include <linux/numa.h> 13 #include <linux/init.h> 14 #include <linux/seqlock.h> 15 #include <linux/nodemask.h> 16 #include <asm/atomic.h> 17 #include <asm/page.h> 18 19 /* Free memory management - zoned buddy allocator. */ 20 #ifndef CONFIG_FORCE_MAX_ZONEORDER 21 #define MAX_ORDER 11 22 #else 23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 24 #endif 25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 26 27 struct free_area { 28 struct list_head free_list; 29 unsigned long nr_free; 30 }; 31 32 struct pglist_data; 33 34 /* 35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 36 * So add a wild amount of padding here to ensure that they fall into separate 37 * cachelines. There are very few zone structures in the machine, so space 38 * consumption is not a concern here. 39 */ 40 #if defined(CONFIG_SMP) 41 struct zone_padding { 42 char x[0]; 43 } ____cacheline_internodealigned_in_smp; 44 #define ZONE_PADDING(name) struct zone_padding name; 45 #else 46 #define ZONE_PADDING(name) 47 #endif 48 49 enum zone_stat_item { 50 NR_ANON_PAGES, /* Mapped anonymous pages */ 51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 52 only modified from process context */ 53 NR_FILE_PAGES, 54 NR_SLAB, /* Pages used by slab allocator */ 55 NR_PAGETABLE, /* used for pagetables */ 56 NR_FILE_DIRTY, 57 NR_WRITEBACK, 58 NR_UNSTABLE_NFS, /* NFS unstable pages */ 59 NR_BOUNCE, 60 #ifdef CONFIG_NUMA 61 NUMA_HIT, /* allocated in intended node */ 62 NUMA_MISS, /* allocated in non intended node */ 63 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 64 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 65 NUMA_LOCAL, /* allocation from local node */ 66 NUMA_OTHER, /* allocation from other node */ 67 #endif 68 NR_VM_ZONE_STAT_ITEMS }; 69 70 struct per_cpu_pages { 71 int count; /* number of pages in the list */ 72 int high; /* high watermark, emptying needed */ 73 int batch; /* chunk size for buddy add/remove */ 74 struct list_head list; /* the list of pages */ 75 }; 76 77 struct per_cpu_pageset { 78 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 79 #ifdef CONFIG_SMP 80 s8 stat_threshold; 81 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 82 #endif 83 } ____cacheline_aligned_in_smp; 84 85 #ifdef CONFIG_NUMA 86 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 87 #else 88 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 89 #endif 90 91 #define ZONE_DMA 0 92 #define ZONE_DMA32 1 93 #define ZONE_NORMAL 2 94 #define ZONE_HIGHMEM 3 95 96 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */ 97 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ 98 99 100 /* 101 * When a memory allocation must conform to specific limitations (such 102 * as being suitable for DMA) the caller will pass in hints to the 103 * allocator in the gfp_mask, in the zone modifier bits. These bits 104 * are used to select a priority ordered list of memory zones which 105 * match the requested limits. GFP_ZONEMASK defines which bits within 106 * the gfp_mask should be considered as zone modifiers. Each valid 107 * combination of the zone modifier bits has a corresponding list 108 * of zones (in node_zonelists). Thus for two zone modifiers there 109 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will 110 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible 111 * combinations of zone modifiers in "zone modifier space". 112 * 113 * As an optimisation any zone modifier bits which are only valid when 114 * no other zone modifier bits are set (loners) should be placed in 115 * the highest order bits of this field. This allows us to reduce the 116 * extent of the zonelists thus saving space. For example in the case 117 * of three zone modifier bits, we could require up to eight zonelists. 118 * If the left most zone modifier is a "loner" then the highest valid 119 * zonelist would be four allowing us to allocate only five zonelists. 120 * Use the first form for GFP_ZONETYPES when the left most bit is not 121 * a "loner", otherwise use the second. 122 * 123 * NOTE! Make sure this matches the zones in <linux/gfp.h> 124 */ 125 #define GFP_ZONEMASK 0x07 126 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */ 127 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */ 128 129 /* 130 * On machines where it is needed (eg PCs) we divide physical memory 131 * into multiple physical zones. On a 32bit PC we have 4 zones: 132 * 133 * ZONE_DMA < 16 MB ISA DMA capable memory 134 * ZONE_DMA32 0 MB Empty 135 * ZONE_NORMAL 16-896 MB direct mapped by the kernel 136 * ZONE_HIGHMEM > 896 MB only page cache and user processes 137 */ 138 139 struct zone { 140 /* Fields commonly accessed by the page allocator */ 141 unsigned long free_pages; 142 unsigned long pages_min, pages_low, pages_high; 143 /* 144 * We don't know if the memory that we're going to allocate will be freeable 145 * or/and it will be released eventually, so to avoid totally wasting several 146 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 147 * to run OOM on the lower zones despite there's tons of freeable ram 148 * on the higher zones). This array is recalculated at runtime if the 149 * sysctl_lowmem_reserve_ratio sysctl changes. 150 */ 151 unsigned long lowmem_reserve[MAX_NR_ZONES]; 152 153 #ifdef CONFIG_NUMA 154 /* 155 * zone reclaim becomes active if more unmapped pages exist. 156 */ 157 unsigned long min_unmapped_ratio; 158 struct per_cpu_pageset *pageset[NR_CPUS]; 159 #else 160 struct per_cpu_pageset pageset[NR_CPUS]; 161 #endif 162 /* 163 * free areas of different sizes 164 */ 165 spinlock_t lock; 166 #ifdef CONFIG_MEMORY_HOTPLUG 167 /* see spanned/present_pages for more description */ 168 seqlock_t span_seqlock; 169 #endif 170 struct free_area free_area[MAX_ORDER]; 171 172 173 ZONE_PADDING(_pad1_) 174 175 /* Fields commonly accessed by the page reclaim scanner */ 176 spinlock_t lru_lock; 177 struct list_head active_list; 178 struct list_head inactive_list; 179 unsigned long nr_scan_active; 180 unsigned long nr_scan_inactive; 181 unsigned long nr_active; 182 unsigned long nr_inactive; 183 unsigned long pages_scanned; /* since last reclaim */ 184 int all_unreclaimable; /* All pages pinned */ 185 186 /* A count of how many reclaimers are scanning this zone */ 187 atomic_t reclaim_in_progress; 188 189 /* Zone statistics */ 190 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 191 192 /* 193 * prev_priority holds the scanning priority for this zone. It is 194 * defined as the scanning priority at which we achieved our reclaim 195 * target at the previous try_to_free_pages() or balance_pgdat() 196 * invokation. 197 * 198 * We use prev_priority as a measure of how much stress page reclaim is 199 * under - it drives the swappiness decision: whether to unmap mapped 200 * pages. 201 * 202 * temp_priority is used to remember the scanning priority at which 203 * this zone was successfully refilled to free_pages == pages_high. 204 * 205 * Access to both these fields is quite racy even on uniprocessor. But 206 * it is expected to average out OK. 207 */ 208 int temp_priority; 209 int prev_priority; 210 211 212 ZONE_PADDING(_pad2_) 213 /* Rarely used or read-mostly fields */ 214 215 /* 216 * wait_table -- the array holding the hash table 217 * wait_table_hash_nr_entries -- the size of the hash table array 218 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 219 * 220 * The purpose of all these is to keep track of the people 221 * waiting for a page to become available and make them 222 * runnable again when possible. The trouble is that this 223 * consumes a lot of space, especially when so few things 224 * wait on pages at a given time. So instead of using 225 * per-page waitqueues, we use a waitqueue hash table. 226 * 227 * The bucket discipline is to sleep on the same queue when 228 * colliding and wake all in that wait queue when removing. 229 * When something wakes, it must check to be sure its page is 230 * truly available, a la thundering herd. The cost of a 231 * collision is great, but given the expected load of the 232 * table, they should be so rare as to be outweighed by the 233 * benefits from the saved space. 234 * 235 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 236 * primary users of these fields, and in mm/page_alloc.c 237 * free_area_init_core() performs the initialization of them. 238 */ 239 wait_queue_head_t * wait_table; 240 unsigned long wait_table_hash_nr_entries; 241 unsigned long wait_table_bits; 242 243 /* 244 * Discontig memory support fields. 245 */ 246 struct pglist_data *zone_pgdat; 247 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 248 unsigned long zone_start_pfn; 249 250 /* 251 * zone_start_pfn, spanned_pages and present_pages are all 252 * protected by span_seqlock. It is a seqlock because it has 253 * to be read outside of zone->lock, and it is done in the main 254 * allocator path. But, it is written quite infrequently. 255 * 256 * The lock is declared along with zone->lock because it is 257 * frequently read in proximity to zone->lock. It's good to 258 * give them a chance of being in the same cacheline. 259 */ 260 unsigned long spanned_pages; /* total size, including holes */ 261 unsigned long present_pages; /* amount of memory (excluding holes) */ 262 263 /* 264 * rarely used fields: 265 */ 266 char *name; 267 } ____cacheline_internodealigned_in_smp; 268 269 270 /* 271 * The "priority" of VM scanning is how much of the queues we will scan in one 272 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 273 * queues ("queue_length >> 12") during an aging round. 274 */ 275 #define DEF_PRIORITY 12 276 277 /* 278 * One allocation request operates on a zonelist. A zonelist 279 * is a list of zones, the first one is the 'goal' of the 280 * allocation, the other zones are fallback zones, in decreasing 281 * priority. 282 * 283 * Right now a zonelist takes up less than a cacheline. We never 284 * modify it apart from boot-up, and only a few indices are used, 285 * so despite the zonelist table being relatively big, the cache 286 * footprint of this construct is very small. 287 */ 288 struct zonelist { 289 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited 290 }; 291 292 293 /* 294 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 295 * (mostly NUMA machines?) to denote a higher-level memory zone than the 296 * zone denotes. 297 * 298 * On NUMA machines, each NUMA node would have a pg_data_t to describe 299 * it's memory layout. 300 * 301 * Memory statistics and page replacement data structures are maintained on a 302 * per-zone basis. 303 */ 304 struct bootmem_data; 305 typedef struct pglist_data { 306 struct zone node_zones[MAX_NR_ZONES]; 307 struct zonelist node_zonelists[GFP_ZONETYPES]; 308 int nr_zones; 309 #ifdef CONFIG_FLAT_NODE_MEM_MAP 310 struct page *node_mem_map; 311 #endif 312 struct bootmem_data *bdata; 313 #ifdef CONFIG_MEMORY_HOTPLUG 314 /* 315 * Must be held any time you expect node_start_pfn, node_present_pages 316 * or node_spanned_pages stay constant. Holding this will also 317 * guarantee that any pfn_valid() stays that way. 318 * 319 * Nests above zone->lock and zone->size_seqlock. 320 */ 321 spinlock_t node_size_lock; 322 #endif 323 unsigned long node_start_pfn; 324 unsigned long node_present_pages; /* total number of physical pages */ 325 unsigned long node_spanned_pages; /* total size of physical page 326 range, including holes */ 327 int node_id; 328 wait_queue_head_t kswapd_wait; 329 struct task_struct *kswapd; 330 int kswapd_max_order; 331 } pg_data_t; 332 333 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 334 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 335 #ifdef CONFIG_FLAT_NODE_MEM_MAP 336 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 337 #else 338 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 339 #endif 340 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 341 342 #include <linux/memory_hotplug.h> 343 344 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 345 unsigned long *free, struct pglist_data *pgdat); 346 void get_zone_counts(unsigned long *active, unsigned long *inactive, 347 unsigned long *free); 348 void build_all_zonelists(void); 349 void wakeup_kswapd(struct zone *zone, int order); 350 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 351 int classzone_idx, int alloc_flags); 352 353 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 354 unsigned long size); 355 356 #ifdef CONFIG_HAVE_MEMORY_PRESENT 357 void memory_present(int nid, unsigned long start, unsigned long end); 358 #else 359 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 360 #endif 361 362 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 363 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 364 #endif 365 366 /* 367 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 368 */ 369 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 370 371 static inline int populated_zone(struct zone *zone) 372 { 373 return (!!zone->present_pages); 374 } 375 376 static inline int is_highmem_idx(int idx) 377 { 378 return (idx == ZONE_HIGHMEM); 379 } 380 381 static inline int is_normal_idx(int idx) 382 { 383 return (idx == ZONE_NORMAL); 384 } 385 386 /** 387 * is_highmem - helper function to quickly check if a struct zone is a 388 * highmem zone or not. This is an attempt to keep references 389 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 390 * @zone - pointer to struct zone variable 391 */ 392 static inline int is_highmem(struct zone *zone) 393 { 394 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 395 } 396 397 static inline int is_normal(struct zone *zone) 398 { 399 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 400 } 401 402 static inline int is_dma32(struct zone *zone) 403 { 404 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 405 } 406 407 static inline int is_dma(struct zone *zone) 408 { 409 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 410 } 411 412 /* These two functions are used to setup the per zone pages min values */ 413 struct ctl_table; 414 struct file; 415 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 416 void __user *, size_t *, loff_t *); 417 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 418 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 419 void __user *, size_t *, loff_t *); 420 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 421 void __user *, size_t *, loff_t *); 422 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 423 struct file *, void __user *, size_t *, loff_t *); 424 425 #include <linux/topology.h> 426 /* Returns the number of the current Node. */ 427 #ifndef numa_node_id 428 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 429 #endif 430 431 #ifndef CONFIG_NEED_MULTIPLE_NODES 432 433 extern struct pglist_data contig_page_data; 434 #define NODE_DATA(nid) (&contig_page_data) 435 #define NODE_MEM_MAP(nid) mem_map 436 #define MAX_NODES_SHIFT 1 437 438 #else /* CONFIG_NEED_MULTIPLE_NODES */ 439 440 #include <asm/mmzone.h> 441 442 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 443 444 extern struct pglist_data *first_online_pgdat(void); 445 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 446 extern struct zone *next_zone(struct zone *zone); 447 448 /** 449 * for_each_pgdat - helper macro to iterate over all nodes 450 * @pgdat - pointer to a pg_data_t variable 451 */ 452 #define for_each_online_pgdat(pgdat) \ 453 for (pgdat = first_online_pgdat(); \ 454 pgdat; \ 455 pgdat = next_online_pgdat(pgdat)) 456 /** 457 * for_each_zone - helper macro to iterate over all memory zones 458 * @zone - pointer to struct zone variable 459 * 460 * The user only needs to declare the zone variable, for_each_zone 461 * fills it in. 462 */ 463 #define for_each_zone(zone) \ 464 for (zone = (first_online_pgdat())->node_zones; \ 465 zone; \ 466 zone = next_zone(zone)) 467 468 #ifdef CONFIG_SPARSEMEM 469 #include <asm/sparsemem.h> 470 #endif 471 472 #if BITS_PER_LONG == 32 473 /* 474 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 475 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 476 */ 477 #define FLAGS_RESERVED 9 478 479 #elif BITS_PER_LONG == 64 480 /* 481 * with 64 bit flags field, there's plenty of room. 482 */ 483 #define FLAGS_RESERVED 32 484 485 #else 486 487 #error BITS_PER_LONG not defined 488 489 #endif 490 491 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 492 #define early_pfn_to_nid(nid) (0UL) 493 #endif 494 495 #ifdef CONFIG_FLATMEM 496 #define pfn_to_nid(pfn) (0) 497 #endif 498 499 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 500 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 501 502 #ifdef CONFIG_SPARSEMEM 503 504 /* 505 * SECTION_SHIFT #bits space required to store a section # 506 * 507 * PA_SECTION_SHIFT physical address to/from section number 508 * PFN_SECTION_SHIFT pfn to/from section number 509 */ 510 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 511 512 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 513 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 514 515 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 516 517 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 518 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 519 520 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 521 #error Allocator MAX_ORDER exceeds SECTION_SIZE 522 #endif 523 524 struct page; 525 struct mem_section { 526 /* 527 * This is, logically, a pointer to an array of struct 528 * pages. However, it is stored with some other magic. 529 * (see sparse.c::sparse_init_one_section()) 530 * 531 * Additionally during early boot we encode node id of 532 * the location of the section here to guide allocation. 533 * (see sparse.c::memory_present()) 534 * 535 * Making it a UL at least makes someone do a cast 536 * before using it wrong. 537 */ 538 unsigned long section_mem_map; 539 }; 540 541 #ifdef CONFIG_SPARSEMEM_EXTREME 542 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 543 #else 544 #define SECTIONS_PER_ROOT 1 545 #endif 546 547 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 548 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 549 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 550 551 #ifdef CONFIG_SPARSEMEM_EXTREME 552 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 553 #else 554 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 555 #endif 556 557 static inline struct mem_section *__nr_to_section(unsigned long nr) 558 { 559 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 560 return NULL; 561 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 562 } 563 extern int __section_nr(struct mem_section* ms); 564 565 /* 566 * We use the lower bits of the mem_map pointer to store 567 * a little bit of information. There should be at least 568 * 3 bits here due to 32-bit alignment. 569 */ 570 #define SECTION_MARKED_PRESENT (1UL<<0) 571 #define SECTION_HAS_MEM_MAP (1UL<<1) 572 #define SECTION_MAP_LAST_BIT (1UL<<2) 573 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 574 #define SECTION_NID_SHIFT 2 575 576 static inline struct page *__section_mem_map_addr(struct mem_section *section) 577 { 578 unsigned long map = section->section_mem_map; 579 map &= SECTION_MAP_MASK; 580 return (struct page *)map; 581 } 582 583 static inline int valid_section(struct mem_section *section) 584 { 585 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 586 } 587 588 static inline int section_has_mem_map(struct mem_section *section) 589 { 590 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 591 } 592 593 static inline int valid_section_nr(unsigned long nr) 594 { 595 return valid_section(__nr_to_section(nr)); 596 } 597 598 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 599 { 600 return __nr_to_section(pfn_to_section_nr(pfn)); 601 } 602 603 static inline int pfn_valid(unsigned long pfn) 604 { 605 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 606 return 0; 607 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 608 } 609 610 /* 611 * These are _only_ used during initialisation, therefore they 612 * can use __initdata ... They could have names to indicate 613 * this restriction. 614 */ 615 #ifdef CONFIG_NUMA 616 #define pfn_to_nid(pfn) \ 617 ({ \ 618 unsigned long __pfn_to_nid_pfn = (pfn); \ 619 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 620 }) 621 #else 622 #define pfn_to_nid(pfn) (0) 623 #endif 624 625 #define early_pfn_valid(pfn) pfn_valid(pfn) 626 void sparse_init(void); 627 #else 628 #define sparse_init() do {} while (0) 629 #define sparse_index_init(_sec, _nid) do {} while (0) 630 #endif /* CONFIG_SPARSEMEM */ 631 632 #ifndef early_pfn_valid 633 #define early_pfn_valid(pfn) (1) 634 #endif 635 636 void memory_present(int nid, unsigned long start, unsigned long end); 637 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 638 639 #endif /* !__ASSEMBLY__ */ 640 #endif /* __KERNEL__ */ 641 #endif /* _LINUX_MMZONE_H */ 642