Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the DAG Matcher optimizer.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel-opt"
     15 #include "DAGISelMatcher.h"
     16 #include "CodeGenDAGPatterns.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/StringSet.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 using namespace llvm;
     22 
     23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
     24 /// into single compound nodes like RecordChild.
     25 static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
     26                           const CodeGenDAGPatterns &CGP) {
     27   // If we reached the end of the chain, we're done.
     28   Matcher *N = MatcherPtr.get();
     29   if (N == 0) return;
     30 
     31   // If we have a scope node, walk down all of the children.
     32   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
     33     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
     34       OwningPtr<Matcher> Child(Scope->takeChild(i));
     35       ContractNodes(Child, CGP);
     36       Scope->resetChild(i, Child.take());
     37     }
     38     return;
     39   }
     40 
     41   // If we found a movechild node with a node that comes in a 'foochild' form,
     42   // transform it.
     43   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
     44     Matcher *New = 0;
     45     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
     46       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
     47         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
     48                                      RM->getResultNo());
     49 
     50     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
     51       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
     52           CT->getResNo() == 0)     // CheckChildType checks res #0
     53         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
     54 
     55     if (New) {
     56       // Insert the new node.
     57       New->setNext(MatcherPtr.take());
     58       MatcherPtr.reset(New);
     59       // Remove the old one.
     60       MC->setNext(MC->getNext()->takeNext());
     61       return ContractNodes(MatcherPtr, CGP);
     62     }
     63   }
     64 
     65   // Zap movechild -> moveparent.
     66   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
     67     if (MoveParentMatcher *MP =
     68           dyn_cast<MoveParentMatcher>(MC->getNext())) {
     69       MatcherPtr.reset(MP->takeNext());
     70       return ContractNodes(MatcherPtr, CGP);
     71     }
     72 
     73   // Turn EmitNode->MarkFlagResults->CompleteMatch into
     74   // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
     75   // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
     76   // to the root of the pattern.
     77   if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
     78       isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
     79     // Unlink the two nodes from the list.
     80     Matcher *EmitNode = MatcherPtr.take();
     81     Matcher *MFR = EmitNode->takeNext();
     82     Matcher *Tail = MFR->takeNext();
     83 
     84     // Relink them.
     85     MatcherPtr.reset(MFR);
     86     MFR->setNext(EmitNode);
     87     EmitNode->setNext(Tail);
     88     return ContractNodes(MatcherPtr, CGP);
     89   }
     90 
     91   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
     92   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
     93     if (CompleteMatchMatcher *CM =
     94           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
     95       // We can only use MorphNodeTo if the result values match up.
     96       unsigned RootResultFirst = EN->getFirstResultSlot();
     97       bool ResultsMatch = true;
     98       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
     99         if (CM->getResult(i) != RootResultFirst+i)
    100           ResultsMatch = false;
    101 
    102       // If the selected node defines a subset of the glue/chain results, we
    103       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
    104       // matched pattern has a chain but the root node doesn't.
    105       const PatternToMatch &Pattern = CM->getPattern();
    106 
    107       if (!EN->hasChain() &&
    108           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
    109         ResultsMatch = false;
    110 
    111       // If the matched node has glue and the output root doesn't, we can't
    112       // use MorphNodeTo.
    113       //
    114       // NOTE: Strictly speaking, we don't have to check for glue here
    115       // because the code in the pattern generator doesn't handle it right.  We
    116       // do it anyway for thoroughness.
    117       if (!EN->hasOutFlag() &&
    118           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
    119         ResultsMatch = false;
    120 
    121 
    122       // If the root result node defines more results than the source root node
    123       // *and* has a chain or glue input, then we can't match it because it
    124       // would end up replacing the extra result with the chain/glue.
    125 #if 0
    126       if ((EN->hasGlue() || EN->hasChain()) &&
    127           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
    128         ResultMatch = false;
    129 #endif
    130 
    131       if (ResultsMatch) {
    132         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
    133         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
    134         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
    135                                                 VTs.data(), VTs.size(),
    136                                                 Operands.data(),Operands.size(),
    137                                                 EN->hasChain(), EN->hasInFlag(),
    138                                                 EN->hasOutFlag(),
    139                                                 EN->hasMemRefs(),
    140                                                 EN->getNumFixedArityOperands(),
    141                                                 Pattern));
    142         return;
    143       }
    144 
    145       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
    146       // variants.
    147     }
    148 
    149   ContractNodes(N->getNextPtr(), CGP);
    150 
    151 
    152   // If we have a CheckType/CheckChildType/Record node followed by a
    153   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
    154   // before type checks, as this opens opportunities for factoring on targets
    155   // like X86 where many operations are valid on multiple types.
    156   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
    157        isa<RecordMatcher>(N)) &&
    158       isa<CheckOpcodeMatcher>(N->getNext())) {
    159     // Unlink the two nodes from the list.
    160     Matcher *CheckType = MatcherPtr.take();
    161     Matcher *CheckOpcode = CheckType->takeNext();
    162     Matcher *Tail = CheckOpcode->takeNext();
    163 
    164     // Relink them.
    165     MatcherPtr.reset(CheckOpcode);
    166     CheckOpcode->setNext(CheckType);
    167     CheckType->setNext(Tail);
    168     return ContractNodes(MatcherPtr, CGP);
    169   }
    170 }
    171 
    172 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
    173 /// the matching tree.  The generator dumps them at the top level of the pattern
    174 /// though, which prevents factoring from being able to see past them.  This
    175 /// optimization sinks them as far down into the pattern as possible.
    176 ///
    177 /// Conceptually, we'd like to sink these predicates all the way to the last
    178 /// matcher predicate in the series.  However, it turns out that some
    179 /// ComplexPatterns have side effects on the graph, so we really don't want to
    180 /// run a the complex pattern if the pattern predicate will fail.  For this
    181 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
    182 ///
    183 static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
    184   // Recursively scan for a PatternPredicate.
    185   // If we reached the end of the chain, we're done.
    186   Matcher *N = MatcherPtr.get();
    187   if (N == 0) return;
    188 
    189   // Walk down all members of a scope node.
    190   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
    191     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
    192       OwningPtr<Matcher> Child(Scope->takeChild(i));
    193       SinkPatternPredicates(Child);
    194       Scope->resetChild(i, Child.take());
    195     }
    196     return;
    197   }
    198 
    199   // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
    200   // we find one.
    201   CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
    202   if (CPPM == 0)
    203     return SinkPatternPredicates(N->getNextPtr());
    204 
    205   // Ok, we found one, lets try to sink it. Check if we can sink it past the
    206   // next node in the chain.  If not, we won't be able to change anything and
    207   // might as well bail.
    208   if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
    209     return;
    210 
    211   // Okay, we know we can sink it past at least one node.  Unlink it from the
    212   // chain and scan for the new insertion point.
    213   MatcherPtr.take();  // Don't delete CPPM.
    214   MatcherPtr.reset(CPPM->takeNext());
    215 
    216   N = MatcherPtr.get();
    217   while (N->getNext()->isSafeToReorderWithPatternPredicate())
    218     N = N->getNext();
    219 
    220   // At this point, we want to insert CPPM after N.
    221   CPPM->setNext(N->takeNext());
    222   N->setNext(CPPM);
    223 }
    224 
    225 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
    226 /// specified kind.  Return null if we didn't find one otherwise return the
    227 /// matcher.
    228 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
    229   for (; M; M = M->getNext())
    230     if (M->getKind() == Kind)
    231       return M;
    232   return 0;
    233 }
    234 
    235 
    236 /// FactorNodes - Turn matches like this:
    237 ///   Scope
    238 ///     OPC_CheckType i32
    239 ///       ABC
    240 ///     OPC_CheckType i32
    241 ///       XYZ
    242 /// into:
    243 ///   OPC_CheckType i32
    244 ///     Scope
    245 ///       ABC
    246 ///       XYZ
    247 ///
    248 static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
    249   // If we reached the end of the chain, we're done.
    250   Matcher *N = MatcherPtr.get();
    251   if (N == 0) return;
    252 
    253   // If this is not a push node, just scan for one.
    254   ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
    255   if (Scope == 0)
    256     return FactorNodes(N->getNextPtr());
    257 
    258   // Okay, pull together the children of the scope node into a vector so we can
    259   // inspect it more easily.  While we're at it, bucket them up by the hash
    260   // code of their first predicate.
    261   SmallVector<Matcher*, 32> OptionsToMatch;
    262 
    263   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
    264     // Factor the subexpression.
    265     OwningPtr<Matcher> Child(Scope->takeChild(i));
    266     FactorNodes(Child);
    267 
    268     if (Matcher *N = Child.take())
    269       OptionsToMatch.push_back(N);
    270   }
    271 
    272   SmallVector<Matcher*, 32> NewOptionsToMatch;
    273 
    274   // Loop over options to match, merging neighboring patterns with identical
    275   // starting nodes into a shared matcher.
    276   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
    277     // Find the set of matchers that start with this node.
    278     Matcher *Optn = OptionsToMatch[OptionIdx++];
    279 
    280     if (OptionIdx == e) {
    281       NewOptionsToMatch.push_back(Optn);
    282       continue;
    283     }
    284 
    285     // See if the next option starts with the same matcher.  If the two
    286     // neighbors *do* start with the same matcher, we can factor the matcher out
    287     // of at least these two patterns.  See what the maximal set we can merge
    288     // together is.
    289     SmallVector<Matcher*, 8> EqualMatchers;
    290     EqualMatchers.push_back(Optn);
    291 
    292     // Factor all of the known-equal matchers after this one into the same
    293     // group.
    294     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
    295       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
    296 
    297     // If we found a non-equal matcher, see if it is contradictory with the
    298     // current node.  If so, we know that the ordering relation between the
    299     // current sets of nodes and this node don't matter.  Look past it to see if
    300     // we can merge anything else into this matching group.
    301     unsigned Scan = OptionIdx;
    302     while (1) {
    303       // If we ran out of stuff to scan, we're done.
    304       if (Scan == e) break;
    305 
    306       Matcher *ScanMatcher = OptionsToMatch[Scan];
    307 
    308       // If we found an entry that matches out matcher, merge it into the set to
    309       // handle.
    310       if (Optn->isEqual(ScanMatcher)) {
    311         // If is equal after all, add the option to EqualMatchers and remove it
    312         // from OptionsToMatch.
    313         EqualMatchers.push_back(ScanMatcher);
    314         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
    315         --e;
    316         continue;
    317       }
    318 
    319       // If the option we're checking for contradicts the start of the list,
    320       // skip over it.
    321       if (Optn->isContradictory(ScanMatcher)) {
    322         ++Scan;
    323         continue;
    324       }
    325 
    326       // If we're scanning for a simple node, see if it occurs later in the
    327       // sequence.  If so, and if we can move it up, it might be contradictory
    328       // or the same as what we're looking for.  If so, reorder it.
    329       if (Optn->isSimplePredicateOrRecordNode()) {
    330         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
    331         if (M2 != 0 && M2 != ScanMatcher &&
    332             M2->canMoveBefore(ScanMatcher) &&
    333             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
    334           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
    335           M2->setNext(MatcherWithoutM2);
    336           OptionsToMatch[Scan] = M2;
    337           continue;
    338         }
    339       }
    340 
    341       // Otherwise, we don't know how to handle this entry, we have to bail.
    342       break;
    343     }
    344 
    345     if (Scan != e &&
    346         // Don't print it's obvious nothing extra could be merged anyway.
    347         Scan+1 != e) {
    348       DEBUG(errs() << "Couldn't merge this:\n";
    349             Optn->print(errs(), 4);
    350             errs() << "into this:\n";
    351             OptionsToMatch[Scan]->print(errs(), 4);
    352             if (Scan+1 != e)
    353               OptionsToMatch[Scan+1]->printOne(errs());
    354             if (Scan+2 < e)
    355               OptionsToMatch[Scan+2]->printOne(errs());
    356             errs() << "\n");
    357     }
    358 
    359     // If we only found one option starting with this matcher, no factoring is
    360     // possible.
    361     if (EqualMatchers.size() == 1) {
    362       NewOptionsToMatch.push_back(EqualMatchers[0]);
    363       continue;
    364     }
    365 
    366     // Factor these checks by pulling the first node off each entry and
    367     // discarding it.  Take the first one off the first entry to reuse.
    368     Matcher *Shared = Optn;
    369     Optn = Optn->takeNext();
    370     EqualMatchers[0] = Optn;
    371 
    372     // Remove and delete the first node from the other matchers we're factoring.
    373     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
    374       Matcher *Tmp = EqualMatchers[i]->takeNext();
    375       delete EqualMatchers[i];
    376       EqualMatchers[i] = Tmp;
    377     }
    378 
    379     Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
    380 
    381     // Recursively factor the newly created node.
    382     FactorNodes(Shared->getNextPtr());
    383 
    384     NewOptionsToMatch.push_back(Shared);
    385   }
    386 
    387   // If we're down to a single pattern to match, then we don't need this scope
    388   // anymore.
    389   if (NewOptionsToMatch.size() == 1) {
    390     MatcherPtr.reset(NewOptionsToMatch[0]);
    391     return;
    392   }
    393 
    394   if (NewOptionsToMatch.empty()) {
    395     MatcherPtr.reset(0);
    396     return;
    397   }
    398 
    399   // If our factoring failed (didn't achieve anything) see if we can simplify in
    400   // other ways.
    401 
    402   // Check to see if all of the leading entries are now opcode checks.  If so,
    403   // we can convert this Scope to be a OpcodeSwitch instead.
    404   bool AllOpcodeChecks = true, AllTypeChecks = true;
    405   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    406     // Check to see if this breaks a series of CheckOpcodeMatchers.
    407     if (AllOpcodeChecks &&
    408         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
    409 #if 0
    410       if (i > 3) {
    411         errs() << "FAILING OPC #" << i << "\n";
    412         NewOptionsToMatch[i]->dump();
    413       }
    414 #endif
    415       AllOpcodeChecks = false;
    416     }
    417 
    418     // Check to see if this breaks a series of CheckTypeMatcher's.
    419     if (AllTypeChecks) {
    420       CheckTypeMatcher *CTM =
    421         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
    422                                                         Matcher::CheckType));
    423       if (CTM == 0 ||
    424           // iPTR checks could alias any other case without us knowing, don't
    425           // bother with them.
    426           CTM->getType() == MVT::iPTR ||
    427           // SwitchType only works for result #0.
    428           CTM->getResNo() != 0 ||
    429           // If the CheckType isn't at the start of the list, see if we can move
    430           // it there.
    431           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
    432 #if 0
    433         if (i > 3 && AllTypeChecks) {
    434           errs() << "FAILING TYPE #" << i << "\n";
    435           NewOptionsToMatch[i]->dump();
    436         }
    437 #endif
    438         AllTypeChecks = false;
    439       }
    440     }
    441   }
    442 
    443   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
    444   if (AllOpcodeChecks) {
    445     StringSet<> Opcodes;
    446     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
    447     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    448       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
    449       assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
    450              "Duplicate opcodes not factored?");
    451       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
    452     }
    453 
    454     MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
    455     return;
    456   }
    457 
    458   // If all the options are CheckType's, we can form the SwitchType, woot.
    459   if (AllTypeChecks) {
    460     DenseMap<unsigned, unsigned> TypeEntry;
    461     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
    462     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    463       CheckTypeMatcher *CTM =
    464         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
    465                                                         Matcher::CheckType));
    466       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
    467       MVT::SimpleValueType CTMTy = CTM->getType();
    468       delete CTM;
    469 
    470       unsigned &Entry = TypeEntry[CTMTy];
    471       if (Entry != 0) {
    472         // If we have unfactored duplicate types, then we should factor them.
    473         Matcher *PrevMatcher = Cases[Entry-1].second;
    474         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
    475           SM->setNumChildren(SM->getNumChildren()+1);
    476           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
    477           continue;
    478         }
    479 
    480         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
    481         Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
    482         continue;
    483       }
    484 
    485       Entry = Cases.size()+1;
    486       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
    487     }
    488 
    489     if (Cases.size() != 1) {
    490       MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
    491     } else {
    492       // If we factored and ended up with one case, create it now.
    493       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
    494       MatcherPtr->setNext(Cases[0].second);
    495     }
    496     return;
    497   }
    498 
    499 
    500   // Reassemble the Scope node with the adjusted children.
    501   Scope->setNumChildren(NewOptionsToMatch.size());
    502   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
    503     Scope->resetChild(i, NewOptionsToMatch[i]);
    504 }
    505 
    506 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
    507                                const CodeGenDAGPatterns &CGP) {
    508   OwningPtr<Matcher> MatcherPtr(TheMatcher);
    509   ContractNodes(MatcherPtr, CGP);
    510   SinkPatternPredicates(MatcherPtr);
    511   FactorNodes(MatcherPtr);
    512   return MatcherPtr.take();
    513 }
    514