1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the DAG Matcher optimizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel-opt" 15 #include "DAGISelMatcher.h" 16 #include "CodeGenDAGPatterns.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/StringSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 using namespace llvm; 22 23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' 24 /// into single compound nodes like RecordChild. 25 static void ContractNodes(OwningPtr<Matcher> &MatcherPtr, 26 const CodeGenDAGPatterns &CGP) { 27 // If we reached the end of the chain, we're done. 28 Matcher *N = MatcherPtr.get(); 29 if (N == 0) return; 30 31 // If we have a scope node, walk down all of the children. 32 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { 33 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { 34 OwningPtr<Matcher> Child(Scope->takeChild(i)); 35 ContractNodes(Child, CGP); 36 Scope->resetChild(i, Child.take()); 37 } 38 return; 39 } 40 41 // If we found a movechild node with a node that comes in a 'foochild' form, 42 // transform it. 43 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { 44 Matcher *New = 0; 45 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) 46 if (MC->getChildNo() < 8) // Only have RecordChild0...7 47 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), 48 RM->getResultNo()); 49 50 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) 51 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 52 CT->getResNo() == 0) // CheckChildType checks res #0 53 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); 54 55 if (New) { 56 // Insert the new node. 57 New->setNext(MatcherPtr.take()); 58 MatcherPtr.reset(New); 59 // Remove the old one. 60 MC->setNext(MC->getNext()->takeNext()); 61 return ContractNodes(MatcherPtr, CGP); 62 } 63 } 64 65 // Zap movechild -> moveparent. 66 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) 67 if (MoveParentMatcher *MP = 68 dyn_cast<MoveParentMatcher>(MC->getNext())) { 69 MatcherPtr.reset(MP->takeNext()); 70 return ContractNodes(MatcherPtr, CGP); 71 } 72 73 // Turn EmitNode->MarkFlagResults->CompleteMatch into 74 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage 75 // MorphNodeTo formation. This is safe because MarkFlagResults never refers 76 // to the root of the pattern. 77 if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) && 78 isa<CompleteMatchMatcher>(N->getNext()->getNext())) { 79 // Unlink the two nodes from the list. 80 Matcher *EmitNode = MatcherPtr.take(); 81 Matcher *MFR = EmitNode->takeNext(); 82 Matcher *Tail = MFR->takeNext(); 83 84 // Relink them. 85 MatcherPtr.reset(MFR); 86 MFR->setNext(EmitNode); 87 EmitNode->setNext(Tail); 88 return ContractNodes(MatcherPtr, CGP); 89 } 90 91 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. 92 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) 93 if (CompleteMatchMatcher *CM = 94 dyn_cast<CompleteMatchMatcher>(EN->getNext())) { 95 // We can only use MorphNodeTo if the result values match up. 96 unsigned RootResultFirst = EN->getFirstResultSlot(); 97 bool ResultsMatch = true; 98 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) 99 if (CM->getResult(i) != RootResultFirst+i) 100 ResultsMatch = false; 101 102 // If the selected node defines a subset of the glue/chain results, we 103 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the 104 // matched pattern has a chain but the root node doesn't. 105 const PatternToMatch &Pattern = CM->getPattern(); 106 107 if (!EN->hasChain() && 108 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) 109 ResultsMatch = false; 110 111 // If the matched node has glue and the output root doesn't, we can't 112 // use MorphNodeTo. 113 // 114 // NOTE: Strictly speaking, we don't have to check for glue here 115 // because the code in the pattern generator doesn't handle it right. We 116 // do it anyway for thoroughness. 117 if (!EN->hasOutFlag() && 118 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) 119 ResultsMatch = false; 120 121 122 // If the root result node defines more results than the source root node 123 // *and* has a chain or glue input, then we can't match it because it 124 // would end up replacing the extra result with the chain/glue. 125 #if 0 126 if ((EN->hasGlue() || EN->hasChain()) && 127 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) 128 ResultMatch = false; 129 #endif 130 131 if (ResultsMatch) { 132 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); 133 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); 134 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), 135 VTs.data(), VTs.size(), 136 Operands.data(),Operands.size(), 137 EN->hasChain(), EN->hasInFlag(), 138 EN->hasOutFlag(), 139 EN->hasMemRefs(), 140 EN->getNumFixedArityOperands(), 141 Pattern)); 142 return; 143 } 144 145 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode 146 // variants. 147 } 148 149 ContractNodes(N->getNextPtr(), CGP); 150 151 152 // If we have a CheckType/CheckChildType/Record node followed by a 153 // CheckOpcode, invert the two nodes. We prefer to do structural checks 154 // before type checks, as this opens opportunities for factoring on targets 155 // like X86 where many operations are valid on multiple types. 156 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || 157 isa<RecordMatcher>(N)) && 158 isa<CheckOpcodeMatcher>(N->getNext())) { 159 // Unlink the two nodes from the list. 160 Matcher *CheckType = MatcherPtr.take(); 161 Matcher *CheckOpcode = CheckType->takeNext(); 162 Matcher *Tail = CheckOpcode->takeNext(); 163 164 // Relink them. 165 MatcherPtr.reset(CheckOpcode); 166 CheckOpcode->setNext(CheckType); 167 CheckType->setNext(Tail); 168 return ContractNodes(MatcherPtr, CGP); 169 } 170 } 171 172 /// SinkPatternPredicates - Pattern predicates can be checked at any level of 173 /// the matching tree. The generator dumps them at the top level of the pattern 174 /// though, which prevents factoring from being able to see past them. This 175 /// optimization sinks them as far down into the pattern as possible. 176 /// 177 /// Conceptually, we'd like to sink these predicates all the way to the last 178 /// matcher predicate in the series. However, it turns out that some 179 /// ComplexPatterns have side effects on the graph, so we really don't want to 180 /// run a the complex pattern if the pattern predicate will fail. For this 181 /// reason, we refuse to sink the pattern predicate past a ComplexPattern. 182 /// 183 static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) { 184 // Recursively scan for a PatternPredicate. 185 // If we reached the end of the chain, we're done. 186 Matcher *N = MatcherPtr.get(); 187 if (N == 0) return; 188 189 // Walk down all members of a scope node. 190 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { 191 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { 192 OwningPtr<Matcher> Child(Scope->takeChild(i)); 193 SinkPatternPredicates(Child); 194 Scope->resetChild(i, Child.take()); 195 } 196 return; 197 } 198 199 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until 200 // we find one. 201 CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N); 202 if (CPPM == 0) 203 return SinkPatternPredicates(N->getNextPtr()); 204 205 // Ok, we found one, lets try to sink it. Check if we can sink it past the 206 // next node in the chain. If not, we won't be able to change anything and 207 // might as well bail. 208 if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) 209 return; 210 211 // Okay, we know we can sink it past at least one node. Unlink it from the 212 // chain and scan for the new insertion point. 213 MatcherPtr.take(); // Don't delete CPPM. 214 MatcherPtr.reset(CPPM->takeNext()); 215 216 N = MatcherPtr.get(); 217 while (N->getNext()->isSafeToReorderWithPatternPredicate()) 218 N = N->getNext(); 219 220 // At this point, we want to insert CPPM after N. 221 CPPM->setNext(N->takeNext()); 222 N->setNext(CPPM); 223 } 224 225 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a 226 /// specified kind. Return null if we didn't find one otherwise return the 227 /// matcher. 228 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { 229 for (; M; M = M->getNext()) 230 if (M->getKind() == Kind) 231 return M; 232 return 0; 233 } 234 235 236 /// FactorNodes - Turn matches like this: 237 /// Scope 238 /// OPC_CheckType i32 239 /// ABC 240 /// OPC_CheckType i32 241 /// XYZ 242 /// into: 243 /// OPC_CheckType i32 244 /// Scope 245 /// ABC 246 /// XYZ 247 /// 248 static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) { 249 // If we reached the end of the chain, we're done. 250 Matcher *N = MatcherPtr.get(); 251 if (N == 0) return; 252 253 // If this is not a push node, just scan for one. 254 ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N); 255 if (Scope == 0) 256 return FactorNodes(N->getNextPtr()); 257 258 // Okay, pull together the children of the scope node into a vector so we can 259 // inspect it more easily. While we're at it, bucket them up by the hash 260 // code of their first predicate. 261 SmallVector<Matcher*, 32> OptionsToMatch; 262 263 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { 264 // Factor the subexpression. 265 OwningPtr<Matcher> Child(Scope->takeChild(i)); 266 FactorNodes(Child); 267 268 if (Matcher *N = Child.take()) 269 OptionsToMatch.push_back(N); 270 } 271 272 SmallVector<Matcher*, 32> NewOptionsToMatch; 273 274 // Loop over options to match, merging neighboring patterns with identical 275 // starting nodes into a shared matcher. 276 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { 277 // Find the set of matchers that start with this node. 278 Matcher *Optn = OptionsToMatch[OptionIdx++]; 279 280 if (OptionIdx == e) { 281 NewOptionsToMatch.push_back(Optn); 282 continue; 283 } 284 285 // See if the next option starts with the same matcher. If the two 286 // neighbors *do* start with the same matcher, we can factor the matcher out 287 // of at least these two patterns. See what the maximal set we can merge 288 // together is. 289 SmallVector<Matcher*, 8> EqualMatchers; 290 EqualMatchers.push_back(Optn); 291 292 // Factor all of the known-equal matchers after this one into the same 293 // group. 294 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) 295 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); 296 297 // If we found a non-equal matcher, see if it is contradictory with the 298 // current node. If so, we know that the ordering relation between the 299 // current sets of nodes and this node don't matter. Look past it to see if 300 // we can merge anything else into this matching group. 301 unsigned Scan = OptionIdx; 302 while (1) { 303 // If we ran out of stuff to scan, we're done. 304 if (Scan == e) break; 305 306 Matcher *ScanMatcher = OptionsToMatch[Scan]; 307 308 // If we found an entry that matches out matcher, merge it into the set to 309 // handle. 310 if (Optn->isEqual(ScanMatcher)) { 311 // If is equal after all, add the option to EqualMatchers and remove it 312 // from OptionsToMatch. 313 EqualMatchers.push_back(ScanMatcher); 314 OptionsToMatch.erase(OptionsToMatch.begin()+Scan); 315 --e; 316 continue; 317 } 318 319 // If the option we're checking for contradicts the start of the list, 320 // skip over it. 321 if (Optn->isContradictory(ScanMatcher)) { 322 ++Scan; 323 continue; 324 } 325 326 // If we're scanning for a simple node, see if it occurs later in the 327 // sequence. If so, and if we can move it up, it might be contradictory 328 // or the same as what we're looking for. If so, reorder it. 329 if (Optn->isSimplePredicateOrRecordNode()) { 330 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); 331 if (M2 != 0 && M2 != ScanMatcher && 332 M2->canMoveBefore(ScanMatcher) && 333 (M2->isEqual(Optn) || M2->isContradictory(Optn))) { 334 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); 335 M2->setNext(MatcherWithoutM2); 336 OptionsToMatch[Scan] = M2; 337 continue; 338 } 339 } 340 341 // Otherwise, we don't know how to handle this entry, we have to bail. 342 break; 343 } 344 345 if (Scan != e && 346 // Don't print it's obvious nothing extra could be merged anyway. 347 Scan+1 != e) { 348 DEBUG(errs() << "Couldn't merge this:\n"; 349 Optn->print(errs(), 4); 350 errs() << "into this:\n"; 351 OptionsToMatch[Scan]->print(errs(), 4); 352 if (Scan+1 != e) 353 OptionsToMatch[Scan+1]->printOne(errs()); 354 if (Scan+2 < e) 355 OptionsToMatch[Scan+2]->printOne(errs()); 356 errs() << "\n"); 357 } 358 359 // If we only found one option starting with this matcher, no factoring is 360 // possible. 361 if (EqualMatchers.size() == 1) { 362 NewOptionsToMatch.push_back(EqualMatchers[0]); 363 continue; 364 } 365 366 // Factor these checks by pulling the first node off each entry and 367 // discarding it. Take the first one off the first entry to reuse. 368 Matcher *Shared = Optn; 369 Optn = Optn->takeNext(); 370 EqualMatchers[0] = Optn; 371 372 // Remove and delete the first node from the other matchers we're factoring. 373 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { 374 Matcher *Tmp = EqualMatchers[i]->takeNext(); 375 delete EqualMatchers[i]; 376 EqualMatchers[i] = Tmp; 377 } 378 379 Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size())); 380 381 // Recursively factor the newly created node. 382 FactorNodes(Shared->getNextPtr()); 383 384 NewOptionsToMatch.push_back(Shared); 385 } 386 387 // If we're down to a single pattern to match, then we don't need this scope 388 // anymore. 389 if (NewOptionsToMatch.size() == 1) { 390 MatcherPtr.reset(NewOptionsToMatch[0]); 391 return; 392 } 393 394 if (NewOptionsToMatch.empty()) { 395 MatcherPtr.reset(0); 396 return; 397 } 398 399 // If our factoring failed (didn't achieve anything) see if we can simplify in 400 // other ways. 401 402 // Check to see if all of the leading entries are now opcode checks. If so, 403 // we can convert this Scope to be a OpcodeSwitch instead. 404 bool AllOpcodeChecks = true, AllTypeChecks = true; 405 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { 406 // Check to see if this breaks a series of CheckOpcodeMatchers. 407 if (AllOpcodeChecks && 408 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) { 409 #if 0 410 if (i > 3) { 411 errs() << "FAILING OPC #" << i << "\n"; 412 NewOptionsToMatch[i]->dump(); 413 } 414 #endif 415 AllOpcodeChecks = false; 416 } 417 418 // Check to see if this breaks a series of CheckTypeMatcher's. 419 if (AllTypeChecks) { 420 CheckTypeMatcher *CTM = 421 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], 422 Matcher::CheckType)); 423 if (CTM == 0 || 424 // iPTR checks could alias any other case without us knowing, don't 425 // bother with them. 426 CTM->getType() == MVT::iPTR || 427 // SwitchType only works for result #0. 428 CTM->getResNo() != 0 || 429 // If the CheckType isn't at the start of the list, see if we can move 430 // it there. 431 !CTM->canMoveBefore(NewOptionsToMatch[i])) { 432 #if 0 433 if (i > 3 && AllTypeChecks) { 434 errs() << "FAILING TYPE #" << i << "\n"; 435 NewOptionsToMatch[i]->dump(); 436 } 437 #endif 438 AllTypeChecks = false; 439 } 440 } 441 } 442 443 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. 444 if (AllOpcodeChecks) { 445 StringSet<> Opcodes; 446 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; 447 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { 448 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]); 449 assert(Opcodes.insert(COM->getOpcode().getEnumName()) && 450 "Duplicate opcodes not factored?"); 451 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); 452 } 453 454 MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size())); 455 return; 456 } 457 458 // If all the options are CheckType's, we can form the SwitchType, woot. 459 if (AllTypeChecks) { 460 DenseMap<unsigned, unsigned> TypeEntry; 461 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; 462 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { 463 CheckTypeMatcher *CTM = 464 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], 465 Matcher::CheckType)); 466 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); 467 MVT::SimpleValueType CTMTy = CTM->getType(); 468 delete CTM; 469 470 unsigned &Entry = TypeEntry[CTMTy]; 471 if (Entry != 0) { 472 // If we have unfactored duplicate types, then we should factor them. 473 Matcher *PrevMatcher = Cases[Entry-1].second; 474 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { 475 SM->setNumChildren(SM->getNumChildren()+1); 476 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); 477 continue; 478 } 479 480 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; 481 Cases[Entry-1].second = new ScopeMatcher(Entries, 2); 482 continue; 483 } 484 485 Entry = Cases.size()+1; 486 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); 487 } 488 489 if (Cases.size() != 1) { 490 MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size())); 491 } else { 492 // If we factored and ended up with one case, create it now. 493 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); 494 MatcherPtr->setNext(Cases[0].second); 495 } 496 return; 497 } 498 499 500 // Reassemble the Scope node with the adjusted children. 501 Scope->setNumChildren(NewOptionsToMatch.size()); 502 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) 503 Scope->resetChild(i, NewOptionsToMatch[i]); 504 } 505 506 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, 507 const CodeGenDAGPatterns &CGP) { 508 OwningPtr<Matcher> MatcherPtr(TheMatcher); 509 ContractNodes(MatcherPtr, CGP); 510 SinkPatternPredicates(MatcherPtr); 511 FactorNodes(MatcherPtr); 512 return MatcherPtr.take(); 513 } 514