Home | History | Annotate | Download | only in BVH
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Ilya Baran <ibaran (at) mit.edu>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef KDBVH_H_INCLUDED
     11 #define KDBVH_H_INCLUDED
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 //internal pair class for the BVH--used instead of std::pair because of alignment
     18 template<typename Scalar, int Dim>
     19 struct vector_int_pair
     20 {
     21 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
     22   typedef Matrix<Scalar, Dim, 1> VectorType;
     23 
     24   vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
     25 
     26   VectorType first;
     27   int second;
     28 };
     29 
     30 //these templates help the tree initializer get the bounding boxes either from a provided
     31 //iterator range or using bounding_box in a unified way
     32 template<typename ObjectList, typename VolumeList, typename BoxIter>
     33 struct get_boxes_helper {
     34   void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
     35   {
     36     outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
     37     eigen_assert(outBoxes.size() == objects.size());
     38   }
     39 };
     40 
     41 template<typename ObjectList, typename VolumeList>
     42 struct get_boxes_helper<ObjectList, VolumeList, int> {
     43   void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
     44   {
     45     outBoxes.reserve(objects.size());
     46     for(int i = 0; i < (int)objects.size(); ++i)
     47       outBoxes.push_back(bounding_box(objects[i]));
     48   }
     49 };
     50 
     51 } // end namespace internal
     52 
     53 
     54 /** \class KdBVH
     55  *  \brief A simple bounding volume hierarchy based on AlignedBox
     56  *
     57  *  \param _Scalar The underlying scalar type of the bounding boxes
     58  *  \param _Dim The dimension of the space in which the hierarchy lives
     59  *  \param _Object The object type that lives in the hierarchy.  It must have value semantics.  Either bounding_box(_Object) must
     60  *                 be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
     61  *
     62  *  This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
     63  *  Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
     64  *  and builds a BVH with the structure of that Kd-tree.  When the elements of the tree are too expensive to be copied around,
     65  *  it is useful for _Object to be a pointer.
     66  */
     67 template<typename _Scalar, int _Dim, typename _Object> class KdBVH
     68 {
     69 public:
     70   enum { Dim = _Dim };
     71   typedef _Object Object;
     72   typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
     73   typedef _Scalar Scalar;
     74   typedef AlignedBox<Scalar, Dim> Volume;
     75   typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
     76   typedef int Index;
     77   typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
     78   typedef const Object *ObjectIterator;
     79 
     80   KdBVH() {}
     81 
     82   /** Given an iterator range over \a Object references, constructs the BVH.  Requires that bounding_box(Object) return a Volume. */
     83   template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
     84 
     85   /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
     86   template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
     87 
     88   /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
     89     * Requires that bounding_box(Object) return a Volume. */
     90   template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
     91 
     92   /** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
     93     * constructs the BVH, overwriting whatever is in there currently. */
     94   template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
     95   {
     96     objects.clear();
     97     boxes.clear();
     98     children.clear();
     99 
    100     objects.insert(objects.end(), begin, end);
    101     int n = static_cast<int>(objects.size());
    102 
    103     if(n < 2)
    104       return; //if we have at most one object, we don't need any internal nodes
    105 
    106     VolumeList objBoxes;
    107     VIPairList objCenters;
    108 
    109     //compute the bounding boxes depending on BIter type
    110     internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
    111 
    112     objCenters.reserve(n);
    113     boxes.reserve(n - 1);
    114     children.reserve(2 * n - 2);
    115 
    116     for(int i = 0; i < n; ++i)
    117       objCenters.push_back(VIPair(objBoxes[i].center(), i));
    118 
    119     build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
    120 
    121     ObjectList tmp(n);
    122     tmp.swap(objects);
    123     for(int i = 0; i < n; ++i)
    124       objects[i] = tmp[objCenters[i].second];
    125   }
    126 
    127   /** \returns the index of the root of the hierarchy */
    128   inline Index getRootIndex() const { return (int)boxes.size() - 1; }
    129 
    130   /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
    131     * and \a outOBegin and \a outOEnd range over the object children of the node */
    132   EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
    133                                        ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
    134   { //inlining this function should open lots of optimization opportunities to the compiler
    135     if(index < 0) {
    136       outVBegin = outVEnd;
    137       if(!objects.empty())
    138         outOBegin = &(objects[0]);
    139       outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
    140       return;
    141     }
    142 
    143     int numBoxes = static_cast<int>(boxes.size());
    144 
    145     int idx = index * 2;
    146     if(children[idx + 1] < numBoxes) { //second index is always bigger
    147       outVBegin = &(children[idx]);
    148       outVEnd = outVBegin + 2;
    149       outOBegin = outOEnd;
    150     }
    151     else if(children[idx] >= numBoxes) { //if both children are objects
    152       outVBegin = outVEnd;
    153       outOBegin = &(objects[children[idx] - numBoxes]);
    154       outOEnd = outOBegin + 2;
    155     } else { //if the first child is a volume and the second is an object
    156       outVBegin = &(children[idx]);
    157       outVEnd = outVBegin + 1;
    158       outOBegin = &(objects[children[idx + 1] - numBoxes]);
    159       outOEnd = outOBegin + 1;
    160     }
    161   }
    162 
    163   /** \returns the bounding box of the node at \a index */
    164   inline const Volume &getVolume(Index index) const
    165   {
    166     return boxes[index];
    167   }
    168 
    169 private:
    170   typedef internal::vector_int_pair<Scalar, Dim> VIPair;
    171   typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
    172   typedef Matrix<Scalar, Dim, 1> VectorType;
    173   struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
    174   {
    175     VectorComparator(int inDim) : dim(inDim) {}
    176     inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
    177     int dim;
    178   };
    179 
    180   //Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
    181   //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
    182   //the two halves, and adds their parent node.  TODO: a cache-friendlier layout
    183   void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
    184   {
    185     eigen_assert(to - from > 1);
    186     if(to - from == 2) {
    187       boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
    188       children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
    189       children.push_back(from + (int)objects.size());
    190     }
    191     else if(to - from == 3) {
    192       int mid = from + 2;
    193       std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
    194                         objCenters.begin() + to, VectorComparator(dim)); //partition
    195       build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
    196       int idx1 = (int)boxes.size() - 1;
    197       boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
    198       children.push_back(idx1);
    199       children.push_back(mid + (int)objects.size() - 1);
    200     }
    201     else {
    202       int mid = from + (to - from) / 2;
    203       nth_element(objCenters.begin() + from, objCenters.begin() + mid,
    204                   objCenters.begin() + to, VectorComparator(dim)); //partition
    205       build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
    206       int idx1 = (int)boxes.size() - 1;
    207       build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
    208       int idx2 = (int)boxes.size() - 1;
    209       boxes.push_back(boxes[idx1].merged(boxes[idx2]));
    210       children.push_back(idx1);
    211       children.push_back(idx2);
    212     }
    213   }
    214 
    215   std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
    216   VolumeList boxes;
    217   ObjectList objects;
    218 };
    219 
    220 } // end namespace Eigen
    221 
    222 #endif //KDBVH_H_INCLUDED
    223