Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_REAL_SCHUR_H
     12 #define EIGEN_REAL_SCHUR_H
     13 
     14 #include "./HessenbergDecomposition.h"
     15 
     16 namespace Eigen {
     17 
     18 /** \eigenvalues_module \ingroup Eigenvalues_Module
     19   *
     20   *
     21   * \class RealSchur
     22   *
     23   * \brief Performs a real Schur decomposition of a square matrix
     24   *
     25   * \tparam _MatrixType the type of the matrix of which we are computing the
     26   * real Schur decomposition; this is expected to be an instantiation of the
     27   * Matrix class template.
     28   *
     29   * Given a real square matrix A, this class computes the real Schur
     30   * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
     31   * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
     32   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
     33   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
     34   * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
     35   * blocks on the diagonal of T are the same as the eigenvalues of the matrix
     36   * A, and thus the real Schur decomposition is used in EigenSolver to compute
     37   * the eigendecomposition of a matrix.
     38   *
     39   * Call the function compute() to compute the real Schur decomposition of a
     40   * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
     41   * constructor which computes the real Schur decomposition at construction
     42   * time. Once the decomposition is computed, you can use the matrixU() and
     43   * matrixT() functions to retrieve the matrices U and T in the decomposition.
     44   *
     45   * The documentation of RealSchur(const MatrixType&, bool) contains an example
     46   * of the typical use of this class.
     47   *
     48   * \note The implementation is adapted from
     49   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
     50   * Their code is based on EISPACK.
     51   *
     52   * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
     53   */
     54 template<typename _MatrixType> class RealSchur
     55 {
     56   public:
     57     typedef _MatrixType MatrixType;
     58     enum {
     59       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     60       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     61       Options = MatrixType::Options,
     62       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     63       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     64     };
     65     typedef typename MatrixType::Scalar Scalar;
     66     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
     67     typedef typename MatrixType::Index Index;
     68 
     69     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
     70     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
     71 
     72     /** \brief Default constructor.
     73       *
     74       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
     75       *
     76       * The default constructor is useful in cases in which the user intends to
     77       * perform decompositions via compute().  The \p size parameter is only
     78       * used as a hint. It is not an error to give a wrong \p size, but it may
     79       * impair performance.
     80       *
     81       * \sa compute() for an example.
     82       */
     83     RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
     84             : m_matT(size, size),
     85               m_matU(size, size),
     86               m_workspaceVector(size),
     87               m_hess(size),
     88               m_isInitialized(false),
     89               m_matUisUptodate(false)
     90     { }
     91 
     92     /** \brief Constructor; computes real Schur decomposition of given matrix.
     93       *
     94       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
     95       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
     96       *
     97       * This constructor calls compute() to compute the Schur decomposition.
     98       *
     99       * Example: \include RealSchur_RealSchur_MatrixType.cpp
    100       * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
    101       */
    102     RealSchur(const MatrixType& matrix, bool computeU = true)
    103             : m_matT(matrix.rows(),matrix.cols()),
    104               m_matU(matrix.rows(),matrix.cols()),
    105               m_workspaceVector(matrix.rows()),
    106               m_hess(matrix.rows()),
    107               m_isInitialized(false),
    108               m_matUisUptodate(false)
    109     {
    110       compute(matrix, computeU);
    111     }
    112 
    113     /** \brief Returns the orthogonal matrix in the Schur decomposition.
    114       *
    115       * \returns A const reference to the matrix U.
    116       *
    117       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
    118       * member function compute(const MatrixType&, bool) has been called before
    119       * to compute the Schur decomposition of a matrix, and \p computeU was set
    120       * to true (the default value).
    121       *
    122       * \sa RealSchur(const MatrixType&, bool) for an example
    123       */
    124     const MatrixType& matrixU() const
    125     {
    126       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    127       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
    128       return m_matU;
    129     }
    130 
    131     /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
    132       *
    133       * \returns A const reference to the matrix T.
    134       *
    135       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
    136       * member function compute(const MatrixType&, bool) has been called before
    137       * to compute the Schur decomposition of a matrix.
    138       *
    139       * \sa RealSchur(const MatrixType&, bool) for an example
    140       */
    141     const MatrixType& matrixT() const
    142     {
    143       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    144       return m_matT;
    145     }
    146 
    147     /** \brief Computes Schur decomposition of given matrix.
    148       *
    149       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
    150       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    151       * \returns    Reference to \c *this
    152       *
    153       * The Schur decomposition is computed by first reducing the matrix to
    154       * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
    155       * matrix is then reduced to triangular form by performing Francis QR
    156       * iterations with implicit double shift. The cost of computing the Schur
    157       * decomposition depends on the number of iterations; as a rough guide, it
    158       * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
    159       * \f$10n^3\f$ flops if \a computeU is false.
    160       *
    161       * Example: \include RealSchur_compute.cpp
    162       * Output: \verbinclude RealSchur_compute.out
    163       */
    164     RealSchur& compute(const MatrixType& matrix, bool computeU = true);
    165 
    166     /** \brief Reports whether previous computation was successful.
    167       *
    168       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
    169       */
    170     ComputationInfo info() const
    171     {
    172       eigen_assert(m_isInitialized && "RealSchur is not initialized.");
    173       return m_info;
    174     }
    175 
    176     /** \brief Maximum number of iterations.
    177       *
    178       * Maximum number of iterations allowed for an eigenvalue to converge.
    179       */
    180     static const int m_maxIterations = 40;
    181 
    182   private:
    183 
    184     MatrixType m_matT;
    185     MatrixType m_matU;
    186     ColumnVectorType m_workspaceVector;
    187     HessenbergDecomposition<MatrixType> m_hess;
    188     ComputationInfo m_info;
    189     bool m_isInitialized;
    190     bool m_matUisUptodate;
    191 
    192     typedef Matrix<Scalar,3,1> Vector3s;
    193 
    194     Scalar computeNormOfT();
    195     Index findSmallSubdiagEntry(Index iu, Scalar norm);
    196     void splitOffTwoRows(Index iu, bool computeU, Scalar exshift);
    197     void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
    198     void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
    199     void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
    200 };
    201 
    202 
    203 template<typename MatrixType>
    204 RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
    205 {
    206   assert(matrix.cols() == matrix.rows());
    207 
    208   // Step 1. Reduce to Hessenberg form
    209   m_hess.compute(matrix);
    210   m_matT = m_hess.matrixH();
    211   if (computeU)
    212     m_matU = m_hess.matrixQ();
    213 
    214   // Step 2. Reduce to real Schur form
    215   m_workspaceVector.resize(m_matT.cols());
    216   Scalar* workspace = &m_workspaceVector.coeffRef(0);
    217 
    218   // The matrix m_matT is divided in three parts.
    219   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
    220   // Rows il,...,iu is the part we are working on (the active window).
    221   // Rows iu+1,...,end are already brought in triangular form.
    222   Index iu = m_matT.cols() - 1;
    223   Index iter = 0; // iteration count
    224   Scalar exshift(0); // sum of exceptional shifts
    225   Scalar norm = computeNormOfT();
    226 
    227   if(norm!=0)
    228   {
    229     while (iu >= 0)
    230     {
    231       Index il = findSmallSubdiagEntry(iu, norm);
    232 
    233       // Check for convergence
    234       if (il == iu) // One root found
    235       {
    236         m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
    237         if (iu > 0)
    238           m_matT.coeffRef(iu, iu-1) = Scalar(0);
    239         iu--;
    240         iter = 0;
    241       }
    242       else if (il == iu-1) // Two roots found
    243       {
    244         splitOffTwoRows(iu, computeU, exshift);
    245         iu -= 2;
    246         iter = 0;
    247       }
    248       else // No convergence yet
    249       {
    250         // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
    251         Vector3s firstHouseholderVector(0,0,0), shiftInfo;
    252         computeShift(iu, iter, exshift, shiftInfo);
    253         iter = iter + 1;
    254         if (iter > m_maxIterations * m_matT.cols()) break;
    255         Index im;
    256         initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
    257         performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
    258       }
    259     }
    260   }
    261   if(iter <= m_maxIterations * m_matT.cols())
    262     m_info = Success;
    263   else
    264     m_info = NoConvergence;
    265 
    266   m_isInitialized = true;
    267   m_matUisUptodate = computeU;
    268   return *this;
    269 }
    270 
    271 /** \internal Computes and returns vector L1 norm of T */
    272 template<typename MatrixType>
    273 inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
    274 {
    275   const Index size = m_matT.cols();
    276   // FIXME to be efficient the following would requires a triangular reduxion code
    277   // Scalar norm = m_matT.upper().cwiseAbs().sum()
    278   //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
    279   Scalar norm(0);
    280   for (Index j = 0; j < size; ++j)
    281     norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
    282   return norm;
    283 }
    284 
    285 /** \internal Look for single small sub-diagonal element and returns its index */
    286 template<typename MatrixType>
    287 inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, Scalar norm)
    288 {
    289   Index res = iu;
    290   while (res > 0)
    291   {
    292     Scalar s = internal::abs(m_matT.coeff(res-1,res-1)) + internal::abs(m_matT.coeff(res,res));
    293     if (s == 0.0)
    294       s = norm;
    295     if (internal::abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
    296       break;
    297     res--;
    298   }
    299   return res;
    300 }
    301 
    302 /** \internal Update T given that rows iu-1 and iu decouple from the rest. */
    303 template<typename MatrixType>
    304 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, Scalar exshift)
    305 {
    306   const Index size = m_matT.cols();
    307 
    308   // The eigenvalues of the 2x2 matrix [a b; c d] are
    309   // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
    310   Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
    311   Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
    312   m_matT.coeffRef(iu,iu) += exshift;
    313   m_matT.coeffRef(iu-1,iu-1) += exshift;
    314 
    315   if (q >= Scalar(0)) // Two real eigenvalues
    316   {
    317     Scalar z = internal::sqrt(internal::abs(q));
    318     JacobiRotation<Scalar> rot;
    319     if (p >= Scalar(0))
    320       rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
    321     else
    322       rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
    323 
    324     m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
    325     m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
    326     m_matT.coeffRef(iu, iu-1) = Scalar(0);
    327     if (computeU)
    328       m_matU.applyOnTheRight(iu-1, iu, rot);
    329   }
    330 
    331   if (iu > 1)
    332     m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
    333 }
    334 
    335 /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
    336 template<typename MatrixType>
    337 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
    338 {
    339   shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
    340   shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
    341   shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
    342 
    343   // Wilkinson's original ad hoc shift
    344   if (iter == 10)
    345   {
    346     exshift += shiftInfo.coeff(0);
    347     for (Index i = 0; i <= iu; ++i)
    348       m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
    349     Scalar s = internal::abs(m_matT.coeff(iu,iu-1)) + internal::abs(m_matT.coeff(iu-1,iu-2));
    350     shiftInfo.coeffRef(0) = Scalar(0.75) * s;
    351     shiftInfo.coeffRef(1) = Scalar(0.75) * s;
    352     shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
    353   }
    354 
    355   // MATLAB's new ad hoc shift
    356   if (iter == 30)
    357   {
    358     Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    359     s = s * s + shiftInfo.coeff(2);
    360     if (s > Scalar(0))
    361     {
    362       s = internal::sqrt(s);
    363       if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
    364         s = -s;
    365       s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
    366       s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
    367       exshift += s;
    368       for (Index i = 0; i <= iu; ++i)
    369         m_matT.coeffRef(i,i) -= s;
    370       shiftInfo.setConstant(Scalar(0.964));
    371     }
    372   }
    373 }
    374 
    375 /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
    376 template<typename MatrixType>
    377 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
    378 {
    379   Vector3s& v = firstHouseholderVector; // alias to save typing
    380 
    381   for (im = iu-2; im >= il; --im)
    382   {
    383     const Scalar Tmm = m_matT.coeff(im,im);
    384     const Scalar r = shiftInfo.coeff(0) - Tmm;
    385     const Scalar s = shiftInfo.coeff(1) - Tmm;
    386     v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
    387     v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
    388     v.coeffRef(2) = m_matT.coeff(im+2,im+1);
    389     if (im == il) {
    390       break;
    391     }
    392     const Scalar lhs = m_matT.coeff(im,im-1) * (internal::abs(v.coeff(1)) + internal::abs(v.coeff(2)));
    393     const Scalar rhs = v.coeff(0) * (internal::abs(m_matT.coeff(im-1,im-1)) + internal::abs(Tmm) + internal::abs(m_matT.coeff(im+1,im+1)));
    394     if (internal::abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
    395     {
    396       break;
    397     }
    398   }
    399 }
    400 
    401 /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
    402 template<typename MatrixType>
    403 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
    404 {
    405   assert(im >= il);
    406   assert(im <= iu-2);
    407 
    408   const Index size = m_matT.cols();
    409 
    410   for (Index k = im; k <= iu-2; ++k)
    411   {
    412     bool firstIteration = (k == im);
    413 
    414     Vector3s v;
    415     if (firstIteration)
    416       v = firstHouseholderVector;
    417     else
    418       v = m_matT.template block<3,1>(k,k-1);
    419 
    420     Scalar tau, beta;
    421     Matrix<Scalar, 2, 1> ess;
    422     v.makeHouseholder(ess, tau, beta);
    423 
    424     if (beta != Scalar(0)) // if v is not zero
    425     {
    426       if (firstIteration && k > il)
    427         m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
    428       else if (!firstIteration)
    429         m_matT.coeffRef(k,k-1) = beta;
    430 
    431       // These Householder transformations form the O(n^3) part of the algorithm
    432       m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
    433       m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    434       if (computeU)
    435         m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
    436     }
    437   }
    438 
    439   Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
    440   Scalar tau, beta;
    441   Matrix<Scalar, 1, 1> ess;
    442   v.makeHouseholder(ess, tau, beta);
    443 
    444   if (beta != Scalar(0)) // if v is not zero
    445   {
    446     m_matT.coeffRef(iu-1, iu-2) = beta;
    447     m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
    448     m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    449     if (computeU)
    450       m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
    451   }
    452 
    453   // clean up pollution due to round-off errors
    454   for (Index i = im+2; i <= iu; ++i)
    455   {
    456     m_matT.coeffRef(i,i-2) = Scalar(0);
    457     if (i > im+2)
    458       m_matT.coeffRef(i,i-3) = Scalar(0);
    459   }
    460 }
    461 
    462 } // end namespace Eigen
    463 
    464 #endif // EIGEN_REAL_SCHUR_H
    465