Home | History | Annotate | Download | only in ADT
      1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ImutAVLTree and ImmutableSet classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_IMMUTABLESET_H
     15 #define LLVM_ADT_IMMUTABLESET_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/Support/Allocator.h"
     20 #include "llvm/Support/DataTypes.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include <cassert>
     23 #include <functional>
     24 #include <vector>
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 // Immutable AVL-Tree Definition.
     30 //===----------------------------------------------------------------------===//
     31 
     32 template <typename ImutInfo> class ImutAVLFactory;
     33 template <typename ImutInfo> class ImutIntervalAVLFactory;
     34 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
     35 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
     36 
     37 template <typename ImutInfo >
     38 class ImutAVLTree {
     39 public:
     40   typedef typename ImutInfo::key_type_ref   key_type_ref;
     41   typedef typename ImutInfo::value_type     value_type;
     42   typedef typename ImutInfo::value_type_ref value_type_ref;
     43 
     44   typedef ImutAVLFactory<ImutInfo>          Factory;
     45   friend class ImutAVLFactory<ImutInfo>;
     46   friend class ImutIntervalAVLFactory<ImutInfo>;
     47 
     48   friend class ImutAVLTreeGenericIterator<ImutInfo>;
     49 
     50   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
     51 
     52   //===----------------------------------------------------===//
     53   // Public Interface.
     54   //===----------------------------------------------------===//
     55 
     56   /// Return a pointer to the left subtree.  This value
     57   ///  is NULL if there is no left subtree.
     58   ImutAVLTree *getLeft() const { return left; }
     59 
     60   /// Return a pointer to the right subtree.  This value is
     61   ///  NULL if there is no right subtree.
     62   ImutAVLTree *getRight() const { return right; }
     63 
     64   /// getHeight - Returns the height of the tree.  A tree with no subtrees
     65   ///  has a height of 1.
     66   unsigned getHeight() const { return height; }
     67 
     68   /// getValue - Returns the data value associated with the tree node.
     69   const value_type& getValue() const { return value; }
     70 
     71   /// find - Finds the subtree associated with the specified key value.
     72   ///  This method returns NULL if no matching subtree is found.
     73   ImutAVLTree* find(key_type_ref K) {
     74     ImutAVLTree *T = this;
     75     while (T) {
     76       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
     77       if (ImutInfo::isEqual(K,CurrentKey))
     78         return T;
     79       else if (ImutInfo::isLess(K,CurrentKey))
     80         T = T->getLeft();
     81       else
     82         T = T->getRight();
     83     }
     84     return NULL;
     85   }
     86 
     87   /// getMaxElement - Find the subtree associated with the highest ranged
     88   ///  key value.
     89   ImutAVLTree* getMaxElement() {
     90     ImutAVLTree *T = this;
     91     ImutAVLTree *Right = T->getRight();
     92     while (Right) { T = Right; Right = T->getRight(); }
     93     return T;
     94   }
     95 
     96   /// size - Returns the number of nodes in the tree, which includes
     97   ///  both leaves and non-leaf nodes.
     98   unsigned size() const {
     99     unsigned n = 1;
    100     if (const ImutAVLTree* L = getLeft())
    101       n += L->size();
    102     if (const ImutAVLTree* R = getRight())
    103       n += R->size();
    104     return n;
    105   }
    106 
    107   /// begin - Returns an iterator that iterates over the nodes of the tree
    108   ///  in an inorder traversal.  The returned iterator thus refers to the
    109   ///  the tree node with the minimum data element.
    110   iterator begin() const { return iterator(this); }
    111 
    112   /// end - Returns an iterator for the tree that denotes the end of an
    113   ///  inorder traversal.
    114   iterator end() const { return iterator(); }
    115 
    116   bool isElementEqual(value_type_ref V) const {
    117     // Compare the keys.
    118     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
    119                            ImutInfo::KeyOfValue(V)))
    120       return false;
    121 
    122     // Also compare the data values.
    123     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
    124                                ImutInfo::DataOfValue(V)))
    125       return false;
    126 
    127     return true;
    128   }
    129 
    130   bool isElementEqual(const ImutAVLTree* RHS) const {
    131     return isElementEqual(RHS->getValue());
    132   }
    133 
    134   /// isEqual - Compares two trees for structural equality and returns true
    135   ///   if they are equal.  This worst case performance of this operation is
    136   //    linear in the sizes of the trees.
    137   bool isEqual(const ImutAVLTree& RHS) const {
    138     if (&RHS == this)
    139       return true;
    140 
    141     iterator LItr = begin(), LEnd = end();
    142     iterator RItr = RHS.begin(), REnd = RHS.end();
    143 
    144     while (LItr != LEnd && RItr != REnd) {
    145       if (*LItr == *RItr) {
    146         LItr.skipSubTree();
    147         RItr.skipSubTree();
    148         continue;
    149       }
    150 
    151       if (!LItr->isElementEqual(*RItr))
    152         return false;
    153 
    154       ++LItr;
    155       ++RItr;
    156     }
    157 
    158     return LItr == LEnd && RItr == REnd;
    159   }
    160 
    161   /// isNotEqual - Compares two trees for structural inequality.  Performance
    162   ///  is the same is isEqual.
    163   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
    164 
    165   /// contains - Returns true if this tree contains a subtree (node) that
    166   ///  has an data element that matches the specified key.  Complexity
    167   ///  is logarithmic in the size of the tree.
    168   bool contains(key_type_ref K) { return (bool) find(K); }
    169 
    170   /// foreach - A member template the accepts invokes operator() on a functor
    171   ///  object (specifed by Callback) for every node/subtree in the tree.
    172   ///  Nodes are visited using an inorder traversal.
    173   template <typename Callback>
    174   void foreach(Callback& C) {
    175     if (ImutAVLTree* L = getLeft())
    176       L->foreach(C);
    177 
    178     C(value);
    179 
    180     if (ImutAVLTree* R = getRight())
    181       R->foreach(C);
    182   }
    183 
    184   /// validateTree - A utility method that checks that the balancing and
    185   ///  ordering invariants of the tree are satisifed.  It is a recursive
    186   ///  method that returns the height of the tree, which is then consumed
    187   ///  by the enclosing validateTree call.  External callers should ignore the
    188   ///  return value.  An invalid tree will cause an assertion to fire in
    189   ///  a debug build.
    190   unsigned validateTree() const {
    191     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    192     unsigned HR = getRight() ? getRight()->validateTree() : 0;
    193     (void) HL;
    194     (void) HR;
    195 
    196     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
    197             && "Height calculation wrong");
    198 
    199     assert((HL > HR ? HL-HR : HR-HL) <= 2
    200            && "Balancing invariant violated");
    201 
    202     assert((!getLeft() ||
    203             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
    204                              ImutInfo::KeyOfValue(getValue()))) &&
    205            "Value in left child is not less that current value");
    206 
    207 
    208     assert(!(getRight() ||
    209              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
    210                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
    211            "Current value is not less that value of right child");
    212 
    213     return getHeight();
    214   }
    215 
    216   //===----------------------------------------------------===//
    217   // Internal values.
    218   //===----------------------------------------------------===//
    219 
    220 private:
    221   Factory *factory;
    222   ImutAVLTree *left;
    223   ImutAVLTree *right;
    224   ImutAVLTree *prev;
    225   ImutAVLTree *next;
    226 
    227   unsigned height         : 28;
    228   unsigned IsMutable      : 1;
    229   unsigned IsDigestCached : 1;
    230   unsigned IsCanonicalized : 1;
    231 
    232   value_type value;
    233   uint32_t digest;
    234   uint32_t refCount;
    235 
    236   //===----------------------------------------------------===//
    237   // Internal methods (node manipulation; used by Factory).
    238   //===----------------------------------------------------===//
    239 
    240 private:
    241   /// ImutAVLTree - Internal constructor that is only called by
    242   ///   ImutAVLFactory.
    243   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
    244               unsigned height)
    245     : factory(f), left(l), right(r), prev(0), next(0), height(height),
    246       IsMutable(true), IsDigestCached(false), IsCanonicalized(0),
    247       value(v), digest(0), refCount(0)
    248   {
    249     if (left) left->retain();
    250     if (right) right->retain();
    251   }
    252 
    253   /// isMutable - Returns true if the left and right subtree references
    254   ///  (as well as height) can be changed.  If this method returns false,
    255   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
    256   ///  object should always have this method return true.  Further, if this
    257   ///  method returns false for an instance of ImutAVLTree, all subtrees
    258   ///  will also have this method return false.  The converse is not true.
    259   bool isMutable() const { return IsMutable; }
    260 
    261   /// hasCachedDigest - Returns true if the digest for this tree is cached.
    262   ///  This can only be true if the tree is immutable.
    263   bool hasCachedDigest() const { return IsDigestCached; }
    264 
    265   //===----------------------------------------------------===//
    266   // Mutating operations.  A tree root can be manipulated as
    267   // long as its reference has not "escaped" from internal
    268   // methods of a factory object (see below).  When a tree
    269   // pointer is externally viewable by client code, the
    270   // internal "mutable bit" is cleared to mark the tree
    271   // immutable.  Note that a tree that still has its mutable
    272   // bit set may have children (subtrees) that are themselves
    273   // immutable.
    274   //===----------------------------------------------------===//
    275 
    276   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
    277   ///   it is an error to call setLeft(), setRight(), and setHeight().
    278   void markImmutable() {
    279     assert(isMutable() && "Mutable flag already removed.");
    280     IsMutable = false;
    281   }
    282 
    283   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
    284   void markedCachedDigest() {
    285     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    286     IsDigestCached = true;
    287   }
    288 
    289   /// setHeight - Changes the height of the tree.  Used internally by
    290   ///  ImutAVLFactory.
    291   void setHeight(unsigned h) {
    292     assert(isMutable() && "Only a mutable tree can have its height changed.");
    293     height = h;
    294   }
    295 
    296   static inline
    297   uint32_t computeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
    298     uint32_t digest = 0;
    299 
    300     if (L)
    301       digest += L->computeDigest();
    302 
    303     // Compute digest of stored data.
    304     FoldingSetNodeID ID;
    305     ImutInfo::Profile(ID,V);
    306     digest += ID.ComputeHash();
    307 
    308     if (R)
    309       digest += R->computeDigest();
    310 
    311     return digest;
    312   }
    313 
    314   inline uint32_t computeDigest() {
    315     // Check the lowest bit to determine if digest has actually been
    316     // pre-computed.
    317     if (hasCachedDigest())
    318       return digest;
    319 
    320     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    321     digest = X;
    322     markedCachedDigest();
    323     return X;
    324   }
    325 
    326   //===----------------------------------------------------===//
    327   // Reference count operations.
    328   //===----------------------------------------------------===//
    329 
    330 public:
    331   void retain() { ++refCount; }
    332   void release() {
    333     assert(refCount > 0);
    334     if (--refCount == 0)
    335       destroy();
    336   }
    337   void destroy() {
    338     if (left)
    339       left->release();
    340     if (right)
    341       right->release();
    342     if (IsCanonicalized) {
    343       if (next)
    344         next->prev = prev;
    345 
    346       if (prev)
    347         prev->next = next;
    348       else
    349         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
    350     }
    351 
    352     // We need to clear the mutability bit in case we are
    353     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    354     IsMutable = false;
    355     factory->freeNodes.push_back(this);
    356   }
    357 };
    358 
    359 //===----------------------------------------------------------------------===//
    360 // Immutable AVL-Tree Factory class.
    361 //===----------------------------------------------------------------------===//
    362 
    363 template <typename ImutInfo >
    364 class ImutAVLFactory {
    365   friend class ImutAVLTree<ImutInfo>;
    366   typedef ImutAVLTree<ImutInfo> TreeTy;
    367   typedef typename TreeTy::value_type_ref value_type_ref;
    368   typedef typename TreeTy::key_type_ref   key_type_ref;
    369 
    370   typedef DenseMap<unsigned, TreeTy*> CacheTy;
    371 
    372   CacheTy Cache;
    373   uintptr_t Allocator;
    374   std::vector<TreeTy*> createdNodes;
    375   std::vector<TreeTy*> freeNodes;
    376 
    377   bool ownsAllocator() const {
    378     return Allocator & 0x1 ? false : true;
    379   }
    380 
    381   BumpPtrAllocator& getAllocator() const {
    382     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
    383   }
    384 
    385   //===--------------------------------------------------===//
    386   // Public interface.
    387   //===--------------------------------------------------===//
    388 
    389 public:
    390   ImutAVLFactory()
    391     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
    392 
    393   ImutAVLFactory(BumpPtrAllocator& Alloc)
    394     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
    395 
    396   ~ImutAVLFactory() {
    397     if (ownsAllocator()) delete &getAllocator();
    398   }
    399 
    400   TreeTy* add(TreeTy* T, value_type_ref V) {
    401     T = add_internal(V,T);
    402     markImmutable(T);
    403     recoverNodes();
    404     return T;
    405   }
    406 
    407   TreeTy* remove(TreeTy* T, key_type_ref V) {
    408     T = remove_internal(V,T);
    409     markImmutable(T);
    410     recoverNodes();
    411     return T;
    412   }
    413 
    414   TreeTy* getEmptyTree() const { return NULL; }
    415 
    416 protected:
    417 
    418   //===--------------------------------------------------===//
    419   // A bunch of quick helper functions used for reasoning
    420   // about the properties of trees and their children.
    421   // These have succinct names so that the balancing code
    422   // is as terse (and readable) as possible.
    423   //===--------------------------------------------------===//
    424 
    425   bool            isEmpty(TreeTy* T) const { return !T; }
    426   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
    427   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
    428   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
    429   value_type_ref  getValue(TreeTy* T) const { return T->value; }
    430 
    431   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
    432   static inline unsigned maskCacheIndex(unsigned I) {
    433     return (I & ~0x02);
    434   }
    435 
    436   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    437     unsigned hl = getHeight(L);
    438     unsigned hr = getHeight(R);
    439     return (hl > hr ? hl : hr) + 1;
    440   }
    441 
    442   static bool compareTreeWithSection(TreeTy* T,
    443                                      typename TreeTy::iterator& TI,
    444                                      typename TreeTy::iterator& TE) {
    445     typename TreeTy::iterator I = T->begin(), E = T->end();
    446     for ( ; I!=E ; ++I, ++TI) {
    447       if (TI == TE || !I->isElementEqual(*TI))
    448         return false;
    449     }
    450     return true;
    451   }
    452 
    453   //===--------------------------------------------------===//
    454   // "createNode" is used to generate new tree roots that link
    455   // to other trees.  The functon may also simply move links
    456   // in an existing root if that root is still marked mutable.
    457   // This is necessary because otherwise our balancing code
    458   // would leak memory as it would create nodes that are
    459   // then discarded later before the finished tree is
    460   // returned to the caller.
    461   //===--------------------------------------------------===//
    462 
    463   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    464     BumpPtrAllocator& A = getAllocator();
    465     TreeTy* T;
    466     if (!freeNodes.empty()) {
    467       T = freeNodes.back();
    468       freeNodes.pop_back();
    469       assert(T != L);
    470       assert(T != R);
    471     } else {
    472       T = (TreeTy*) A.Allocate<TreeTy>();
    473     }
    474     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    475     createdNodes.push_back(T);
    476     return T;
    477   }
    478 
    479   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    480     return createNode(newLeft, getValue(oldTree), newRight);
    481   }
    482 
    483   void recoverNodes() {
    484     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
    485       TreeTy *N = createdNodes[i];
    486       if (N->isMutable() && N->refCount == 0)
    487         N->destroy();
    488     }
    489     createdNodes.clear();
    490   }
    491 
    492   /// balanceTree - Used by add_internal and remove_internal to
    493   ///  balance a newly created tree.
    494   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    495     unsigned hl = getHeight(L);
    496     unsigned hr = getHeight(R);
    497 
    498     if (hl > hr + 2) {
    499       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
    500 
    501       TreeTy *LL = getLeft(L);
    502       TreeTy *LR = getRight(L);
    503 
    504       if (getHeight(LL) >= getHeight(LR))
    505         return createNode(LL, L, createNode(LR,V,R));
    506 
    507       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
    508 
    509       TreeTy *LRL = getLeft(LR);
    510       TreeTy *LRR = getRight(LR);
    511 
    512       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    513     }
    514 
    515     if (hr > hl + 2) {
    516       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
    517 
    518       TreeTy *RL = getLeft(R);
    519       TreeTy *RR = getRight(R);
    520 
    521       if (getHeight(RR) >= getHeight(RL))
    522         return createNode(createNode(L,V,RL), R, RR);
    523 
    524       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
    525 
    526       TreeTy *RLL = getLeft(RL);
    527       TreeTy *RLR = getRight(RL);
    528 
    529       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    530     }
    531 
    532     return createNode(L,V,R);
    533   }
    534 
    535   /// add_internal - Creates a new tree that includes the specified
    536   ///  data and the data from the original tree.  If the original tree
    537   ///  already contained the data item, the original tree is returned.
    538   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    539     if (isEmpty(T))
    540       return createNode(T, V, T);
    541     assert(!T->isMutable());
    542 
    543     key_type_ref K = ImutInfo::KeyOfValue(V);
    544     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    545 
    546     if (ImutInfo::isEqual(K,KCurrent))
    547       return createNode(getLeft(T), V, getRight(T));
    548     else if (ImutInfo::isLess(K,KCurrent))
    549       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    550     else
    551       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
    552   }
    553 
    554   /// remove_internal - Creates a new tree that includes all the data
    555   ///  from the original tree except the specified data.  If the
    556   ///  specified data did not exist in the original tree, the original
    557   ///  tree is returned.
    558   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    559     if (isEmpty(T))
    560       return T;
    561 
    562     assert(!T->isMutable());
    563 
    564     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    565 
    566     if (ImutInfo::isEqual(K,KCurrent)) {
    567       return combineTrees(getLeft(T), getRight(T));
    568     } else if (ImutInfo::isLess(K,KCurrent)) {
    569       return balanceTree(remove_internal(K, getLeft(T)),
    570                                             getValue(T), getRight(T));
    571     } else {
    572       return balanceTree(getLeft(T), getValue(T),
    573                          remove_internal(K, getRight(T)));
    574     }
    575   }
    576 
    577   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    578     if (isEmpty(L))
    579       return R;
    580     if (isEmpty(R))
    581       return L;
    582     TreeTy* OldNode;
    583     TreeTy* newRight = removeMinBinding(R,OldNode);
    584     return balanceTree(L, getValue(OldNode), newRight);
    585   }
    586 
    587   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    588     assert(!isEmpty(T));
    589     if (isEmpty(getLeft(T))) {
    590       Noderemoved = T;
    591       return getRight(T);
    592     }
    593     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
    594                        getValue(T), getRight(T));
    595   }
    596 
    597   /// markImmutable - Clears the mutable bits of a root and all of its
    598   ///  descendants.
    599   void markImmutable(TreeTy* T) {
    600     if (!T || !T->isMutable())
    601       return;
    602     T->markImmutable();
    603     markImmutable(getLeft(T));
    604     markImmutable(getRight(T));
    605   }
    606 
    607 public:
    608   TreeTy *getCanonicalTree(TreeTy *TNew) {
    609     if (!TNew)
    610       return 0;
    611 
    612     if (TNew->IsCanonicalized)
    613       return TNew;
    614 
    615     // Search the hashtable for another tree with the same digest, and
    616     // if find a collision compare those trees by their contents.
    617     unsigned digest = TNew->computeDigest();
    618     TreeTy *&entry = Cache[maskCacheIndex(digest)];
    619     do {
    620       if (!entry)
    621         break;
    622       for (TreeTy *T = entry ; T != 0; T = T->next) {
    623         // Compare the Contents('T') with Contents('TNew')
    624         typename TreeTy::iterator TI = T->begin(), TE = T->end();
    625         if (!compareTreeWithSection(TNew, TI, TE))
    626           continue;
    627         if (TI != TE)
    628           continue; // T has more contents than TNew.
    629         // Trees did match!  Return 'T'.
    630         if (TNew->refCount == 0)
    631           TNew->destroy();
    632         return T;
    633       }
    634       entry->prev = TNew;
    635       TNew->next = entry;
    636     }
    637     while (false);
    638 
    639     entry = TNew;
    640     TNew->IsCanonicalized = true;
    641     return TNew;
    642   }
    643 };
    644 
    645 //===----------------------------------------------------------------------===//
    646 // Immutable AVL-Tree Iterators.
    647 //===----------------------------------------------------------------------===//
    648 
    649 template <typename ImutInfo>
    650 class ImutAVLTreeGenericIterator {
    651   SmallVector<uintptr_t,20> stack;
    652 public:
    653   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
    654                    Flags=0x3 };
    655 
    656   typedef ImutAVLTree<ImutInfo> TreeTy;
    657   typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
    658 
    659   inline ImutAVLTreeGenericIterator() {}
    660   inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
    661     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
    662   }
    663 
    664   TreeTy* operator*() const {
    665     assert(!stack.empty());
    666     return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    667   }
    668 
    669   uintptr_t getVisitState() const {
    670     assert(!stack.empty());
    671     return stack.back() & Flags;
    672   }
    673 
    674 
    675   bool atEnd() const { return stack.empty(); }
    676 
    677   bool atBeginning() const {
    678     return stack.size() == 1 && getVisitState() == VisitedNone;
    679   }
    680 
    681   void skipToParent() {
    682     assert(!stack.empty());
    683     stack.pop_back();
    684     if (stack.empty())
    685       return;
    686     switch (getVisitState()) {
    687       case VisitedNone:
    688         stack.back() |= VisitedLeft;
    689         break;
    690       case VisitedLeft:
    691         stack.back() |= VisitedRight;
    692         break;
    693       default:
    694         llvm_unreachable("Unreachable.");
    695     }
    696   }
    697 
    698   inline bool operator==(const _Self& x) const {
    699     if (stack.size() != x.stack.size())
    700       return false;
    701     for (unsigned i = 0 ; i < stack.size(); i++)
    702       if (stack[i] != x.stack[i])
    703         return false;
    704     return true;
    705   }
    706 
    707   inline bool operator!=(const _Self& x) const { return !operator==(x); }
    708 
    709   _Self& operator++() {
    710     assert(!stack.empty());
    711     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    712     assert(Current);
    713     switch (getVisitState()) {
    714       case VisitedNone:
    715         if (TreeTy* L = Current->getLeft())
    716           stack.push_back(reinterpret_cast<uintptr_t>(L));
    717         else
    718           stack.back() |= VisitedLeft;
    719         break;
    720       case VisitedLeft:
    721         if (TreeTy* R = Current->getRight())
    722           stack.push_back(reinterpret_cast<uintptr_t>(R));
    723         else
    724           stack.back() |= VisitedRight;
    725         break;
    726       case VisitedRight:
    727         skipToParent();
    728         break;
    729       default:
    730         llvm_unreachable("Unreachable.");
    731     }
    732     return *this;
    733   }
    734 
    735   _Self& operator--() {
    736     assert(!stack.empty());
    737     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    738     assert(Current);
    739     switch (getVisitState()) {
    740       case VisitedNone:
    741         stack.pop_back();
    742         break;
    743       case VisitedLeft:
    744         stack.back() &= ~Flags; // Set state to "VisitedNone."
    745         if (TreeTy* L = Current->getLeft())
    746           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
    747         break;
    748       case VisitedRight:
    749         stack.back() &= ~Flags;
    750         stack.back() |= VisitedLeft;
    751         if (TreeTy* R = Current->getRight())
    752           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
    753         break;
    754       default:
    755         llvm_unreachable("Unreachable.");
    756     }
    757     return *this;
    758   }
    759 };
    760 
    761 template <typename ImutInfo>
    762 class ImutAVLTreeInOrderIterator {
    763   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
    764   InternalIteratorTy InternalItr;
    765 
    766 public:
    767   typedef ImutAVLTree<ImutInfo> TreeTy;
    768   typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
    769 
    770   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    771     if (Root) operator++(); // Advance to first element.
    772   }
    773 
    774   ImutAVLTreeInOrderIterator() : InternalItr() {}
    775 
    776   inline bool operator==(const _Self& x) const {
    777     return InternalItr == x.InternalItr;
    778   }
    779 
    780   inline bool operator!=(const _Self& x) const { return !operator==(x); }
    781 
    782   inline TreeTy* operator*() const { return *InternalItr; }
    783   inline TreeTy* operator->() const { return *InternalItr; }
    784 
    785   inline _Self& operator++() {
    786     do ++InternalItr;
    787     while (!InternalItr.atEnd() &&
    788            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    789 
    790     return *this;
    791   }
    792 
    793   inline _Self& operator--() {
    794     do --InternalItr;
    795     while (!InternalItr.atBeginning() &&
    796            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    797 
    798     return *this;
    799   }
    800 
    801   inline void skipSubTree() {
    802     InternalItr.skipToParent();
    803 
    804     while (!InternalItr.atEnd() &&
    805            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
    806       ++InternalItr;
    807   }
    808 };
    809 
    810 //===----------------------------------------------------------------------===//
    811 // Trait classes for Profile information.
    812 //===----------------------------------------------------------------------===//
    813 
    814 /// Generic profile template.  The default behavior is to invoke the
    815 /// profile method of an object.  Specializations for primitive integers
    816 /// and generic handling of pointers is done below.
    817 template <typename T>
    818 struct ImutProfileInfo {
    819   typedef const T  value_type;
    820   typedef const T& value_type_ref;
    821 
    822   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    823     FoldingSetTrait<T>::Profile(X,ID);
    824   }
    825 };
    826 
    827 /// Profile traits for integers.
    828 template <typename T>
    829 struct ImutProfileInteger {
    830   typedef const T  value_type;
    831   typedef const T& value_type_ref;
    832 
    833   static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
    834     ID.AddInteger(X);
    835   }
    836 };
    837 
    838 #define PROFILE_INTEGER_INFO(X)\
    839 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
    840 
    841 PROFILE_INTEGER_INFO(char)
    842 PROFILE_INTEGER_INFO(unsigned char)
    843 PROFILE_INTEGER_INFO(short)
    844 PROFILE_INTEGER_INFO(unsigned short)
    845 PROFILE_INTEGER_INFO(unsigned)
    846 PROFILE_INTEGER_INFO(signed)
    847 PROFILE_INTEGER_INFO(long)
    848 PROFILE_INTEGER_INFO(unsigned long)
    849 PROFILE_INTEGER_INFO(long long)
    850 PROFILE_INTEGER_INFO(unsigned long long)
    851 
    852 #undef PROFILE_INTEGER_INFO
    853 
    854 /// Generic profile trait for pointer types.  We treat pointers as
    855 /// references to unique objects.
    856 template <typename T>
    857 struct ImutProfileInfo<T*> {
    858   typedef const T*   value_type;
    859   typedef value_type value_type_ref;
    860 
    861   static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    862     ID.AddPointer(X);
    863   }
    864 };
    865 
    866 //===----------------------------------------------------------------------===//
    867 // Trait classes that contain element comparison operators and type
    868 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
    869 //  inherit from the profile traits (ImutProfileInfo) to include operations
    870 //  for element profiling.
    871 //===----------------------------------------------------------------------===//
    872 
    873 
    874 /// ImutContainerInfo - Generic definition of comparison operations for
    875 ///   elements of immutable containers that defaults to using
    876 ///   std::equal_to<> and std::less<> to perform comparison of elements.
    877 template <typename T>
    878 struct ImutContainerInfo : public ImutProfileInfo<T> {
    879   typedef typename ImutProfileInfo<T>::value_type      value_type;
    880   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
    881   typedef value_type      key_type;
    882   typedef value_type_ref  key_type_ref;
    883   typedef bool            data_type;
    884   typedef bool            data_type_ref;
    885 
    886   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
    887   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
    888 
    889   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    890     return std::equal_to<key_type>()(LHS,RHS);
    891   }
    892 
    893   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    894     return std::less<key_type>()(LHS,RHS);
    895   }
    896 
    897   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
    898 };
    899 
    900 /// ImutContainerInfo - Specialization for pointer values to treat pointers
    901 ///  as references to unique objects.  Pointers are thus compared by
    902 ///  their addresses.
    903 template <typename T>
    904 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
    905   typedef typename ImutProfileInfo<T*>::value_type      value_type;
    906   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
    907   typedef value_type      key_type;
    908   typedef value_type_ref  key_type_ref;
    909   typedef bool            data_type;
    910   typedef bool            data_type_ref;
    911 
    912   static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
    913   static inline data_type_ref DataOfValue(value_type_ref) { return true; }
    914 
    915   static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    916     return LHS == RHS;
    917   }
    918 
    919   static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
    920     return LHS < RHS;
    921   }
    922 
    923   static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
    924 };
    925 
    926 //===----------------------------------------------------------------------===//
    927 // Immutable Set
    928 //===----------------------------------------------------------------------===//
    929 
    930 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
    931 class ImmutableSet {
    932 public:
    933   typedef typename ValInfo::value_type      value_type;
    934   typedef typename ValInfo::value_type_ref  value_type_ref;
    935   typedef ImutAVLTree<ValInfo> TreeTy;
    936 
    937 private:
    938   TreeTy *Root;
    939 
    940 public:
    941   /// Constructs a set from a pointer to a tree root.  In general one
    942   /// should use a Factory object to create sets instead of directly
    943   /// invoking the constructor, but there are cases where make this
    944   /// constructor public is useful.
    945   explicit ImmutableSet(TreeTy* R) : Root(R) {
    946     if (Root) { Root->retain(); }
    947   }
    948   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    949     if (Root) { Root->retain(); }
    950   }
    951   ImmutableSet &operator=(const ImmutableSet &X) {
    952     if (Root != X.Root) {
    953       if (X.Root) { X.Root->retain(); }
    954       if (Root) { Root->release(); }
    955       Root = X.Root;
    956     }
    957     return *this;
    958   }
    959   ~ImmutableSet() {
    960     if (Root) { Root->release(); }
    961   }
    962 
    963   class Factory {
    964     typename TreeTy::Factory F;
    965     const bool Canonicalize;
    966 
    967   public:
    968     Factory(bool canonicalize = true)
    969       : Canonicalize(canonicalize) {}
    970 
    971     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
    972       : F(Alloc), Canonicalize(canonicalize) {}
    973 
    974     /// getEmptySet - Returns an immutable set that contains no elements.
    975     ImmutableSet getEmptySet() {
    976       return ImmutableSet(F.getEmptyTree());
    977     }
    978 
    979     /// add - Creates a new immutable set that contains all of the values
    980     ///  of the original set with the addition of the specified value.  If
    981     ///  the original set already included the value, then the original set is
    982     ///  returned and no memory is allocated.  The time and space complexity
    983     ///  of this operation is logarithmic in the size of the original set.
    984     ///  The memory allocated to represent the set is released when the
    985     ///  factory object that created the set is destroyed.
    986     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
    987       TreeTy *NewT = F.add(Old.Root, V);
    988       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
    989     }
    990 
    991     /// remove - Creates a new immutable set that contains all of the values
    992     ///  of the original set with the exception of the specified value.  If
    993     ///  the original set did not contain the value, the original set is
    994     ///  returned and no memory is allocated.  The time and space complexity
    995     ///  of this operation is logarithmic in the size of the original set.
    996     ///  The memory allocated to represent the set is released when the
    997     ///  factory object that created the set is destroyed.
    998     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
    999       TreeTy *NewT = F.remove(Old.Root, V);
   1000       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1001     }
   1002 
   1003     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
   1004 
   1005     typename TreeTy::Factory *getTreeFactory() const {
   1006       return const_cast<typename TreeTy::Factory *>(&F);
   1007     }
   1008 
   1009   private:
   1010     Factory(const Factory& RHS) LLVM_DELETED_FUNCTION;
   1011     void operator=(const Factory& RHS) LLVM_DELETED_FUNCTION;
   1012   };
   1013 
   1014   friend class Factory;
   1015 
   1016   /// Returns true if the set contains the specified value.
   1017   bool contains(value_type_ref V) const {
   1018     return Root ? Root->contains(V) : false;
   1019   }
   1020 
   1021   bool operator==(const ImmutableSet &RHS) const {
   1022     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1023   }
   1024 
   1025   bool operator!=(const ImmutableSet &RHS) const {
   1026     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1027   }
   1028 
   1029   TreeTy *getRoot() {
   1030     if (Root) { Root->retain(); }
   1031     return Root;
   1032   }
   1033 
   1034   TreeTy *getRootWithoutRetain() const {
   1035     return Root;
   1036   }
   1037 
   1038   /// isEmpty - Return true if the set contains no elements.
   1039   bool isEmpty() const { return !Root; }
   1040 
   1041   /// isSingleton - Return true if the set contains exactly one element.
   1042   ///   This method runs in constant time.
   1043   bool isSingleton() const { return getHeight() == 1; }
   1044 
   1045   template <typename Callback>
   1046   void foreach(Callback& C) { if (Root) Root->foreach(C); }
   1047 
   1048   template <typename Callback>
   1049   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
   1050 
   1051   //===--------------------------------------------------===//
   1052   // Iterators.
   1053   //===--------------------------------------------------===//
   1054 
   1055   class iterator {
   1056     typename TreeTy::iterator itr;
   1057 
   1058     iterator() {}
   1059     iterator(TreeTy* t) : itr(t) {}
   1060     friend class ImmutableSet<ValT,ValInfo>;
   1061 
   1062   public:
   1063     typedef typename ImmutableSet<ValT,ValInfo>::value_type value_type;
   1064     typedef typename ImmutableSet<ValT,ValInfo>::value_type_ref reference;
   1065     typedef typename iterator::value_type *pointer;
   1066     typedef std::bidirectional_iterator_tag iterator_category;
   1067 
   1068     typename iterator::reference operator*() const { return itr->getValue(); }
   1069     typename iterator::pointer   operator->() const { return &(operator*()); }
   1070 
   1071     iterator& operator++() { ++itr; return *this; }
   1072     iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
   1073     iterator& operator--() { --itr; return *this; }
   1074     iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
   1075 
   1076     bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
   1077     bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
   1078   };
   1079 
   1080   iterator begin() const { return iterator(Root); }
   1081   iterator end() const { return iterator(); }
   1082 
   1083   //===--------------------------------------------------===//
   1084   // Utility methods.
   1085   //===--------------------------------------------------===//
   1086 
   1087   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1088 
   1089   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
   1090     ID.AddPointer(S.Root);
   1091   }
   1092 
   1093   inline void Profile(FoldingSetNodeID& ID) const {
   1094     return Profile(ID,*this);
   1095   }
   1096 
   1097   //===--------------------------------------------------===//
   1098   // For testing.
   1099   //===--------------------------------------------------===//
   1100 
   1101   void validateTree() const { if (Root) Root->validateTree(); }
   1102 };
   1103 
   1104 // NOTE: This may some day replace the current ImmutableSet.
   1105 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
   1106 class ImmutableSetRef {
   1107 public:
   1108   typedef typename ValInfo::value_type      value_type;
   1109   typedef typename ValInfo::value_type_ref  value_type_ref;
   1110   typedef ImutAVLTree<ValInfo> TreeTy;
   1111   typedef typename TreeTy::Factory          FactoryTy;
   1112 
   1113 private:
   1114   TreeTy *Root;
   1115   FactoryTy *Factory;
   1116 
   1117 public:
   1118   /// Constructs a set from a pointer to a tree root.  In general one
   1119   /// should use a Factory object to create sets instead of directly
   1120   /// invoking the constructor, but there are cases where make this
   1121   /// constructor public is useful.
   1122   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
   1123     : Root(R),
   1124       Factory(F) {
   1125     if (Root) { Root->retain(); }
   1126   }
   1127   ImmutableSetRef(const ImmutableSetRef &X)
   1128     : Root(X.Root),
   1129       Factory(X.Factory) {
   1130     if (Root) { Root->retain(); }
   1131   }
   1132   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
   1133     if (Root != X.Root) {
   1134       if (X.Root) { X.Root->retain(); }
   1135       if (Root) { Root->release(); }
   1136       Root = X.Root;
   1137       Factory = X.Factory;
   1138     }
   1139     return *this;
   1140   }
   1141   ~ImmutableSetRef() {
   1142     if (Root) { Root->release(); }
   1143   }
   1144 
   1145   static inline ImmutableSetRef getEmptySet(FactoryTy *F) {
   1146     return ImmutableSetRef(0, F);
   1147   }
   1148 
   1149   ImmutableSetRef add(value_type_ref V) {
   1150     return ImmutableSetRef(Factory->add(Root, V), Factory);
   1151   }
   1152 
   1153   ImmutableSetRef remove(value_type_ref V) {
   1154     return ImmutableSetRef(Factory->remove(Root, V), Factory);
   1155   }
   1156 
   1157   /// Returns true if the set contains the specified value.
   1158   bool contains(value_type_ref V) const {
   1159     return Root ? Root->contains(V) : false;
   1160   }
   1161 
   1162   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
   1163     return ImmutableSet<ValT>(canonicalize ?
   1164                               Factory->getCanonicalTree(Root) : Root);
   1165   }
   1166 
   1167   TreeTy *getRootWithoutRetain() const {
   1168     return Root;
   1169   }
   1170 
   1171   bool operator==(const ImmutableSetRef &RHS) const {
   1172     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1173   }
   1174 
   1175   bool operator!=(const ImmutableSetRef &RHS) const {
   1176     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1177   }
   1178 
   1179   /// isEmpty - Return true if the set contains no elements.
   1180   bool isEmpty() const { return !Root; }
   1181 
   1182   /// isSingleton - Return true if the set contains exactly one element.
   1183   ///   This method runs in constant time.
   1184   bool isSingleton() const { return getHeight() == 1; }
   1185 
   1186   //===--------------------------------------------------===//
   1187   // Iterators.
   1188   //===--------------------------------------------------===//
   1189 
   1190   class iterator {
   1191     typename TreeTy::iterator itr;
   1192     iterator(TreeTy* t) : itr(t) {}
   1193     friend class ImmutableSetRef<ValT,ValInfo>;
   1194   public:
   1195     iterator() {}
   1196     inline value_type_ref operator*() const { return itr->getValue(); }
   1197     inline iterator& operator++() { ++itr; return *this; }
   1198     inline iterator  operator++(int) { iterator tmp(*this); ++itr; return tmp; }
   1199     inline iterator& operator--() { --itr; return *this; }
   1200     inline iterator  operator--(int) { iterator tmp(*this); --itr; return tmp; }
   1201     inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
   1202     inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
   1203     inline value_type *operator->() const { return &(operator*()); }
   1204   };
   1205 
   1206   iterator begin() const { return iterator(Root); }
   1207   iterator end() const { return iterator(); }
   1208 
   1209   //===--------------------------------------------------===//
   1210   // Utility methods.
   1211   //===--------------------------------------------------===//
   1212 
   1213   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1214 
   1215   static inline void Profile(FoldingSetNodeID& ID, const ImmutableSetRef& S) {
   1216     ID.AddPointer(S.Root);
   1217   }
   1218 
   1219   inline void Profile(FoldingSetNodeID& ID) const {
   1220     return Profile(ID,*this);
   1221   }
   1222 
   1223   //===--------------------------------------------------===//
   1224   // For testing.
   1225   //===--------------------------------------------------===//
   1226 
   1227   void validateTree() const { if (Root) Root->validateTree(); }
   1228 };
   1229 
   1230 } // end namespace llvm
   1231 
   1232 #endif
   1233