1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more 14 // information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/Analysis/Analyses/ThreadSafety.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 25 #include "clang/Analysis/AnalysisContext.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Analysis/CFGStmtMap.h" 28 #include "clang/Basic/OperatorKinds.h" 29 #include "clang/Basic/SourceLocation.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/FoldingSet.h" 33 #include "llvm/ADT/ImmutableMap.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <utility> 40 #include <vector> 41 42 using namespace clang; 43 using namespace thread_safety; 44 45 // Key method definition 46 ThreadSafetyHandler::~ThreadSafetyHandler() {} 47 48 namespace { 49 50 /// SExpr implements a simple expression language that is used to store, 51 /// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr 52 /// does not capture surface syntax, and it does not distinguish between 53 /// C++ concepts, like pointers and references, that have no real semantic 54 /// differences. This simplicity allows SExprs to be meaningfully compared, 55 /// e.g. 56 /// (x) = x 57 /// (*this).foo = this->foo 58 /// *&a = a 59 /// 60 /// Thread-safety analysis works by comparing lock expressions. Within the 61 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to 62 /// a particular mutex object at run-time. Subsequent occurrences of the same 63 /// expression (where "same" means syntactic equality) will refer to the same 64 /// run-time object if three conditions hold: 65 /// (1) Local variables in the expression, such as "x" have not changed. 66 /// (2) Values on the heap that affect the expression have not changed. 67 /// (3) The expression involves only pure function calls. 68 /// 69 /// The current implementation assumes, but does not verify, that multiple uses 70 /// of the same lock expression satisfies these criteria. 71 class SExpr { 72 private: 73 enum ExprOp { 74 EOP_Nop, ///< No-op 75 EOP_Wildcard, ///< Matches anything. 76 EOP_Universal, ///< Universal lock. 77 EOP_This, ///< This keyword. 78 EOP_NVar, ///< Named variable. 79 EOP_LVar, ///< Local variable. 80 EOP_Dot, ///< Field access 81 EOP_Call, ///< Function call 82 EOP_MCall, ///< Method call 83 EOP_Index, ///< Array index 84 EOP_Unary, ///< Unary operation 85 EOP_Binary, ///< Binary operation 86 EOP_Unknown ///< Catchall for everything else 87 }; 88 89 90 class SExprNode { 91 private: 92 unsigned char Op; ///< Opcode of the root node 93 unsigned char Flags; ///< Additional opcode-specific data 94 unsigned short Sz; ///< Number of child nodes 95 const void* Data; ///< Additional opcode-specific data 96 97 public: 98 SExprNode(ExprOp O, unsigned F, const void* D) 99 : Op(static_cast<unsigned char>(O)), 100 Flags(static_cast<unsigned char>(F)), Sz(1), Data(D) 101 { } 102 103 unsigned size() const { return Sz; } 104 void setSize(unsigned S) { Sz = S; } 105 106 ExprOp kind() const { return static_cast<ExprOp>(Op); } 107 108 const NamedDecl* getNamedDecl() const { 109 assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot); 110 return reinterpret_cast<const NamedDecl*>(Data); 111 } 112 113 const NamedDecl* getFunctionDecl() const { 114 assert(Op == EOP_Call || Op == EOP_MCall); 115 return reinterpret_cast<const NamedDecl*>(Data); 116 } 117 118 bool isArrow() const { return Op == EOP_Dot && Flags == 1; } 119 void setArrow(bool A) { Flags = A ? 1 : 0; } 120 121 unsigned arity() const { 122 switch (Op) { 123 case EOP_Nop: return 0; 124 case EOP_Wildcard: return 0; 125 case EOP_Universal: return 0; 126 case EOP_NVar: return 0; 127 case EOP_LVar: return 0; 128 case EOP_This: return 0; 129 case EOP_Dot: return 1; 130 case EOP_Call: return Flags+1; // First arg is function. 131 case EOP_MCall: return Flags+1; // First arg is implicit obj. 132 case EOP_Index: return 2; 133 case EOP_Unary: return 1; 134 case EOP_Binary: return 2; 135 case EOP_Unknown: return Flags; 136 } 137 return 0; 138 } 139 140 bool operator==(const SExprNode& Other) const { 141 // Ignore flags and size -- they don't matter. 142 return (Op == Other.Op && 143 Data == Other.Data); 144 } 145 146 bool operator!=(const SExprNode& Other) const { 147 return !(*this == Other); 148 } 149 150 bool matches(const SExprNode& Other) const { 151 return (*this == Other) || 152 (Op == EOP_Wildcard) || 153 (Other.Op == EOP_Wildcard); 154 } 155 }; 156 157 158 /// \brief Encapsulates the lexical context of a function call. The lexical 159 /// context includes the arguments to the call, including the implicit object 160 /// argument. When an attribute containing a mutex expression is attached to 161 /// a method, the expression may refer to formal parameters of the method. 162 /// Actual arguments must be substituted for formal parameters to derive 163 /// the appropriate mutex expression in the lexical context where the function 164 /// is called. PrevCtx holds the context in which the arguments themselves 165 /// should be evaluated; multiple calling contexts can be chained together 166 /// by the lock_returned attribute. 167 struct CallingContext { 168 const NamedDecl* AttrDecl; // The decl to which the attribute is attached. 169 const Expr* SelfArg; // Implicit object argument -- e.g. 'this' 170 bool SelfArrow; // is Self referred to with -> or .? 171 unsigned NumArgs; // Number of funArgs 172 const Expr* const* FunArgs; // Function arguments 173 CallingContext* PrevCtx; // The previous context; or 0 if none. 174 175 CallingContext(const NamedDecl *D = 0, const Expr *S = 0, 176 unsigned N = 0, const Expr* const *A = 0, 177 CallingContext *P = 0) 178 : AttrDecl(D), SelfArg(S), SelfArrow(false), 179 NumArgs(N), FunArgs(A), PrevCtx(P) 180 { } 181 }; 182 183 typedef SmallVector<SExprNode, 4> NodeVector; 184 185 private: 186 // A SExpr is a list of SExprNodes in prefix order. The Size field allows 187 // the list to be traversed as a tree. 188 NodeVector NodeVec; 189 190 private: 191 unsigned makeNop() { 192 NodeVec.push_back(SExprNode(EOP_Nop, 0, 0)); 193 return NodeVec.size()-1; 194 } 195 196 unsigned makeWildcard() { 197 NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0)); 198 return NodeVec.size()-1; 199 } 200 201 unsigned makeUniversal() { 202 NodeVec.push_back(SExprNode(EOP_Universal, 0, 0)); 203 return NodeVec.size()-1; 204 } 205 206 unsigned makeNamedVar(const NamedDecl *D) { 207 NodeVec.push_back(SExprNode(EOP_NVar, 0, D)); 208 return NodeVec.size()-1; 209 } 210 211 unsigned makeLocalVar(const NamedDecl *D) { 212 NodeVec.push_back(SExprNode(EOP_LVar, 0, D)); 213 return NodeVec.size()-1; 214 } 215 216 unsigned makeThis() { 217 NodeVec.push_back(SExprNode(EOP_This, 0, 0)); 218 return NodeVec.size()-1; 219 } 220 221 unsigned makeDot(const NamedDecl *D, bool Arrow) { 222 NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D)); 223 return NodeVec.size()-1; 224 } 225 226 unsigned makeCall(unsigned NumArgs, const NamedDecl *D) { 227 NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D)); 228 return NodeVec.size()-1; 229 } 230 231 // Grab the very first declaration of virtual method D 232 const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) { 233 while (true) { 234 D = D->getCanonicalDecl(); 235 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), 236 E = D->end_overridden_methods(); 237 if (I == E) 238 return D; // Method does not override anything 239 D = *I; // FIXME: this does not work with multiple inheritance. 240 } 241 return 0; 242 } 243 244 unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) { 245 NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D))); 246 return NodeVec.size()-1; 247 } 248 249 unsigned makeIndex() { 250 NodeVec.push_back(SExprNode(EOP_Index, 0, 0)); 251 return NodeVec.size()-1; 252 } 253 254 unsigned makeUnary() { 255 NodeVec.push_back(SExprNode(EOP_Unary, 0, 0)); 256 return NodeVec.size()-1; 257 } 258 259 unsigned makeBinary() { 260 NodeVec.push_back(SExprNode(EOP_Binary, 0, 0)); 261 return NodeVec.size()-1; 262 } 263 264 unsigned makeUnknown(unsigned Arity) { 265 NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0)); 266 return NodeVec.size()-1; 267 } 268 269 /// Build an SExpr from the given C++ expression. 270 /// Recursive function that terminates on DeclRefExpr. 271 /// Note: this function merely creates a SExpr; it does not check to 272 /// ensure that the original expression is a valid mutex expression. 273 /// 274 /// NDeref returns the number of Derefence and AddressOf operations 275 /// preceeding the Expr; this is used to decide whether to pretty-print 276 /// SExprs with . or ->. 277 unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx, 278 int* NDeref = 0) { 279 if (!Exp) 280 return 0; 281 282 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) { 283 const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 284 const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND); 285 if (PV) { 286 const FunctionDecl *FD = 287 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 288 unsigned i = PV->getFunctionScopeIndex(); 289 290 if (CallCtx && CallCtx->FunArgs && 291 FD == CallCtx->AttrDecl->getCanonicalDecl()) { 292 // Substitute call arguments for references to function parameters 293 assert(i < CallCtx->NumArgs); 294 return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref); 295 } 296 // Map the param back to the param of the original function declaration. 297 makeNamedVar(FD->getParamDecl(i)); 298 return 1; 299 } 300 // Not a function parameter -- just store the reference. 301 makeNamedVar(ND); 302 return 1; 303 } else if (isa<CXXThisExpr>(Exp)) { 304 // Substitute parent for 'this' 305 if (CallCtx && CallCtx->SelfArg) { 306 if (!CallCtx->SelfArrow && NDeref) 307 // 'this' is a pointer, but self is not, so need to take address. 308 --(*NDeref); 309 return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref); 310 } 311 else { 312 makeThis(); 313 return 1; 314 } 315 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 316 const NamedDecl *ND = ME->getMemberDecl(); 317 int ImplicitDeref = ME->isArrow() ? 1 : 0; 318 unsigned Root = makeDot(ND, false); 319 unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref); 320 NodeVec[Root].setArrow(ImplicitDeref > 0); 321 NodeVec[Root].setSize(Sz + 1); 322 return Sz + 1; 323 } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) { 324 // When calling a function with a lock_returned attribute, replace 325 // the function call with the expression in lock_returned. 326 const CXXMethodDecl* MD = 327 cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl()); 328 if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) { 329 CallingContext LRCallCtx(CMCE->getMethodDecl()); 330 LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument(); 331 LRCallCtx.SelfArrow = 332 dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow(); 333 LRCallCtx.NumArgs = CMCE->getNumArgs(); 334 LRCallCtx.FunArgs = CMCE->getArgs(); 335 LRCallCtx.PrevCtx = CallCtx; 336 return buildSExpr(At->getArg(), &LRCallCtx); 337 } 338 // Hack to treat smart pointers and iterators as pointers; 339 // ignore any method named get(). 340 if (CMCE->getMethodDecl()->getNameAsString() == "get" && 341 CMCE->getNumArgs() == 0) { 342 if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow()) 343 ++(*NDeref); 344 return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref); 345 } 346 unsigned NumCallArgs = CMCE->getNumArgs(); 347 unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl()); 348 unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx); 349 const Expr* const* CallArgs = CMCE->getArgs(); 350 for (unsigned i = 0; i < NumCallArgs; ++i) { 351 Sz += buildSExpr(CallArgs[i], CallCtx); 352 } 353 NodeVec[Root].setSize(Sz + 1); 354 return Sz + 1; 355 } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) { 356 const FunctionDecl* FD = 357 cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl()); 358 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { 359 CallingContext LRCallCtx(CE->getDirectCallee()); 360 LRCallCtx.NumArgs = CE->getNumArgs(); 361 LRCallCtx.FunArgs = CE->getArgs(); 362 LRCallCtx.PrevCtx = CallCtx; 363 return buildSExpr(At->getArg(), &LRCallCtx); 364 } 365 // Treat smart pointers and iterators as pointers; 366 // ignore the * and -> operators. 367 if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) { 368 OverloadedOperatorKind k = OE->getOperator(); 369 if (k == OO_Star) { 370 if (NDeref) ++(*NDeref); 371 return buildSExpr(OE->getArg(0), CallCtx, NDeref); 372 } 373 else if (k == OO_Arrow) { 374 return buildSExpr(OE->getArg(0), CallCtx, NDeref); 375 } 376 } 377 unsigned NumCallArgs = CE->getNumArgs(); 378 unsigned Root = makeCall(NumCallArgs, 0); 379 unsigned Sz = buildSExpr(CE->getCallee(), CallCtx); 380 const Expr* const* CallArgs = CE->getArgs(); 381 for (unsigned i = 0; i < NumCallArgs; ++i) { 382 Sz += buildSExpr(CallArgs[i], CallCtx); 383 } 384 NodeVec[Root].setSize(Sz+1); 385 return Sz+1; 386 } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) { 387 unsigned Root = makeBinary(); 388 unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx); 389 Sz += buildSExpr(BOE->getRHS(), CallCtx); 390 NodeVec[Root].setSize(Sz); 391 return Sz; 392 } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) { 393 // Ignore & and * operators -- they're no-ops. 394 // However, we try to figure out whether the expression is a pointer, 395 // so we can use . and -> appropriately in error messages. 396 if (UOE->getOpcode() == UO_Deref) { 397 if (NDeref) ++(*NDeref); 398 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); 399 } 400 if (UOE->getOpcode() == UO_AddrOf) { 401 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) { 402 if (DRE->getDecl()->isCXXInstanceMember()) { 403 // This is a pointer-to-member expression, e.g. &MyClass::mu_. 404 // We interpret this syntax specially, as a wildcard. 405 unsigned Root = makeDot(DRE->getDecl(), false); 406 makeWildcard(); 407 NodeVec[Root].setSize(2); 408 return 2; 409 } 410 } 411 if (NDeref) --(*NDeref); 412 return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); 413 } 414 unsigned Root = makeUnary(); 415 unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx); 416 NodeVec[Root].setSize(Sz); 417 return Sz; 418 } else if (const ArraySubscriptExpr *ASE = 419 dyn_cast<ArraySubscriptExpr>(Exp)) { 420 unsigned Root = makeIndex(); 421 unsigned Sz = buildSExpr(ASE->getBase(), CallCtx); 422 Sz += buildSExpr(ASE->getIdx(), CallCtx); 423 NodeVec[Root].setSize(Sz); 424 return Sz; 425 } else if (const AbstractConditionalOperator *CE = 426 dyn_cast<AbstractConditionalOperator>(Exp)) { 427 unsigned Root = makeUnknown(3); 428 unsigned Sz = buildSExpr(CE->getCond(), CallCtx); 429 Sz += buildSExpr(CE->getTrueExpr(), CallCtx); 430 Sz += buildSExpr(CE->getFalseExpr(), CallCtx); 431 NodeVec[Root].setSize(Sz); 432 return Sz; 433 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) { 434 unsigned Root = makeUnknown(3); 435 unsigned Sz = buildSExpr(CE->getCond(), CallCtx); 436 Sz += buildSExpr(CE->getLHS(), CallCtx); 437 Sz += buildSExpr(CE->getRHS(), CallCtx); 438 NodeVec[Root].setSize(Sz); 439 return Sz; 440 } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 441 return buildSExpr(CE->getSubExpr(), CallCtx, NDeref); 442 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 443 return buildSExpr(PE->getSubExpr(), CallCtx, NDeref); 444 } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) { 445 return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref); 446 } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) { 447 return buildSExpr(E->getSubExpr(), CallCtx, NDeref); 448 } else if (isa<CharacterLiteral>(Exp) || 449 isa<CXXNullPtrLiteralExpr>(Exp) || 450 isa<GNUNullExpr>(Exp) || 451 isa<CXXBoolLiteralExpr>(Exp) || 452 isa<FloatingLiteral>(Exp) || 453 isa<ImaginaryLiteral>(Exp) || 454 isa<IntegerLiteral>(Exp) || 455 isa<StringLiteral>(Exp) || 456 isa<ObjCStringLiteral>(Exp)) { 457 makeNop(); 458 return 1; // FIXME: Ignore literals for now 459 } else { 460 makeNop(); 461 return 1; // Ignore. FIXME: mark as invalid expression? 462 } 463 } 464 465 /// \brief Construct a SExpr from an expression. 466 /// \param MutexExp The original mutex expression within an attribute 467 /// \param DeclExp An expression involving the Decl on which the attribute 468 /// occurs. 469 /// \param D The declaration to which the lock/unlock attribute is attached. 470 void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp, 471 const NamedDecl *D, VarDecl *SelfDecl = 0) { 472 CallingContext CallCtx(D); 473 474 if (MutexExp) { 475 if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) { 476 if (SLit->getString() == StringRef("*")) 477 // The "*" expr is a universal lock, which essentially turns off 478 // checks until it is removed from the lockset. 479 makeUniversal(); 480 else 481 // Ignore other string literals for now. 482 makeNop(); 483 return; 484 } 485 } 486 487 // If we are processing a raw attribute expression, with no substitutions. 488 if (DeclExp == 0) { 489 buildSExpr(MutexExp, 0); 490 return; 491 } 492 493 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute 494 // for formal parameters when we call buildMutexID later. 495 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 496 CallCtx.SelfArg = ME->getBase(); 497 CallCtx.SelfArrow = ME->isArrow(); 498 } else if (const CXXMemberCallExpr *CE = 499 dyn_cast<CXXMemberCallExpr>(DeclExp)) { 500 CallCtx.SelfArg = CE->getImplicitObjectArgument(); 501 CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow(); 502 CallCtx.NumArgs = CE->getNumArgs(); 503 CallCtx.FunArgs = CE->getArgs(); 504 } else if (const CallExpr *CE = 505 dyn_cast<CallExpr>(DeclExp)) { 506 CallCtx.NumArgs = CE->getNumArgs(); 507 CallCtx.FunArgs = CE->getArgs(); 508 } else if (const CXXConstructExpr *CE = 509 dyn_cast<CXXConstructExpr>(DeclExp)) { 510 CallCtx.SelfArg = 0; // Will be set below 511 CallCtx.NumArgs = CE->getNumArgs(); 512 CallCtx.FunArgs = CE->getArgs(); 513 } else if (D && isa<CXXDestructorDecl>(D)) { 514 // There's no such thing as a "destructor call" in the AST. 515 CallCtx.SelfArg = DeclExp; 516 } 517 518 // Hack to handle constructors, where self cannot be recovered from 519 // the expression. 520 if (SelfDecl && !CallCtx.SelfArg) { 521 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, 522 SelfDecl->getLocation()); 523 CallCtx.SelfArg = &SelfDRE; 524 525 // If the attribute has no arguments, then assume the argument is "this". 526 if (MutexExp == 0) 527 buildSExpr(CallCtx.SelfArg, 0); 528 else // For most attributes. 529 buildSExpr(MutexExp, &CallCtx); 530 return; 531 } 532 533 // If the attribute has no arguments, then assume the argument is "this". 534 if (MutexExp == 0) 535 buildSExpr(CallCtx.SelfArg, 0); 536 else // For most attributes. 537 buildSExpr(MutexExp, &CallCtx); 538 } 539 540 /// \brief Get index of next sibling of node i. 541 unsigned getNextSibling(unsigned i) const { 542 return i + NodeVec[i].size(); 543 } 544 545 public: 546 explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); } 547 548 /// \param MutexExp The original mutex expression within an attribute 549 /// \param DeclExp An expression involving the Decl on which the attribute 550 /// occurs. 551 /// \param D The declaration to which the lock/unlock attribute is attached. 552 /// Caller must check isValid() after construction. 553 SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D, 554 VarDecl *SelfDecl=0) { 555 buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl); 556 } 557 558 /// Return true if this is a valid decl sequence. 559 /// Caller must call this by hand after construction to handle errors. 560 bool isValid() const { 561 return !NodeVec.empty(); 562 } 563 564 bool shouldIgnore() const { 565 // Nop is a mutex that we have decided to deliberately ignore. 566 assert(NodeVec.size() > 0 && "Invalid Mutex"); 567 return NodeVec[0].kind() == EOP_Nop; 568 } 569 570 bool isUniversal() const { 571 assert(NodeVec.size() > 0 && "Invalid Mutex"); 572 return NodeVec[0].kind() == EOP_Universal; 573 } 574 575 /// Issue a warning about an invalid lock expression 576 static void warnInvalidLock(ThreadSafetyHandler &Handler, 577 const Expr *MutexExp, 578 const Expr *DeclExp, const NamedDecl* D) { 579 SourceLocation Loc; 580 if (DeclExp) 581 Loc = DeclExp->getExprLoc(); 582 583 // FIXME: add a note about the attribute location in MutexExp or D 584 if (Loc.isValid()) 585 Handler.handleInvalidLockExp(Loc); 586 } 587 588 bool operator==(const SExpr &other) const { 589 return NodeVec == other.NodeVec; 590 } 591 592 bool operator!=(const SExpr &other) const { 593 return !(*this == other); 594 } 595 596 bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const { 597 if (NodeVec[i].matches(Other.NodeVec[j])) { 598 unsigned ni = NodeVec[i].arity(); 599 unsigned nj = Other.NodeVec[j].arity(); 600 unsigned n = (ni < nj) ? ni : nj; 601 bool Result = true; 602 unsigned ci = i+1; // first child of i 603 unsigned cj = j+1; // first child of j 604 for (unsigned k = 0; k < n; 605 ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) { 606 Result = Result && matches(Other, ci, cj); 607 } 608 return Result; 609 } 610 return false; 611 } 612 613 // A partial match between a.mu and b.mu returns true a and b have the same 614 // type (and thus mu refers to the same mutex declaration), regardless of 615 // whether a and b are different objects or not. 616 bool partiallyMatches(const SExpr &Other) const { 617 if (NodeVec[0].kind() == EOP_Dot) 618 return NodeVec[0].matches(Other.NodeVec[0]); 619 return false; 620 } 621 622 /// \brief Pretty print a lock expression for use in error messages. 623 std::string toString(unsigned i = 0) const { 624 assert(isValid()); 625 if (i >= NodeVec.size()) 626 return ""; 627 628 const SExprNode* N = &NodeVec[i]; 629 switch (N->kind()) { 630 case EOP_Nop: 631 return "_"; 632 case EOP_Wildcard: 633 return "(?)"; 634 case EOP_Universal: 635 return "*"; 636 case EOP_This: 637 return "this"; 638 case EOP_NVar: 639 case EOP_LVar: { 640 return N->getNamedDecl()->getNameAsString(); 641 } 642 case EOP_Dot: { 643 if (NodeVec[i+1].kind() == EOP_Wildcard) { 644 std::string S = "&"; 645 S += N->getNamedDecl()->getQualifiedNameAsString(); 646 return S; 647 } 648 std::string FieldName = N->getNamedDecl()->getNameAsString(); 649 if (NodeVec[i+1].kind() == EOP_This) 650 return FieldName; 651 652 std::string S = toString(i+1); 653 if (N->isArrow()) 654 return S + "->" + FieldName; 655 else 656 return S + "." + FieldName; 657 } 658 case EOP_Call: { 659 std::string S = toString(i+1) + "("; 660 unsigned NumArgs = N->arity()-1; 661 unsigned ci = getNextSibling(i+1); 662 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { 663 S += toString(ci); 664 if (k+1 < NumArgs) S += ","; 665 } 666 S += ")"; 667 return S; 668 } 669 case EOP_MCall: { 670 std::string S = ""; 671 if (NodeVec[i+1].kind() != EOP_This) 672 S = toString(i+1) + "."; 673 if (const NamedDecl *D = N->getFunctionDecl()) 674 S += D->getNameAsString() + "("; 675 else 676 S += "#("; 677 unsigned NumArgs = N->arity()-1; 678 unsigned ci = getNextSibling(i+1); 679 for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) { 680 S += toString(ci); 681 if (k+1 < NumArgs) S += ","; 682 } 683 S += ")"; 684 return S; 685 } 686 case EOP_Index: { 687 std::string S1 = toString(i+1); 688 std::string S2 = toString(i+1 + NodeVec[i+1].size()); 689 return S1 + "[" + S2 + "]"; 690 } 691 case EOP_Unary: { 692 std::string S = toString(i+1); 693 return "#" + S; 694 } 695 case EOP_Binary: { 696 std::string S1 = toString(i+1); 697 std::string S2 = toString(i+1 + NodeVec[i+1].size()); 698 return "(" + S1 + "#" + S2 + ")"; 699 } 700 case EOP_Unknown: { 701 unsigned NumChildren = N->arity(); 702 if (NumChildren == 0) 703 return "(...)"; 704 std::string S = "("; 705 unsigned ci = i+1; 706 for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) { 707 S += toString(ci); 708 if (j+1 < NumChildren) S += "#"; 709 } 710 S += ")"; 711 return S; 712 } 713 } 714 return ""; 715 } 716 }; 717 718 719 720 /// \brief A short list of SExprs 721 class MutexIDList : public SmallVector<SExpr, 3> { 722 public: 723 /// \brief Return true if the list contains the specified SExpr 724 /// Performs a linear search, because these lists are almost always very small. 725 bool contains(const SExpr& M) { 726 for (iterator I=begin(),E=end(); I != E; ++I) 727 if ((*I) == M) return true; 728 return false; 729 } 730 731 /// \brief Push M onto list, bud discard duplicates 732 void push_back_nodup(const SExpr& M) { 733 if (!contains(M)) push_back(M); 734 } 735 }; 736 737 738 739 /// \brief This is a helper class that stores info about the most recent 740 /// accquire of a Lock. 741 /// 742 /// The main body of the analysis maps MutexIDs to LockDatas. 743 struct LockData { 744 SourceLocation AcquireLoc; 745 746 /// \brief LKind stores whether a lock is held shared or exclusively. 747 /// Note that this analysis does not currently support either re-entrant 748 /// locking or lock "upgrading" and "downgrading" between exclusive and 749 /// shared. 750 /// 751 /// FIXME: add support for re-entrant locking and lock up/downgrading 752 LockKind LKind; 753 bool Managed; // for ScopedLockable objects 754 SExpr UnderlyingMutex; // for ScopedLockable objects 755 756 LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false) 757 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M), 758 UnderlyingMutex(Decl::EmptyShell()) 759 {} 760 761 LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu) 762 : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false), 763 UnderlyingMutex(Mu) 764 {} 765 766 bool operator==(const LockData &other) const { 767 return AcquireLoc == other.AcquireLoc && LKind == other.LKind; 768 } 769 770 bool operator!=(const LockData &other) const { 771 return !(*this == other); 772 } 773 774 void Profile(llvm::FoldingSetNodeID &ID) const { 775 ID.AddInteger(AcquireLoc.getRawEncoding()); 776 ID.AddInteger(LKind); 777 } 778 779 bool isAtLeast(LockKind LK) { 780 return (LK == LK_Shared) || (LKind == LK_Exclusive); 781 } 782 }; 783 784 785 /// \brief A FactEntry stores a single fact that is known at a particular point 786 /// in the program execution. Currently, this is information regarding a lock 787 /// that is held at that point. 788 struct FactEntry { 789 SExpr MutID; 790 LockData LDat; 791 792 FactEntry(const SExpr& M, const LockData& L) 793 : MutID(M), LDat(L) 794 { } 795 }; 796 797 798 typedef unsigned short FactID; 799 800 /// \brief FactManager manages the memory for all facts that are created during 801 /// the analysis of a single routine. 802 class FactManager { 803 private: 804 std::vector<FactEntry> Facts; 805 806 public: 807 FactID newLock(const SExpr& M, const LockData& L) { 808 Facts.push_back(FactEntry(M,L)); 809 return static_cast<unsigned short>(Facts.size() - 1); 810 } 811 812 const FactEntry& operator[](FactID F) const { return Facts[F]; } 813 FactEntry& operator[](FactID F) { return Facts[F]; } 814 }; 815 816 817 /// \brief A FactSet is the set of facts that are known to be true at a 818 /// particular program point. FactSets must be small, because they are 819 /// frequently copied, and are thus implemented as a set of indices into a 820 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 821 /// locks, so we can get away with doing a linear search for lookup. Note 822 /// that a hashtable or map is inappropriate in this case, because lookups 823 /// may involve partial pattern matches, rather than exact matches. 824 class FactSet { 825 private: 826 typedef SmallVector<FactID, 4> FactVec; 827 828 FactVec FactIDs; 829 830 public: 831 typedef FactVec::iterator iterator; 832 typedef FactVec::const_iterator const_iterator; 833 834 iterator begin() { return FactIDs.begin(); } 835 const_iterator begin() const { return FactIDs.begin(); } 836 837 iterator end() { return FactIDs.end(); } 838 const_iterator end() const { return FactIDs.end(); } 839 840 bool isEmpty() const { return FactIDs.size() == 0; } 841 842 FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) { 843 FactID F = FM.newLock(M, L); 844 FactIDs.push_back(F); 845 return F; 846 } 847 848 bool removeLock(FactManager& FM, const SExpr& M) { 849 unsigned n = FactIDs.size(); 850 if (n == 0) 851 return false; 852 853 for (unsigned i = 0; i < n-1; ++i) { 854 if (FM[FactIDs[i]].MutID.matches(M)) { 855 FactIDs[i] = FactIDs[n-1]; 856 FactIDs.pop_back(); 857 return true; 858 } 859 } 860 if (FM[FactIDs[n-1]].MutID.matches(M)) { 861 FactIDs.pop_back(); 862 return true; 863 } 864 return false; 865 } 866 867 LockData* findLock(FactManager &FM, const SExpr &M) const { 868 for (const_iterator I = begin(), E = end(); I != E; ++I) { 869 const SExpr &Exp = FM[*I].MutID; 870 if (Exp.matches(M)) 871 return &FM[*I].LDat; 872 } 873 return 0; 874 } 875 876 LockData* findLockUniv(FactManager &FM, const SExpr &M) const { 877 for (const_iterator I = begin(), E = end(); I != E; ++I) { 878 const SExpr &Exp = FM[*I].MutID; 879 if (Exp.matches(M) || Exp.isUniversal()) 880 return &FM[*I].LDat; 881 } 882 return 0; 883 } 884 885 FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const { 886 for (const_iterator I=begin(), E=end(); I != E; ++I) { 887 const SExpr& Exp = FM[*I].MutID; 888 if (Exp.partiallyMatches(M)) return &FM[*I]; 889 } 890 return 0; 891 } 892 }; 893 894 895 896 /// A Lockset maps each SExpr (defined above) to information about how it has 897 /// been locked. 898 typedef llvm::ImmutableMap<SExpr, LockData> Lockset; 899 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 900 901 class LocalVariableMap; 902 903 /// A side (entry or exit) of a CFG node. 904 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 905 906 /// CFGBlockInfo is a struct which contains all the information that is 907 /// maintained for each block in the CFG. See LocalVariableMap for more 908 /// information about the contexts. 909 struct CFGBlockInfo { 910 FactSet EntrySet; // Lockset held at entry to block 911 FactSet ExitSet; // Lockset held at exit from block 912 LocalVarContext EntryContext; // Context held at entry to block 913 LocalVarContext ExitContext; // Context held at exit from block 914 SourceLocation EntryLoc; // Location of first statement in block 915 SourceLocation ExitLoc; // Location of last statement in block. 916 unsigned EntryIndex; // Used to replay contexts later 917 bool Reachable; // Is this block reachable? 918 919 const FactSet &getSet(CFGBlockSide Side) const { 920 return Side == CBS_Entry ? EntrySet : ExitSet; 921 } 922 SourceLocation getLocation(CFGBlockSide Side) const { 923 return Side == CBS_Entry ? EntryLoc : ExitLoc; 924 } 925 926 private: 927 CFGBlockInfo(LocalVarContext EmptyCtx) 928 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 929 { } 930 931 public: 932 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 933 }; 934 935 936 937 // A LocalVariableMap maintains a map from local variables to their currently 938 // valid definitions. It provides SSA-like functionality when traversing the 939 // CFG. Like SSA, each definition or assignment to a variable is assigned a 940 // unique name (an integer), which acts as the SSA name for that definition. 941 // The total set of names is shared among all CFG basic blocks. 942 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 943 // with their SSA-names. Instead, we compute a Context for each point in the 944 // code, which maps local variables to the appropriate SSA-name. This map 945 // changes with each assignment. 946 // 947 // The map is computed in a single pass over the CFG. Subsequent analyses can 948 // then query the map to find the appropriate Context for a statement, and use 949 // that Context to look up the definitions of variables. 950 class LocalVariableMap { 951 public: 952 typedef LocalVarContext Context; 953 954 /// A VarDefinition consists of an expression, representing the value of the 955 /// variable, along with the context in which that expression should be 956 /// interpreted. A reference VarDefinition does not itself contain this 957 /// information, but instead contains a pointer to a previous VarDefinition. 958 struct VarDefinition { 959 public: 960 friend class LocalVariableMap; 961 962 const NamedDecl *Dec; // The original declaration for this variable. 963 const Expr *Exp; // The expression for this variable, OR 964 unsigned Ref; // Reference to another VarDefinition 965 Context Ctx; // The map with which Exp should be interpreted. 966 967 bool isReference() { return !Exp; } 968 969 private: 970 // Create ordinary variable definition 971 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 972 : Dec(D), Exp(E), Ref(0), Ctx(C) 973 { } 974 975 // Create reference to previous definition 976 VarDefinition(const NamedDecl *D, unsigned R, Context C) 977 : Dec(D), Exp(0), Ref(R), Ctx(C) 978 { } 979 }; 980 981 private: 982 Context::Factory ContextFactory; 983 std::vector<VarDefinition> VarDefinitions; 984 std::vector<unsigned> CtxIndices; 985 std::vector<std::pair<Stmt*, Context> > SavedContexts; 986 987 public: 988 LocalVariableMap() { 989 // index 0 is a placeholder for undefined variables (aka phi-nodes). 990 VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext())); 991 } 992 993 /// Look up a definition, within the given context. 994 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 995 const unsigned *i = Ctx.lookup(D); 996 if (!i) 997 return 0; 998 assert(*i < VarDefinitions.size()); 999 return &VarDefinitions[*i]; 1000 } 1001 1002 /// Look up the definition for D within the given context. Returns 1003 /// NULL if the expression is not statically known. If successful, also 1004 /// modifies Ctx to hold the context of the return Expr. 1005 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 1006 const unsigned *P = Ctx.lookup(D); 1007 if (!P) 1008 return 0; 1009 1010 unsigned i = *P; 1011 while (i > 0) { 1012 if (VarDefinitions[i].Exp) { 1013 Ctx = VarDefinitions[i].Ctx; 1014 return VarDefinitions[i].Exp; 1015 } 1016 i = VarDefinitions[i].Ref; 1017 } 1018 return 0; 1019 } 1020 1021 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 1022 1023 /// Return the next context after processing S. This function is used by 1024 /// clients of the class to get the appropriate context when traversing the 1025 /// CFG. It must be called for every assignment or DeclStmt. 1026 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 1027 if (SavedContexts[CtxIndex+1].first == S) { 1028 CtxIndex++; 1029 Context Result = SavedContexts[CtxIndex].second; 1030 return Result; 1031 } 1032 return C; 1033 } 1034 1035 void dumpVarDefinitionName(unsigned i) { 1036 if (i == 0) { 1037 llvm::errs() << "Undefined"; 1038 return; 1039 } 1040 const NamedDecl *Dec = VarDefinitions[i].Dec; 1041 if (!Dec) { 1042 llvm::errs() << "<<NULL>>"; 1043 return; 1044 } 1045 Dec->printName(llvm::errs()); 1046 llvm::errs() << "." << i << " " << ((const void*) Dec); 1047 } 1048 1049 /// Dumps an ASCII representation of the variable map to llvm::errs() 1050 void dump() { 1051 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 1052 const Expr *Exp = VarDefinitions[i].Exp; 1053 unsigned Ref = VarDefinitions[i].Ref; 1054 1055 dumpVarDefinitionName(i); 1056 llvm::errs() << " = "; 1057 if (Exp) Exp->dump(); 1058 else { 1059 dumpVarDefinitionName(Ref); 1060 llvm::errs() << "\n"; 1061 } 1062 } 1063 } 1064 1065 /// Dumps an ASCII representation of a Context to llvm::errs() 1066 void dumpContext(Context C) { 1067 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 1068 const NamedDecl *D = I.getKey(); 1069 D->printName(llvm::errs()); 1070 const unsigned *i = C.lookup(D); 1071 llvm::errs() << " -> "; 1072 dumpVarDefinitionName(*i); 1073 llvm::errs() << "\n"; 1074 } 1075 } 1076 1077 /// Builds the variable map. 1078 void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, 1079 std::vector<CFGBlockInfo> &BlockInfo); 1080 1081 protected: 1082 // Get the current context index 1083 unsigned getContextIndex() { return SavedContexts.size()-1; } 1084 1085 // Save the current context for later replay 1086 void saveContext(Stmt *S, Context C) { 1087 SavedContexts.push_back(std::make_pair(S,C)); 1088 } 1089 1090 // Adds a new definition to the given context, and returns a new context. 1091 // This method should be called when declaring a new variable. 1092 Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 1093 assert(!Ctx.contains(D)); 1094 unsigned newID = VarDefinitions.size(); 1095 Context NewCtx = ContextFactory.add(Ctx, D, newID); 1096 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 1097 return NewCtx; 1098 } 1099 1100 // Add a new reference to an existing definition. 1101 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 1102 unsigned newID = VarDefinitions.size(); 1103 Context NewCtx = ContextFactory.add(Ctx, D, newID); 1104 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 1105 return NewCtx; 1106 } 1107 1108 // Updates a definition only if that definition is already in the map. 1109 // This method should be called when assigning to an existing variable. 1110 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 1111 if (Ctx.contains(D)) { 1112 unsigned newID = VarDefinitions.size(); 1113 Context NewCtx = ContextFactory.remove(Ctx, D); 1114 NewCtx = ContextFactory.add(NewCtx, D, newID); 1115 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 1116 return NewCtx; 1117 } 1118 return Ctx; 1119 } 1120 1121 // Removes a definition from the context, but keeps the variable name 1122 // as a valid variable. The index 0 is a placeholder for cleared definitions. 1123 Context clearDefinition(const NamedDecl *D, Context Ctx) { 1124 Context NewCtx = Ctx; 1125 if (NewCtx.contains(D)) { 1126 NewCtx = ContextFactory.remove(NewCtx, D); 1127 NewCtx = ContextFactory.add(NewCtx, D, 0); 1128 } 1129 return NewCtx; 1130 } 1131 1132 // Remove a definition entirely frmo the context. 1133 Context removeDefinition(const NamedDecl *D, Context Ctx) { 1134 Context NewCtx = Ctx; 1135 if (NewCtx.contains(D)) { 1136 NewCtx = ContextFactory.remove(NewCtx, D); 1137 } 1138 return NewCtx; 1139 } 1140 1141 Context intersectContexts(Context C1, Context C2); 1142 Context createReferenceContext(Context C); 1143 void intersectBackEdge(Context C1, Context C2); 1144 1145 friend class VarMapBuilder; 1146 }; 1147 1148 1149 // This has to be defined after LocalVariableMap. 1150 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 1151 return CFGBlockInfo(M.getEmptyContext()); 1152 } 1153 1154 1155 /// Visitor which builds a LocalVariableMap 1156 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 1157 public: 1158 LocalVariableMap* VMap; 1159 LocalVariableMap::Context Ctx; 1160 1161 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 1162 : VMap(VM), Ctx(C) {} 1163 1164 void VisitDeclStmt(DeclStmt *S); 1165 void VisitBinaryOperator(BinaryOperator *BO); 1166 }; 1167 1168 1169 // Add new local variables to the variable map 1170 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 1171 bool modifiedCtx = false; 1172 DeclGroupRef DGrp = S->getDeclGroup(); 1173 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 1174 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 1175 Expr *E = VD->getInit(); 1176 1177 // Add local variables with trivial type to the variable map 1178 QualType T = VD->getType(); 1179 if (T.isTrivialType(VD->getASTContext())) { 1180 Ctx = VMap->addDefinition(VD, E, Ctx); 1181 modifiedCtx = true; 1182 } 1183 } 1184 } 1185 if (modifiedCtx) 1186 VMap->saveContext(S, Ctx); 1187 } 1188 1189 // Update local variable definitions in variable map 1190 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 1191 if (!BO->isAssignmentOp()) 1192 return; 1193 1194 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 1195 1196 // Update the variable map and current context. 1197 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 1198 ValueDecl *VDec = DRE->getDecl(); 1199 if (Ctx.lookup(VDec)) { 1200 if (BO->getOpcode() == BO_Assign) 1201 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 1202 else 1203 // FIXME -- handle compound assignment operators 1204 Ctx = VMap->clearDefinition(VDec, Ctx); 1205 VMap->saveContext(BO, Ctx); 1206 } 1207 } 1208 } 1209 1210 1211 // Computes the intersection of two contexts. The intersection is the 1212 // set of variables which have the same definition in both contexts; 1213 // variables with different definitions are discarded. 1214 LocalVariableMap::Context 1215 LocalVariableMap::intersectContexts(Context C1, Context C2) { 1216 Context Result = C1; 1217 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { 1218 const NamedDecl *Dec = I.getKey(); 1219 unsigned i1 = I.getData(); 1220 const unsigned *i2 = C2.lookup(Dec); 1221 if (!i2) // variable doesn't exist on second path 1222 Result = removeDefinition(Dec, Result); 1223 else if (*i2 != i1) // variable exists, but has different definition 1224 Result = clearDefinition(Dec, Result); 1225 } 1226 return Result; 1227 } 1228 1229 // For every variable in C, create a new variable that refers to the 1230 // definition in C. Return a new context that contains these new variables. 1231 // (We use this for a naive implementation of SSA on loop back-edges.) 1232 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 1233 Context Result = getEmptyContext(); 1234 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 1235 const NamedDecl *Dec = I.getKey(); 1236 unsigned i = I.getData(); 1237 Result = addReference(Dec, i, Result); 1238 } 1239 return Result; 1240 } 1241 1242 // This routine also takes the intersection of C1 and C2, but it does so by 1243 // altering the VarDefinitions. C1 must be the result of an earlier call to 1244 // createReferenceContext. 1245 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 1246 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { 1247 const NamedDecl *Dec = I.getKey(); 1248 unsigned i1 = I.getData(); 1249 VarDefinition *VDef = &VarDefinitions[i1]; 1250 assert(VDef->isReference()); 1251 1252 const unsigned *i2 = C2.lookup(Dec); 1253 if (!i2 || (*i2 != i1)) 1254 VDef->Ref = 0; // Mark this variable as undefined 1255 } 1256 } 1257 1258 1259 // Traverse the CFG in topological order, so all predecessors of a block 1260 // (excluding back-edges) are visited before the block itself. At 1261 // each point in the code, we calculate a Context, which holds the set of 1262 // variable definitions which are visible at that point in execution. 1263 // Visible variables are mapped to their definitions using an array that 1264 // contains all definitions. 1265 // 1266 // At join points in the CFG, the set is computed as the intersection of 1267 // the incoming sets along each edge, E.g. 1268 // 1269 // { Context | VarDefinitions } 1270 // int x = 0; { x -> x1 | x1 = 0 } 1271 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 1272 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 1273 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 1274 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 1275 // 1276 // This is essentially a simpler and more naive version of the standard SSA 1277 // algorithm. Those definitions that remain in the intersection are from blocks 1278 // that strictly dominate the current block. We do not bother to insert proper 1279 // phi nodes, because they are not used in our analysis; instead, wherever 1280 // a phi node would be required, we simply remove that definition from the 1281 // context (E.g. x above). 1282 // 1283 // The initial traversal does not capture back-edges, so those need to be 1284 // handled on a separate pass. Whenever the first pass encounters an 1285 // incoming back edge, it duplicates the context, creating new definitions 1286 // that refer back to the originals. (These correspond to places where SSA 1287 // might have to insert a phi node.) On the second pass, these definitions are 1288 // set to NULL if the variable has changed on the back-edge (i.e. a phi 1289 // node was actually required.) E.g. 1290 // 1291 // { Context | VarDefinitions } 1292 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 1293 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 1294 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 1295 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 1296 // 1297 void LocalVariableMap::traverseCFG(CFG *CFGraph, 1298 PostOrderCFGView *SortedGraph, 1299 std::vector<CFGBlockInfo> &BlockInfo) { 1300 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 1301 1302 CtxIndices.resize(CFGraph->getNumBlockIDs()); 1303 1304 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 1305 E = SortedGraph->end(); I!= E; ++I) { 1306 const CFGBlock *CurrBlock = *I; 1307 int CurrBlockID = CurrBlock->getBlockID(); 1308 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 1309 1310 VisitedBlocks.insert(CurrBlock); 1311 1312 // Calculate the entry context for the current block 1313 bool HasBackEdges = false; 1314 bool CtxInit = true; 1315 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 1316 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 1317 // if *PI -> CurrBlock is a back edge, so skip it 1318 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) { 1319 HasBackEdges = true; 1320 continue; 1321 } 1322 1323 int PrevBlockID = (*PI)->getBlockID(); 1324 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 1325 1326 if (CtxInit) { 1327 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 1328 CtxInit = false; 1329 } 1330 else { 1331 CurrBlockInfo->EntryContext = 1332 intersectContexts(CurrBlockInfo->EntryContext, 1333 PrevBlockInfo->ExitContext); 1334 } 1335 } 1336 1337 // Duplicate the context if we have back-edges, so we can call 1338 // intersectBackEdges later. 1339 if (HasBackEdges) 1340 CurrBlockInfo->EntryContext = 1341 createReferenceContext(CurrBlockInfo->EntryContext); 1342 1343 // Create a starting context index for the current block 1344 saveContext(0, CurrBlockInfo->EntryContext); 1345 CurrBlockInfo->EntryIndex = getContextIndex(); 1346 1347 // Visit all the statements in the basic block. 1348 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 1349 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 1350 BE = CurrBlock->end(); BI != BE; ++BI) { 1351 switch (BI->getKind()) { 1352 case CFGElement::Statement: { 1353 CFGStmt CS = BI->castAs<CFGStmt>(); 1354 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 1355 break; 1356 } 1357 default: 1358 break; 1359 } 1360 } 1361 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 1362 1363 // Mark variables on back edges as "unknown" if they've been changed. 1364 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 1365 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 1366 // if CurrBlock -> *SI is *not* a back edge 1367 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) 1368 continue; 1369 1370 CFGBlock *FirstLoopBlock = *SI; 1371 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 1372 Context LoopEnd = CurrBlockInfo->ExitContext; 1373 intersectBackEdge(LoopBegin, LoopEnd); 1374 } 1375 } 1376 1377 // Put an extra entry at the end of the indexed context array 1378 unsigned exitID = CFGraph->getExit().getBlockID(); 1379 saveContext(0, BlockInfo[exitID].ExitContext); 1380 } 1381 1382 /// Find the appropriate source locations to use when producing diagnostics for 1383 /// each block in the CFG. 1384 static void findBlockLocations(CFG *CFGraph, 1385 PostOrderCFGView *SortedGraph, 1386 std::vector<CFGBlockInfo> &BlockInfo) { 1387 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 1388 E = SortedGraph->end(); I!= E; ++I) { 1389 const CFGBlock *CurrBlock = *I; 1390 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 1391 1392 // Find the source location of the last statement in the block, if the 1393 // block is not empty. 1394 if (const Stmt *S = CurrBlock->getTerminator()) { 1395 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 1396 } else { 1397 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 1398 BE = CurrBlock->rend(); BI != BE; ++BI) { 1399 // FIXME: Handle other CFGElement kinds. 1400 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 1401 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 1402 break; 1403 } 1404 } 1405 } 1406 1407 if (!CurrBlockInfo->ExitLoc.isInvalid()) { 1408 // This block contains at least one statement. Find the source location 1409 // of the first statement in the block. 1410 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 1411 BE = CurrBlock->end(); BI != BE; ++BI) { 1412 // FIXME: Handle other CFGElement kinds. 1413 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 1414 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 1415 break; 1416 } 1417 } 1418 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 1419 CurrBlock != &CFGraph->getExit()) { 1420 // The block is empty, and has a single predecessor. Use its exit 1421 // location. 1422 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 1423 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 1424 } 1425 } 1426 } 1427 1428 /// \brief Class which implements the core thread safety analysis routines. 1429 class ThreadSafetyAnalyzer { 1430 friend class BuildLockset; 1431 1432 ThreadSafetyHandler &Handler; 1433 LocalVariableMap LocalVarMap; 1434 FactManager FactMan; 1435 std::vector<CFGBlockInfo> BlockInfo; 1436 1437 public: 1438 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} 1439 1440 void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat); 1441 void removeLock(FactSet &FSet, const SExpr &Mutex, 1442 SourceLocation UnlockLoc, bool FullyRemove=false); 1443 1444 template <typename AttrType> 1445 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, 1446 const NamedDecl *D, VarDecl *SelfDecl=0); 1447 1448 template <class AttrType> 1449 void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, 1450 const NamedDecl *D, 1451 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1452 Expr *BrE, bool Neg); 1453 1454 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1455 bool &Negate); 1456 1457 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1458 const CFGBlock* PredBlock, 1459 const CFGBlock *CurrBlock); 1460 1461 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1462 SourceLocation JoinLoc, 1463 LockErrorKind LEK1, LockErrorKind LEK2, 1464 bool Modify=true); 1465 1466 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1467 SourceLocation JoinLoc, LockErrorKind LEK1, 1468 bool Modify=true) { 1469 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 1470 } 1471 1472 void runAnalysis(AnalysisDeclContext &AC); 1473 }; 1474 1475 1476 /// \brief Add a new lock to the lockset, warning if the lock is already there. 1477 /// \param Mutex -- the Mutex expression for the lock 1478 /// \param LDat -- the LockData for the lock 1479 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex, 1480 const LockData &LDat) { 1481 // FIXME: deal with acquired before/after annotations. 1482 // FIXME: Don't always warn when we have support for reentrant locks. 1483 if (Mutex.shouldIgnore()) 1484 return; 1485 1486 if (FSet.findLock(FactMan, Mutex)) { 1487 Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc); 1488 } else { 1489 FSet.addLock(FactMan, Mutex, LDat); 1490 } 1491 } 1492 1493 1494 /// \brief Remove a lock from the lockset, warning if the lock is not there. 1495 /// \param Mutex The lock expression corresponding to the lock to be removed 1496 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1497 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, 1498 const SExpr &Mutex, 1499 SourceLocation UnlockLoc, 1500 bool FullyRemove) { 1501 if (Mutex.shouldIgnore()) 1502 return; 1503 1504 const LockData *LDat = FSet.findLock(FactMan, Mutex); 1505 if (!LDat) { 1506 Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc); 1507 return; 1508 } 1509 1510 if (LDat->UnderlyingMutex.isValid()) { 1511 // This is scoped lockable object, which manages the real mutex. 1512 if (FullyRemove) { 1513 // We're destroying the managing object. 1514 // Remove the underlying mutex if it exists; but don't warn. 1515 if (FSet.findLock(FactMan, LDat->UnderlyingMutex)) 1516 FSet.removeLock(FactMan, LDat->UnderlyingMutex); 1517 } else { 1518 // We're releasing the underlying mutex, but not destroying the 1519 // managing object. Warn on dual release. 1520 if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) { 1521 Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(), 1522 UnlockLoc); 1523 } 1524 FSet.removeLock(FactMan, LDat->UnderlyingMutex); 1525 return; 1526 } 1527 } 1528 FSet.removeLock(FactMan, Mutex); 1529 } 1530 1531 1532 /// \brief Extract the list of mutexIDs from the attribute on an expression, 1533 /// and push them onto Mtxs, discarding any duplicates. 1534 template <typename AttrType> 1535 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, 1536 Expr *Exp, const NamedDecl *D, 1537 VarDecl *SelfDecl) { 1538 typedef typename AttrType::args_iterator iterator_type; 1539 1540 if (Attr->args_size() == 0) { 1541 // The mutex held is the "this" object. 1542 SExpr Mu(0, Exp, D, SelfDecl); 1543 if (!Mu.isValid()) 1544 SExpr::warnInvalidLock(Handler, 0, Exp, D); 1545 else 1546 Mtxs.push_back_nodup(Mu); 1547 return; 1548 } 1549 1550 for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) { 1551 SExpr Mu(*I, Exp, D, SelfDecl); 1552 if (!Mu.isValid()) 1553 SExpr::warnInvalidLock(Handler, *I, Exp, D); 1554 else 1555 Mtxs.push_back_nodup(Mu); 1556 } 1557 } 1558 1559 1560 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 1561 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1562 /// any duplicates. 1563 template <class AttrType> 1564 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, 1565 Expr *Exp, const NamedDecl *D, 1566 const CFGBlock *PredBlock, 1567 const CFGBlock *CurrBlock, 1568 Expr *BrE, bool Neg) { 1569 // Find out which branch has the lock 1570 bool branch = 0; 1571 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) { 1572 branch = BLE->getValue(); 1573 } 1574 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) { 1575 branch = ILE->getValue().getBoolValue(); 1576 } 1577 int branchnum = branch ? 0 : 1; 1578 if (Neg) branchnum = !branchnum; 1579 1580 // If we've taken the trylock branch, then add the lock 1581 int i = 0; 1582 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1583 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1584 if (*SI == CurrBlock && i == branchnum) { 1585 getMutexIDs(Mtxs, Attr, Exp, D); 1586 } 1587 } 1588 } 1589 1590 1591 bool getStaticBooleanValue(Expr* E, bool& TCond) { 1592 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1593 TCond = false; 1594 return true; 1595 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1596 TCond = BLE->getValue(); 1597 return true; 1598 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 1599 TCond = ILE->getValue().getBoolValue(); 1600 return true; 1601 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 1602 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1603 } 1604 return false; 1605 } 1606 1607 1608 // If Cond can be traced back to a function call, return the call expression. 1609 // The negate variable should be called with false, and will be set to true 1610 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1611 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1612 LocalVarContext C, 1613 bool &Negate) { 1614 if (!Cond) 1615 return 0; 1616 1617 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1618 return CallExp; 1619 } 1620 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 1621 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1622 } 1623 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1624 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1625 } 1626 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 1627 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1628 } 1629 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1630 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1631 return getTrylockCallExpr(E, C, Negate); 1632 } 1633 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1634 if (UOP->getOpcode() == UO_LNot) { 1635 Negate = !Negate; 1636 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1637 } 1638 return 0; 1639 } 1640 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 1641 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1642 if (BOP->getOpcode() == BO_NE) 1643 Negate = !Negate; 1644 1645 bool TCond = false; 1646 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1647 if (!TCond) Negate = !Negate; 1648 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1649 } 1650 else if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1651 if (!TCond) Negate = !Negate; 1652 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1653 } 1654 return 0; 1655 } 1656 return 0; 1657 } 1658 // FIXME -- handle && and || as well. 1659 return 0; 1660 } 1661 1662 1663 /// \brief Find the lockset that holds on the edge between PredBlock 1664 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1665 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1666 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1667 const FactSet &ExitSet, 1668 const CFGBlock *PredBlock, 1669 const CFGBlock *CurrBlock) { 1670 Result = ExitSet; 1671 1672 if (!PredBlock->getTerminatorCondition()) 1673 return; 1674 1675 bool Negate = false; 1676 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1677 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1678 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1679 1680 CallExpr *Exp = 1681 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1682 if (!Exp) 1683 return; 1684 1685 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1686 if(!FunDecl || !FunDecl->hasAttrs()) 1687 return; 1688 1689 1690 MutexIDList ExclusiveLocksToAdd; 1691 MutexIDList SharedLocksToAdd; 1692 1693 // If the condition is a call to a Trylock function, then grab the attributes 1694 AttrVec &ArgAttrs = FunDecl->getAttrs(); 1695 for (unsigned i = 0; i < ArgAttrs.size(); ++i) { 1696 Attr *Attr = ArgAttrs[i]; 1697 switch (Attr->getKind()) { 1698 case attr::ExclusiveTrylockFunction: { 1699 ExclusiveTrylockFunctionAttr *A = 1700 cast<ExclusiveTrylockFunctionAttr>(Attr); 1701 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1702 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1703 break; 1704 } 1705 case attr::SharedTrylockFunction: { 1706 SharedTrylockFunctionAttr *A = 1707 cast<SharedTrylockFunctionAttr>(Attr); 1708 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1709 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1710 break; 1711 } 1712 default: 1713 break; 1714 } 1715 } 1716 1717 // Add and remove locks. 1718 SourceLocation Loc = Exp->getExprLoc(); 1719 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { 1720 addLock(Result, ExclusiveLocksToAdd[i], 1721 LockData(Loc, LK_Exclusive)); 1722 } 1723 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { 1724 addLock(Result, SharedLocksToAdd[i], 1725 LockData(Loc, LK_Shared)); 1726 } 1727 } 1728 1729 1730 /// \brief We use this class to visit different types of expressions in 1731 /// CFGBlocks, and build up the lockset. 1732 /// An expression may cause us to add or remove locks from the lockset, or else 1733 /// output error messages related to missing locks. 1734 /// FIXME: In future, we may be able to not inherit from a visitor. 1735 class BuildLockset : public StmtVisitor<BuildLockset> { 1736 friend class ThreadSafetyAnalyzer; 1737 1738 ThreadSafetyAnalyzer *Analyzer; 1739 FactSet FSet; 1740 LocalVariableMap::Context LVarCtx; 1741 unsigned CtxIndex; 1742 1743 // Helper functions 1744 const ValueDecl *getValueDecl(const Expr *Exp); 1745 1746 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1747 Expr *MutexExp, ProtectedOperationKind POK); 1748 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp); 1749 1750 void checkAccess(const Expr *Exp, AccessKind AK); 1751 void checkPtAccess(const Expr *Exp, AccessKind AK); 1752 1753 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0); 1754 1755 public: 1756 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1757 : StmtVisitor<BuildLockset>(), 1758 Analyzer(Anlzr), 1759 FSet(Info.EntrySet), 1760 LVarCtx(Info.EntryContext), 1761 CtxIndex(Info.EntryIndex) 1762 {} 1763 1764 void VisitUnaryOperator(UnaryOperator *UO); 1765 void VisitBinaryOperator(BinaryOperator *BO); 1766 void VisitCastExpr(CastExpr *CE); 1767 void VisitCallExpr(CallExpr *Exp); 1768 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1769 void VisitDeclStmt(DeclStmt *S); 1770 }; 1771 1772 1773 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs 1774 const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) { 1775 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1776 return getValueDecl(CE->getSubExpr()); 1777 1778 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp)) 1779 return DR->getDecl(); 1780 1781 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) 1782 return ME->getMemberDecl(); 1783 1784 return 0; 1785 } 1786 1787 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1788 /// of at least the passed in AccessKind. 1789 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1790 AccessKind AK, Expr *MutexExp, 1791 ProtectedOperationKind POK) { 1792 LockKind LK = getLockKindFromAccessKind(AK); 1793 1794 SExpr Mutex(MutexExp, Exp, D); 1795 if (!Mutex.isValid()) { 1796 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); 1797 return; 1798 } else if (Mutex.shouldIgnore()) { 1799 return; 1800 } 1801 1802 LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex); 1803 bool NoError = true; 1804 if (!LDat) { 1805 // No exact match found. Look for a partial match. 1806 FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex); 1807 if (FEntry) { 1808 // Warn that there's no precise match. 1809 LDat = &FEntry->LDat; 1810 std::string PartMatchStr = FEntry->MutID.toString(); 1811 StringRef PartMatchName(PartMatchStr); 1812 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, 1813 Exp->getExprLoc(), &PartMatchName); 1814 } else { 1815 // Warn that there's no match at all. 1816 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, 1817 Exp->getExprLoc()); 1818 } 1819 NoError = false; 1820 } 1821 // Make sure the mutex we found is the right kind. 1822 if (NoError && LDat && !LDat->isAtLeast(LK)) 1823 Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK, 1824 Exp->getExprLoc()); 1825 } 1826 1827 /// \brief Warn if the LSet contains the given lock. 1828 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp, 1829 Expr *MutexExp) { 1830 SExpr Mutex(MutexExp, Exp, D); 1831 if (!Mutex.isValid()) { 1832 SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D); 1833 return; 1834 } 1835 1836 LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex); 1837 if (LDat) { 1838 std::string DeclName = D->getNameAsString(); 1839 StringRef DeclNameSR (DeclName); 1840 Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(), 1841 Exp->getExprLoc()); 1842 } 1843 } 1844 1845 1846 /// \brief Checks guarded_by and pt_guarded_by attributes. 1847 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1848 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1849 /// Similarly, we check if the access is to an expression that dereferences 1850 /// a pointer marked with pt_guarded_by. 1851 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) { 1852 Exp = Exp->IgnoreParenCasts(); 1853 1854 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 1855 // For dereferences 1856 if (UO->getOpcode() == clang::UO_Deref) 1857 checkPtAccess(UO->getSubExpr(), AK); 1858 return; 1859 } 1860 1861 if (Analyzer->Handler.issueBetaWarnings()) { 1862 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 1863 if (ME->isArrow()) 1864 checkPtAccess(ME->getBase(), AK); 1865 else 1866 checkAccess(ME->getBase(), AK); 1867 } 1868 } 1869 1870 const ValueDecl *D = getValueDecl(Exp); 1871 if (!D || !D->hasAttrs()) 1872 return; 1873 1874 if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty()) 1875 Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK, 1876 Exp->getExprLoc()); 1877 1878 const AttrVec &ArgAttrs = D->getAttrs(); 1879 for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) 1880 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i])) 1881 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess); 1882 } 1883 1884 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 1885 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) { 1886 Exp = Exp->IgnoreParenCasts(); 1887 1888 const ValueDecl *D = getValueDecl(Exp); 1889 if (!D || !D->hasAttrs()) 1890 return; 1891 1892 if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty()) 1893 Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK, 1894 Exp->getExprLoc()); 1895 1896 const AttrVec &ArgAttrs = D->getAttrs(); 1897 for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) 1898 if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i])) 1899 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference); 1900 } 1901 1902 1903 /// \brief Process a function call, method call, constructor call, 1904 /// or destructor call. This involves looking at the attributes on the 1905 /// corresponding function/method/constructor/destructor, issuing warnings, 1906 /// and updating the locksets accordingly. 1907 /// 1908 /// FIXME: For classes annotated with one of the guarded annotations, we need 1909 /// to treat const method calls as reads and non-const method calls as writes, 1910 /// and check that the appropriate locks are held. Non-const method calls with 1911 /// the same signature as const method calls can be also treated as reads. 1912 /// 1913 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1914 const AttrVec &ArgAttrs = D->getAttrs(); 1915 MutexIDList ExclusiveLocksToAdd; 1916 MutexIDList SharedLocksToAdd; 1917 MutexIDList LocksToRemove; 1918 1919 for(unsigned i = 0; i < ArgAttrs.size(); ++i) { 1920 Attr *At = const_cast<Attr*>(ArgAttrs[i]); 1921 switch (At->getKind()) { 1922 // When we encounter an exclusive lock function, we need to add the lock 1923 // to our lockset with kind exclusive. 1924 case attr::ExclusiveLockFunction: { 1925 ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At); 1926 Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD); 1927 break; 1928 } 1929 1930 // When we encounter a shared lock function, we need to add the lock 1931 // to our lockset with kind shared. 1932 case attr::SharedLockFunction: { 1933 SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At); 1934 Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD); 1935 break; 1936 } 1937 1938 // When we encounter an unlock function, we need to remove unlocked 1939 // mutexes from the lockset, and flag a warning if they are not there. 1940 case attr::UnlockFunction: { 1941 UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At); 1942 Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD); 1943 break; 1944 } 1945 1946 case attr::ExclusiveLocksRequired: { 1947 ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At); 1948 1949 for (ExclusiveLocksRequiredAttr::args_iterator 1950 I = A->args_begin(), E = A->args_end(); I != E; ++I) 1951 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall); 1952 break; 1953 } 1954 1955 case attr::SharedLocksRequired: { 1956 SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At); 1957 1958 for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(), 1959 E = A->args_end(); I != E; ++I) 1960 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall); 1961 break; 1962 } 1963 1964 case attr::LocksExcluded: { 1965 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 1966 1967 for (LocksExcludedAttr::args_iterator I = A->args_begin(), 1968 E = A->args_end(); I != E; ++I) { 1969 warnIfMutexHeld(D, Exp, *I); 1970 } 1971 break; 1972 } 1973 1974 // Ignore other (non thread-safety) attributes 1975 default: 1976 break; 1977 } 1978 } 1979 1980 // Figure out if we're calling the constructor of scoped lockable class 1981 bool isScopedVar = false; 1982 if (VD) { 1983 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1984 const CXXRecordDecl* PD = CD->getParent(); 1985 if (PD && PD->getAttr<ScopedLockableAttr>()) 1986 isScopedVar = true; 1987 } 1988 } 1989 1990 // Add locks. 1991 SourceLocation Loc = Exp->getExprLoc(); 1992 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { 1993 Analyzer->addLock(FSet, ExclusiveLocksToAdd[i], 1994 LockData(Loc, LK_Exclusive, isScopedVar)); 1995 } 1996 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { 1997 Analyzer->addLock(FSet, SharedLocksToAdd[i], 1998 LockData(Loc, LK_Shared, isScopedVar)); 1999 } 2000 2001 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 2002 // FIXME -- this doesn't work if we acquire multiple locks. 2003 if (isScopedVar) { 2004 SourceLocation MLoc = VD->getLocation(); 2005 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 2006 SExpr SMutex(&DRE, 0, 0); 2007 2008 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { 2009 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, 2010 ExclusiveLocksToAdd[i])); 2011 } 2012 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { 2013 Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, 2014 SharedLocksToAdd[i])); 2015 } 2016 } 2017 2018 // Remove locks. 2019 // FIXME -- should only fully remove if the attribute refers to 'this'. 2020 bool Dtor = isa<CXXDestructorDecl>(D); 2021 for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) { 2022 Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor); 2023 } 2024 } 2025 2026 2027 /// \brief For unary operations which read and write a variable, we need to 2028 /// check whether we hold any required mutexes. Reads are checked in 2029 /// VisitCastExpr. 2030 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 2031 switch (UO->getOpcode()) { 2032 case clang::UO_PostDec: 2033 case clang::UO_PostInc: 2034 case clang::UO_PreDec: 2035 case clang::UO_PreInc: { 2036 checkAccess(UO->getSubExpr(), AK_Written); 2037 break; 2038 } 2039 default: 2040 break; 2041 } 2042 } 2043 2044 /// For binary operations which assign to a variable (writes), we need to check 2045 /// whether we hold any required mutexes. 2046 /// FIXME: Deal with non-primitive types. 2047 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 2048 if (!BO->isAssignmentOp()) 2049 return; 2050 2051 // adjust the context 2052 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 2053 2054 checkAccess(BO->getLHS(), AK_Written); 2055 } 2056 2057 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 2058 /// need to ensure we hold any required mutexes. 2059 /// FIXME: Deal with non-primitive types. 2060 void BuildLockset::VisitCastExpr(CastExpr *CE) { 2061 if (CE->getCastKind() != CK_LValueToRValue) 2062 return; 2063 checkAccess(CE->getSubExpr(), AK_Read); 2064 } 2065 2066 2067 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 2068 if (Analyzer->Handler.issueBetaWarnings()) { 2069 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2070 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2071 // ME can be null when calling a method pointer 2072 CXXMethodDecl *MD = CE->getMethodDecl(); 2073 2074 if (ME && MD) { 2075 if (ME->isArrow()) { 2076 if (MD->isConst()) { 2077 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2078 } else { // FIXME -- should be AK_Written 2079 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2080 } 2081 } else { 2082 if (MD->isConst()) 2083 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2084 else // FIXME -- should be AK_Written 2085 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2086 } 2087 } 2088 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2089 switch (OE->getOperator()) { 2090 case OO_Equal: { 2091 const Expr *Target = OE->getArg(0); 2092 const Expr *Source = OE->getArg(1); 2093 checkAccess(Target, AK_Written); 2094 checkAccess(Source, AK_Read); 2095 break; 2096 } 2097 default: { 2098 const Expr *Source = OE->getArg(0); 2099 checkAccess(Source, AK_Read); 2100 break; 2101 } 2102 } 2103 } 2104 } 2105 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2106 if(!D || !D->hasAttrs()) 2107 return; 2108 handleCall(Exp, D); 2109 } 2110 2111 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 2112 if (Analyzer->Handler.issueBetaWarnings()) { 2113 const CXXConstructorDecl *D = Exp->getConstructor(); 2114 if (D && D->isCopyConstructor()) { 2115 const Expr* Source = Exp->getArg(0); 2116 checkAccess(Source, AK_Read); 2117 } 2118 } 2119 // FIXME -- only handles constructors in DeclStmt below. 2120 } 2121 2122 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 2123 // adjust the context 2124 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2125 2126 DeclGroupRef DGrp = S->getDeclGroup(); 2127 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 2128 Decl *D = *I; 2129 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 2130 Expr *E = VD->getInit(); 2131 // handle constructors that involve temporaries 2132 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) 2133 E = EWC->getSubExpr(); 2134 2135 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 2136 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2137 if (!CtorD || !CtorD->hasAttrs()) 2138 return; 2139 handleCall(CE, CtorD, VD); 2140 } 2141 } 2142 } 2143 } 2144 2145 2146 2147 /// \brief Compute the intersection of two locksets and issue warnings for any 2148 /// locks in the symmetric difference. 2149 /// 2150 /// This function is used at a merge point in the CFG when comparing the lockset 2151 /// of each branch being merged. For example, given the following sequence: 2152 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2153 /// are the same. In the event of a difference, we use the intersection of these 2154 /// two locksets at the start of D. 2155 /// 2156 /// \param FSet1 The first lockset. 2157 /// \param FSet2 The second lockset. 2158 /// \param JoinLoc The location of the join point for error reporting 2159 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2160 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2161 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2162 const FactSet &FSet2, 2163 SourceLocation JoinLoc, 2164 LockErrorKind LEK1, 2165 LockErrorKind LEK2, 2166 bool Modify) { 2167 FactSet FSet1Orig = FSet1; 2168 2169 for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end(); 2170 I != E; ++I) { 2171 const SExpr &FSet2Mutex = FactMan[*I].MutID; 2172 const LockData &LDat2 = FactMan[*I].LDat; 2173 2174 if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) { 2175 if (LDat1->LKind != LDat2.LKind) { 2176 Handler.handleExclusiveAndShared(FSet2Mutex.toString(), 2177 LDat2.AcquireLoc, 2178 LDat1->AcquireLoc); 2179 if (Modify && LDat1->LKind != LK_Exclusive) { 2180 FSet1.removeLock(FactMan, FSet2Mutex); 2181 FSet1.addLock(FactMan, FSet2Mutex, LDat2); 2182 } 2183 } 2184 } else { 2185 if (LDat2.UnderlyingMutex.isValid()) { 2186 if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) { 2187 // If this is a scoped lock that manages another mutex, and if the 2188 // underlying mutex is still held, then warn about the underlying 2189 // mutex. 2190 Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(), 2191 LDat2.AcquireLoc, 2192 JoinLoc, LEK1); 2193 } 2194 } 2195 else if (!LDat2.Managed && !FSet2Mutex.isUniversal()) 2196 Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(), 2197 LDat2.AcquireLoc, 2198 JoinLoc, LEK1); 2199 } 2200 } 2201 2202 for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end(); 2203 I != E; ++I) { 2204 const SExpr &FSet1Mutex = FactMan[*I].MutID; 2205 const LockData &LDat1 = FactMan[*I].LDat; 2206 2207 if (!FSet2.findLock(FactMan, FSet1Mutex)) { 2208 if (LDat1.UnderlyingMutex.isValid()) { 2209 if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) { 2210 // If this is a scoped lock that manages another mutex, and if the 2211 // underlying mutex is still held, then warn about the underlying 2212 // mutex. 2213 Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(), 2214 LDat1.AcquireLoc, 2215 JoinLoc, LEK1); 2216 } 2217 } 2218 else if (!LDat1.Managed && !FSet1Mutex.isUniversal()) 2219 Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(), 2220 LDat1.AcquireLoc, 2221 JoinLoc, LEK2); 2222 if (Modify) 2223 FSet1.removeLock(FactMan, FSet1Mutex); 2224 } 2225 } 2226 } 2227 2228 2229 // Return true if block B never continues to its successors. 2230 inline bool neverReturns(const CFGBlock* B) { 2231 if (B->hasNoReturnElement()) 2232 return true; 2233 if (B->empty()) 2234 return false; 2235 2236 CFGElement Last = B->back(); 2237 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2238 if (isa<CXXThrowExpr>(S->getStmt())) 2239 return true; 2240 } 2241 return false; 2242 } 2243 2244 2245 /// \brief Check a function's CFG for thread-safety violations. 2246 /// 2247 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2248 /// at the end of each block, and issue warnings for thread safety violations. 2249 /// Each block in the CFG is traversed exactly once. 2250 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2251 CFG *CFGraph = AC.getCFG(); 2252 if (!CFGraph) return; 2253 const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl()); 2254 2255 // AC.dumpCFG(true); 2256 2257 if (!D) 2258 return; // Ignore anonymous functions for now. 2259 if (D->getAttr<NoThreadSafetyAnalysisAttr>()) 2260 return; 2261 // FIXME: Do something a bit more intelligent inside constructor and 2262 // destructor code. Constructors and destructors must assume unique access 2263 // to 'this', so checks on member variable access is disabled, but we should 2264 // still enable checks on other objects. 2265 if (isa<CXXConstructorDecl>(D)) 2266 return; // Don't check inside constructors. 2267 if (isa<CXXDestructorDecl>(D)) 2268 return; // Don't check inside destructors. 2269 2270 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2271 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2272 2273 // We need to explore the CFG via a "topological" ordering. 2274 // That way, we will be guaranteed to have information about required 2275 // predecessor locksets when exploring a new block. 2276 PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>(); 2277 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2278 2279 // Mark entry block as reachable 2280 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2281 2282 // Compute SSA names for local variables 2283 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2284 2285 // Fill in source locations for all CFGBlocks. 2286 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2287 2288 // Add locks from exclusive_locks_required and shared_locks_required 2289 // to initial lockset. Also turn off checking for lock and unlock functions. 2290 // FIXME: is there a more intelligent way to check lock/unlock functions? 2291 if (!SortedGraph->empty() && D->hasAttrs()) { 2292 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2293 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2294 const AttrVec &ArgAttrs = D->getAttrs(); 2295 2296 MutexIDList ExclusiveLocksToAdd; 2297 MutexIDList SharedLocksToAdd; 2298 2299 SourceLocation Loc = D->getLocation(); 2300 for (unsigned i = 0; i < ArgAttrs.size(); ++i) { 2301 Attr *Attr = ArgAttrs[i]; 2302 Loc = Attr->getLocation(); 2303 if (ExclusiveLocksRequiredAttr *A 2304 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) { 2305 getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D); 2306 } else if (SharedLocksRequiredAttr *A 2307 = dyn_cast<SharedLocksRequiredAttr>(Attr)) { 2308 getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D); 2309 } else if (isa<UnlockFunctionAttr>(Attr)) { 2310 // Don't try to check unlock functions for now 2311 return; 2312 } else if (isa<ExclusiveLockFunctionAttr>(Attr)) { 2313 // Don't try to check lock functions for now 2314 return; 2315 } else if (isa<SharedLockFunctionAttr>(Attr)) { 2316 // Don't try to check lock functions for now 2317 return; 2318 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2319 // Don't try to check trylock functions for now 2320 return; 2321 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2322 // Don't try to check trylock functions for now 2323 return; 2324 } 2325 } 2326 2327 // FIXME -- Loc can be wrong here. 2328 for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) { 2329 addLock(InitialLockset, ExclusiveLocksToAdd[i], 2330 LockData(Loc, LK_Exclusive)); 2331 } 2332 for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) { 2333 addLock(InitialLockset, SharedLocksToAdd[i], 2334 LockData(Loc, LK_Shared)); 2335 } 2336 } 2337 2338 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 2339 E = SortedGraph->end(); I!= E; ++I) { 2340 const CFGBlock *CurrBlock = *I; 2341 int CurrBlockID = CurrBlock->getBlockID(); 2342 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2343 2344 // Use the default initial lockset in case there are no predecessors. 2345 VisitedBlocks.insert(CurrBlock); 2346 2347 // Iterate through the predecessor blocks and warn if the lockset for all 2348 // predecessors is not the same. We take the entry lockset of the current 2349 // block to be the intersection of all previous locksets. 2350 // FIXME: By keeping the intersection, we may output more errors in future 2351 // for a lock which is not in the intersection, but was in the union. We 2352 // may want to also keep the union in future. As an example, let's say 2353 // the intersection contains Mutex L, and the union contains L and M. 2354 // Later we unlock M. At this point, we would output an error because we 2355 // never locked M; although the real error is probably that we forgot to 2356 // lock M on all code paths. Conversely, let's say that later we lock M. 2357 // In this case, we should compare against the intersection instead of the 2358 // union because the real error is probably that we forgot to unlock M on 2359 // all code paths. 2360 bool LocksetInitialized = false; 2361 SmallVector<CFGBlock *, 8> SpecialBlocks; 2362 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2363 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2364 2365 // if *PI -> CurrBlock is a back edge 2366 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) 2367 continue; 2368 2369 int PrevBlockID = (*PI)->getBlockID(); 2370 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2371 2372 // Ignore edges from blocks that can't return. 2373 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2374 continue; 2375 2376 // Okay, we can reach this block from the entry. 2377 CurrBlockInfo->Reachable = true; 2378 2379 // If the previous block ended in a 'continue' or 'break' statement, then 2380 // a difference in locksets is probably due to a bug in that block, rather 2381 // than in some other predecessor. In that case, keep the other 2382 // predecessor's lockset. 2383 if (const Stmt *Terminator = (*PI)->getTerminator()) { 2384 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2385 SpecialBlocks.push_back(*PI); 2386 continue; 2387 } 2388 } 2389 2390 FactSet PrevLockset; 2391 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2392 2393 if (!LocksetInitialized) { 2394 CurrBlockInfo->EntrySet = PrevLockset; 2395 LocksetInitialized = true; 2396 } else { 2397 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2398 CurrBlockInfo->EntryLoc, 2399 LEK_LockedSomePredecessors); 2400 } 2401 } 2402 2403 // Skip rest of block if it's not reachable. 2404 if (!CurrBlockInfo->Reachable) 2405 continue; 2406 2407 // Process continue and break blocks. Assume that the lockset for the 2408 // resulting block is unaffected by any discrepancies in them. 2409 for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size(); 2410 SpecialI < SpecialN; ++SpecialI) { 2411 CFGBlock *PrevBlock = SpecialBlocks[SpecialI]; 2412 int PrevBlockID = PrevBlock->getBlockID(); 2413 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2414 2415 if (!LocksetInitialized) { 2416 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2417 LocksetInitialized = true; 2418 } else { 2419 // Determine whether this edge is a loop terminator for diagnostic 2420 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2421 // it might also be part of a switch. Also, a subsequent destructor 2422 // might add to the lockset, in which case the real issue might be a 2423 // double lock on the other path. 2424 const Stmt *Terminator = PrevBlock->getTerminator(); 2425 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2426 2427 FactSet PrevLockset; 2428 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2429 PrevBlock, CurrBlock); 2430 2431 // Do not update EntrySet. 2432 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2433 PrevBlockInfo->ExitLoc, 2434 IsLoop ? LEK_LockedSomeLoopIterations 2435 : LEK_LockedSomePredecessors, 2436 false); 2437 } 2438 } 2439 2440 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2441 2442 // Visit all the statements in the basic block. 2443 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 2444 BE = CurrBlock->end(); BI != BE; ++BI) { 2445 switch (BI->getKind()) { 2446 case CFGElement::Statement: { 2447 CFGStmt CS = BI->castAs<CFGStmt>(); 2448 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 2449 break; 2450 } 2451 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2452 case CFGElement::AutomaticObjectDtor: { 2453 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 2454 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 2455 AD.getDestructorDecl(AC.getASTContext())); 2456 if (!DD->hasAttrs()) 2457 break; 2458 2459 // Create a dummy expression, 2460 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 2461 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, 2462 AD.getTriggerStmt()->getLocEnd()); 2463 LocksetBuilder.handleCall(&DRE, DD); 2464 break; 2465 } 2466 default: 2467 break; 2468 } 2469 } 2470 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2471 2472 // For every back edge from CurrBlock (the end of the loop) to another block 2473 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2474 // the one held at the beginning of FirstLoopBlock. We can look up the 2475 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2476 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2477 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2478 2479 // if CurrBlock -> *SI is *not* a back edge 2480 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) 2481 continue; 2482 2483 CFGBlock *FirstLoopBlock = *SI; 2484 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2485 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2486 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2487 PreLoop->EntryLoc, 2488 LEK_LockedSomeLoopIterations, 2489 false); 2490 } 2491 } 2492 2493 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2494 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2495 2496 // Skip the final check if the exit block is unreachable. 2497 if (!Final->Reachable) 2498 return; 2499 2500 // FIXME: Should we call this function for all blocks which exit the function? 2501 intersectAndWarn(Initial->EntrySet, Final->ExitSet, 2502 Final->ExitLoc, 2503 LEK_LockedAtEndOfFunction, 2504 LEK_NotLockedAtEndOfFunction, 2505 false); 2506 } 2507 2508 } // end anonymous namespace 2509 2510 2511 namespace clang { 2512 namespace thread_safety { 2513 2514 /// \brief Check a function's CFG for thread-safety violations. 2515 /// 2516 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2517 /// at the end of each block, and issue warnings for thread safety violations. 2518 /// Each block in the CFG is traversed exactly once. 2519 void runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2520 ThreadSafetyHandler &Handler) { 2521 ThreadSafetyAnalyzer Analyzer(Handler); 2522 Analyzer.runAnalysis(AC); 2523 } 2524 2525 /// \brief Helper function that returns a LockKind required for the given level 2526 /// of access. 2527 LockKind getLockKindFromAccessKind(AccessKind AK) { 2528 switch (AK) { 2529 case AK_Read : 2530 return LK_Shared; 2531 case AK_Written : 2532 return LK_Exclusive; 2533 } 2534 llvm_unreachable("Unknown AccessKind"); 2535 } 2536 2537 }} // end namespace clang::thread_safety 2538