1 /* 2 * System-dependent procedures for pppd under Solaris 2. 3 * 4 * Parts re-written by Adi Masputra <adi.masputra (at) sun.com>, based on 5 * the original sys-svr4.c 6 * 7 * Copyright (c) 2000 by Sun Microsystems, Inc. 8 * All rights reserved. 9 * 10 * Permission to use, copy, modify, and distribute this software and its 11 * documentation is hereby granted, provided that the above copyright 12 * notice appears in all copies. 13 * 14 * SUN MAKES NO REPRESENTATION OR WARRANTIES ABOUT THE SUITABILITY OF 15 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED 16 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 17 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR 18 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR 19 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES 20 * 21 * Copyright (c) 1995-2002 Paul Mackerras. All rights reserved. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 27 * 1. Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * 30 * 2. The name(s) of the authors of this software must not be used to 31 * endorse or promote products derived from this software without 32 * prior written permission. 33 * 34 * 3. Redistributions of any form whatsoever must retain the following 35 * acknowledgment: 36 * "This product includes software developed by Paul Mackerras 37 * <paulus (at) samba.org>". 38 * 39 * THE AUTHORS OF THIS SOFTWARE DISCLAIM ALL WARRANTIES WITH REGARD TO 40 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY 41 * AND FITNESS, IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY 42 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN 44 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING 45 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 46 * 47 * Derived from main.c and pppd.h, which are: 48 * 49 * Copyright (c) 1984-2000 Carnegie Mellon University. All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions 53 * are met: 54 * 55 * 1. Redistributions of source code must retain the above copyright 56 * notice, this list of conditions and the following disclaimer. 57 * 58 * 2. Redistributions in binary form must reproduce the above copyright 59 * notice, this list of conditions and the following disclaimer in 60 * the documentation and/or other materials provided with the 61 * distribution. 62 * 63 * 3. The name "Carnegie Mellon University" must not be used to 64 * endorse or promote products derived from this software without 65 * prior written permission. For permission or any legal 66 * details, please contact 67 * Office of Technology Transfer 68 * Carnegie Mellon University 69 * 5000 Forbes Avenue 70 * Pittsburgh, PA 15213-3890 71 * (412) 268-4387, fax: (412) 268-7395 72 * tech-transfer (at) andrew.cmu.edu 73 * 74 * 4. Redistributions of any form whatsoever must retain the following 75 * acknowledgment: 76 * "This product includes software developed by Computing Services 77 * at Carnegie Mellon University (http://www.cmu.edu/computing/)." 78 * 79 * CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO 80 * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY 81 * AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 82 * FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN 84 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING 85 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 86 */ 87 88 #define RCSID "$Id: sys-solaris.c,v 1.13 2004/11/04 10:02:26 paulus Exp $" 89 90 #include <limits.h> 91 #include <stdio.h> 92 #include <stddef.h> 93 #include <stdlib.h> 94 #include <string.h> 95 #include <ctype.h> 96 #include <errno.h> 97 #include <fcntl.h> 98 #include <unistd.h> 99 #include <termios.h> 100 #ifndef CRTSCTS 101 #include <sys/termiox.h> 102 #endif 103 #include <signal.h> 104 #include <utmpx.h> 105 #include <stropts.h> 106 #include <sys/types.h> 107 #include <sys/ioccom.h> 108 #include <sys/stream.h> 109 #include <sys/stropts.h> 110 #include <sys/socket.h> 111 #include <sys/sockio.h> 112 #include <sys/sysmacros.h> 113 #include <sys/systeminfo.h> 114 #include <sys/dlpi.h> 115 #include <sys/stat.h> 116 #include <sys/mkdev.h> 117 #include <net/if.h> 118 #include <net/if_arp.h> 119 #include <net/route.h> 120 #include <net/ppp_defs.h> 121 #include <net/pppio.h> 122 #include <netinet/in.h> 123 #ifdef SOL2 124 #include <sys/tihdr.h> 125 #include <sys/tiuser.h> 126 #include <inet/common.h> 127 #include <inet/mib2.h> 128 #include <sys/ethernet.h> 129 #endif 130 131 #include "pppd.h" 132 #include "fsm.h" 133 #include "lcp.h" 134 #include "ipcp.h" 135 #include "ccp.h" 136 137 #if !defined(PPP_DRV_NAME) 138 #define PPP_DRV_NAME "ppp" 139 #endif /* !defined(PPP_DRV_NAME) */ 140 141 #if !defined(PPP_DEV_NAME) 142 #define PPP_DEV_NAME "/dev/" PPP_DRV_NAME 143 #endif /* !defined(PPP_DEV_NAME) */ 144 145 #if !defined(AHDLC_MOD_NAME) 146 #define AHDLC_MOD_NAME "ppp_ahdl" 147 #endif /* !defined(AHDLC_MOD_NAME) */ 148 149 #if !defined(COMP_MOD_NAME) 150 #define COMP_MOD_NAME "ppp_comp" 151 #endif /* !defined(COMP_MOD_NAME) */ 152 153 #if !defined(IP_DEV_NAME) 154 #define IP_DEV_NAME "/dev/ip" 155 #endif /* !defined(IP_DEV_NAME) */ 156 157 #if !defined(IP_MOD_NAME) 158 #define IP_MOD_NAME "ip" 159 #endif /* !defined(IP_MOD_NAME) */ 160 161 #if !defined(UDP_DEV_NAME) && defined(SOL2) 162 #define UDP_DEV_NAME "/dev/udp" 163 #endif /* !defined(UDP_DEV_NAME) && defined(SOL2) */ 164 165 #if !defined(UDP6_DEV_NAME) && defined(SOL2) 166 #define UDP6_DEV_NAME "/dev/udp6" 167 #endif /* !defined(UDP6_DEV_NAME) && defined(SOL2) */ 168 169 static const char rcsid[] = RCSID; 170 171 #if defined(SOL2) 172 /* 173 * "/dev/udp" is used as a multiplexor to PLINK the interface stream 174 * under. It is used in place of "/dev/ip" since STREAMS will not let 175 * a driver be PLINK'ed under itself, and "/dev/ip" is typically the 176 * driver at the bottom of the tunneling interfaces stream. 177 */ 178 static char *mux_dev_name = UDP_DEV_NAME; 179 #else 180 static char *mux_dev_name = IP_DEV_NAME; 181 #endif 182 static int pppfd; 183 static int fdmuxid = -1; 184 static int ipfd; 185 static int ipmuxid = -1; 186 187 #if defined(INET6) && defined(SOL2) 188 static int ip6fd; /* IP file descriptor */ 189 static int ip6muxid = -1; /* Multiplexer file descriptor */ 190 static int if6_is_up = 0; /* IPv6 interface has been marked up */ 191 192 #define _IN6_LLX_FROM_EUI64(l, s, eui64, as) do { \ 193 s->sin6_addr.s6_addr32[0] = htonl(as); \ 194 eui64_copy(eui64, s->sin6_addr.s6_addr32[2]); \ 195 s->sin6_family = AF_INET6; \ 196 l.lifr_addr.ss_family = AF_INET6; \ 197 l.lifr_addrlen = 10; \ 198 l.lifr_addr = laddr; \ 199 } while (0) 200 201 #define IN6_LLADDR_FROM_EUI64(l, s, eui64) \ 202 _IN6_LLX_FROM_EUI64(l, s, eui64, 0xfe800000) 203 204 #define IN6_LLTOKEN_FROM_EUI64(l, s, eui64) \ 205 _IN6_LLX_FROM_EUI64(l, s, eui64, 0) 206 207 #endif /* defined(INET6) && defined(SOL2) */ 208 209 #if defined(INET6) && defined(SOL2) 210 static char first_ether_name[LIFNAMSIZ]; /* Solaris 8 and above */ 211 #else 212 static char first_ether_name[IFNAMSIZ]; /* Before Solaris 8 */ 213 #define MAXIFS 256 /* Max # of interfaces */ 214 #endif /* defined(INET6) && defined(SOL2) */ 215 216 static int restore_term; 217 static struct termios inittermios; 218 #ifndef CRTSCTS 219 static struct termiox inittermiox; 220 static int termiox_ok; 221 #endif 222 static struct winsize wsinfo; /* Initial window size info */ 223 static pid_t tty_sid; /* original session ID for terminal */ 224 225 extern u_char inpacket_buf[]; /* borrowed from main.c */ 226 227 #define MAX_POLLFDS 32 228 static struct pollfd pollfds[MAX_POLLFDS]; 229 static int n_pollfds; 230 231 static int link_mtu, link_mru; 232 233 #define NMODULES 32 234 static int tty_nmodules; 235 static char tty_modules[NMODULES][FMNAMESZ+1]; 236 static int tty_npushed; 237 238 static int if_is_up; /* Interface has been marked up */ 239 static u_int32_t remote_addr; /* IP address of peer */ 240 static u_int32_t default_route_gateway; /* Gateway for default route added */ 241 static u_int32_t proxy_arp_addr; /* Addr for proxy arp entry added */ 242 243 /* Prototypes for procedures local to this file. */ 244 static int translate_speed __P((int)); 245 static int baud_rate_of __P((int)); 246 static int get_ether_addr __P((u_int32_t, struct sockaddr *)); 247 static int get_hw_addr __P((char *, u_int32_t, struct sockaddr *)); 248 static int get_hw_addr_dlpi __P((char *, struct sockaddr *)); 249 static int dlpi_attach __P((int, int)); 250 static int dlpi_info_req __P((int)); 251 static int dlpi_get_reply __P((int, union DL_primitives *, int, int)); 252 static int strioctl __P((int, int, void *, int, int)); 253 254 #ifdef SOL2 255 /* 256 * sifppa - Sets interface ppa 257 * 258 * without setting the ppa, ip module will return EINVAL upon setting the 259 * interface UP (SIOCSxIFFLAGS). This is because ip module in 2.8 expects 260 * two DLPI_INFO_REQ to be sent down to the driver (below ip) before 261 * IFF_UP can be set. Plumbing the device causes one DLPI_INFO_REQ to 262 * be sent down, and the second DLPI_INFO_REQ is sent upon receiving 263 * IF_UNITSEL (old) or SIOCSLIFNAME (new) ioctls. Such setting of the ppa 264 * is required because the ppp DLPI provider advertises itself as 265 * a DLPI style 2 type, which requires a point of attachment to be 266 * specified. The only way the user can specify a point of attachment 267 * is via SIOCSLIFNAME or IF_UNITSEL. 268 * 269 * Such changes in the behavior of ip module was made to meet new or 270 * evolving standards requirements. 271 * 272 */ 273 static int 274 sifppa(fd, ppa) 275 int fd; 276 int ppa; 277 { 278 return (int)ioctl(fd, IF_UNITSEL, (char *)&ppa); 279 } 280 #endif /* SOL2 */ 281 282 #if defined(SOL2) && defined(INET6) 283 /* 284 * get_first_ethernet - returns the first Ethernet interface name found in 285 * the system, or NULL if none is found 286 * 287 * NOTE: This is the lifreq version (Solaris 8 and above) 288 */ 289 char * 290 get_first_ethernet() 291 { 292 struct lifnum lifn; 293 struct lifconf lifc; 294 struct lifreq *plifreq; 295 struct lifreq lifr; 296 int fd, num_ifs, i, found; 297 uint_t fl, req_size; 298 char *req; 299 300 fd = socket(AF_INET, SOCK_DGRAM, 0); 301 if (fd < 0) { 302 return 0; 303 } 304 305 /* 306 * Find out how many interfaces are running 307 */ 308 lifn.lifn_family = AF_UNSPEC; 309 lifn.lifn_flags = LIFC_NOXMIT; 310 if (ioctl(fd, SIOCGLIFNUM, &lifn) < 0) { 311 close(fd); 312 error("could not determine number of interfaces: %m"); 313 return 0; 314 } 315 316 num_ifs = lifn.lifn_count; 317 req_size = num_ifs * sizeof(struct lifreq); 318 req = malloc(req_size); 319 if (req == NULL) { 320 close(fd); 321 error("out of memory"); 322 return 0; 323 } 324 325 /* 326 * Get interface configuration info for all interfaces 327 */ 328 lifc.lifc_family = AF_UNSPEC; 329 lifc.lifc_flags = LIFC_NOXMIT; 330 lifc.lifc_len = req_size; 331 lifc.lifc_buf = req; 332 if (ioctl(fd, SIOCGLIFCONF, &lifc) < 0) { 333 close(fd); 334 free(req); 335 error("SIOCGLIFCONF: %m"); 336 return 0; 337 } 338 339 /* 340 * And traverse each interface to look specifically for the first 341 * occurence of an Ethernet interface which has been marked up 342 */ 343 plifreq = lifc.lifc_req; 344 found = 0; 345 for (i = lifc.lifc_len / sizeof(struct lifreq); i > 0; i--, plifreq++) { 346 347 if (strchr(plifreq->lifr_name, ':') != NULL) 348 continue; 349 350 memset(&lifr, 0, sizeof(lifr)); 351 strncpy(lifr.lifr_name, plifreq->lifr_name, sizeof(lifr.lifr_name)); 352 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { 353 close(fd); 354 free(req); 355 error("SIOCGLIFFLAGS: %m"); 356 return 0; 357 } 358 fl = lifr.lifr_flags; 359 360 if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) 361 != (IFF_UP | IFF_BROADCAST)) 362 continue; 363 364 found = 1; 365 break; 366 } 367 free(req); 368 close(fd); 369 370 if (found) { 371 strncpy(first_ether_name, lifr.lifr_name, sizeof(first_ether_name)); 372 return (char *)first_ether_name; 373 } else 374 return NULL; 375 } 376 #else 377 /* 378 * get_first_ethernet - returns the first Ethernet interface name found in 379 * the system, or NULL if none is found 380 * 381 * NOTE: This is the ifreq version (before Solaris 8). 382 */ 383 char * 384 get_first_ethernet() 385 { 386 struct ifconf ifc; 387 struct ifreq *pifreq; 388 struct ifreq ifr; 389 int fd, num_ifs, i, found; 390 uint_t fl, req_size; 391 char *req; 392 393 fd = socket(AF_INET, SOCK_DGRAM, 0); 394 if (fd < 0) { 395 return 0; 396 } 397 398 /* 399 * Find out how many interfaces are running 400 */ 401 if (ioctl(fd, SIOCGIFNUM, (char *)&num_ifs) < 0) { 402 num_ifs = MAXIFS; 403 } 404 405 req_size = num_ifs * sizeof(struct ifreq); 406 req = malloc(req_size); 407 if (req == NULL) { 408 close(fd); 409 error("out of memory"); 410 return 0; 411 } 412 413 /* 414 * Get interface configuration info for all interfaces 415 */ 416 ifc.ifc_len = req_size; 417 ifc.ifc_buf = req; 418 if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) { 419 close(fd); 420 free(req); 421 error("SIOCGIFCONF: %m"); 422 return 0; 423 } 424 425 /* 426 * And traverse each interface to look specifically for the first 427 * occurence of an Ethernet interface which has been marked up 428 */ 429 pifreq = ifc.ifc_req; 430 found = 0; 431 for (i = ifc.ifc_len / sizeof(struct ifreq); i > 0; i--, pifreq++) { 432 433 if (strchr(pifreq->ifr_name, ':') != NULL) 434 continue; 435 436 memset(&ifr, 0, sizeof(ifr)); 437 strncpy(ifr.ifr_name, pifreq->ifr_name, sizeof(ifr.ifr_name)); 438 if (ioctl(fd, SIOCGIFFLAGS, &ifr) < 0) { 439 close(fd); 440 free(req); 441 error("SIOCGIFFLAGS: %m"); 442 return 0; 443 } 444 fl = ifr.ifr_flags; 445 446 if ((fl & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) 447 != (IFF_UP | IFF_BROADCAST)) 448 continue; 449 450 found = 1; 451 break; 452 } 453 free(req); 454 close(fd); 455 456 if (found) { 457 strncpy(first_ether_name, ifr.ifr_name, sizeof(first_ether_name)); 458 return (char *)first_ether_name; 459 } else 460 return NULL; 461 } 462 #endif /* defined(SOL2) && defined(INET6) */ 463 464 #if defined(SOL2) 465 /* 466 * get_if_hwaddr - get the hardware address for the specified 467 * network interface device. 468 */ 469 int 470 get_if_hwaddr(u_char *addr, char *if_name) 471 { 472 struct sockaddr s_eth_addr; 473 struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data; 474 475 if (if_name == NULL) 476 return -1; 477 478 /* 479 * Send DL_INFO_REQ to the driver to solicit its MAC address 480 */ 481 if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) { 482 error("could not obtain hardware address for %s", if_name); 483 return -1; 484 } 485 486 memcpy(addr, eth_addr->ether_addr_octet, 6); 487 return 1; 488 } 489 #endif /* SOL2 */ 490 491 #if defined(SOL2) && defined(INET6) 492 /* 493 * slifname - Sets interface ppa and flags 494 * 495 * in addition to the comments stated in sifppa(), IFF_IPV6 bit must 496 * be set in order to declare this as an IPv6 interface 497 */ 498 static int 499 slifname(fd, ppa) 500 int fd; 501 int ppa; 502 { 503 struct lifreq lifr; 504 int ret; 505 506 memset(&lifr, 0, sizeof(lifr)); 507 ret = ioctl(fd, SIOCGLIFFLAGS, &lifr); 508 if (ret < 0) 509 goto slifname_done; 510 511 lifr.lifr_flags |= IFF_IPV6; 512 lifr.lifr_flags &= ~(IFF_BROADCAST | IFF_IPV4); 513 lifr.lifr_ppa = ppa; 514 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 515 516 ret = ioctl(fd, SIOCSLIFNAME, &lifr); 517 518 slifname_done: 519 return ret; 520 521 522 } 523 524 525 /* 526 * ether_to_eui64 - Convert 48-bit Ethernet address into 64-bit EUI 527 * 528 * walks the list of valid ethernet interfaces, and convert the first 529 * found 48-bit MAC address into EUI 64. caller also assumes that 530 * the system has a properly configured Ethernet interface for this 531 * function to return non-zero. 532 */ 533 int 534 ether_to_eui64(eui64_t *p_eui64) 535 { 536 struct sockaddr s_eth_addr; 537 struct ether_addr *eth_addr = (struct ether_addr *)&s_eth_addr.sa_data; 538 char *if_name; 539 540 if ((if_name = get_first_ethernet()) == NULL) { 541 error("no persistent id can be found"); 542 return 0; 543 } 544 545 /* 546 * Send DL_INFO_REQ to the driver to solicit its MAC address 547 */ 548 if (!get_hw_addr_dlpi(if_name, &s_eth_addr)) { 549 error("could not obtain hardware address for %s", if_name); 550 return 0; 551 } 552 553 /* 554 * And convert the EUI-48 into EUI-64, per RFC 2472 [sec 4.1] 555 */ 556 p_eui64->e8[0] = (eth_addr->ether_addr_octet[0] & 0xFF) | 0x02; 557 p_eui64->e8[1] = (eth_addr->ether_addr_octet[1] & 0xFF); 558 p_eui64->e8[2] = (eth_addr->ether_addr_octet[2] & 0xFF); 559 p_eui64->e8[3] = 0xFF; 560 p_eui64->e8[4] = 0xFE; 561 p_eui64->e8[5] = (eth_addr->ether_addr_octet[3] & 0xFF); 562 p_eui64->e8[6] = (eth_addr->ether_addr_octet[4] & 0xFF); 563 p_eui64->e8[7] = (eth_addr->ether_addr_octet[5] & 0xFF); 564 565 return 1; 566 } 567 #endif /* defined(SOL2) && defined(INET6) */ 568 569 /* 570 * sys_init - System-dependent initialization. 571 */ 572 void 573 sys_init() 574 { 575 int ifd, x; 576 struct ifreq ifr; 577 #if defined(INET6) && defined(SOL2) 578 int i6fd; 579 struct lifreq lifr; 580 #endif /* defined(INET6) && defined(SOL2) */ 581 #if !defined(SOL2) 582 struct { 583 union DL_primitives prim; 584 char space[64]; 585 } reply; 586 #endif /* !defined(SOL2) */ 587 588 ipfd = open(mux_dev_name, O_RDWR, 0); 589 if (ipfd < 0) 590 fatal("Couldn't open IP device: %m"); 591 592 #if defined(INET6) && defined(SOL2) 593 ip6fd = open(UDP6_DEV_NAME, O_RDWR, 0); 594 if (ip6fd < 0) 595 fatal("Couldn't open IP device (2): %m"); 596 #endif /* defined(INET6) && defined(SOL2) */ 597 598 if (default_device && !notty) 599 tty_sid = getsid((pid_t)0); 600 601 pppfd = open(PPP_DEV_NAME, O_RDWR | O_NONBLOCK, 0); 602 if (pppfd < 0) 603 fatal("Can't open %s: %m", PPP_DEV_NAME); 604 if (kdebugflag & 1) { 605 x = PPPDBG_LOG + PPPDBG_DRIVER; 606 strioctl(pppfd, PPPIO_DEBUG, &x, sizeof(int), 0); 607 } 608 609 /* Assign a new PPA and get its unit number. */ 610 if (strioctl(pppfd, PPPIO_NEWPPA, &ifunit, 0, sizeof(int)) < 0) 611 fatal("Can't create new PPP interface: %m"); 612 613 #if defined(SOL2) 614 /* 615 * Since sys_init() is called prior to ifname being set in main(), 616 * we need to get the ifname now, otherwise slifname(), and others, 617 * will fail, or maybe, I should move them to a later point ? 618 * <adi.masputra (at) sun.com> 619 */ 620 sprintf(ifname, PPP_DRV_NAME "%d", ifunit); 621 #endif /* defined(SOL2) */ 622 /* 623 * Open the ppp device again and link it under the ip multiplexor. 624 * IP will assign a unit number which hopefully is the same as ifunit. 625 * I don't know any way to be certain they will be the same. :-( 626 */ 627 ifd = open(PPP_DEV_NAME, O_RDWR, 0); 628 if (ifd < 0) 629 fatal("Can't open %s (2): %m", PPP_DEV_NAME); 630 if (kdebugflag & 1) { 631 x = PPPDBG_LOG + PPPDBG_DRIVER; 632 strioctl(ifd, PPPIO_DEBUG, &x, sizeof(int), 0); 633 } 634 635 #if defined(INET6) && defined(SOL2) 636 i6fd = open(PPP_DEV_NAME, O_RDWR, 0); 637 if (i6fd < 0) { 638 close(ifd); 639 fatal("Can't open %s (3): %m", PPP_DEV_NAME); 640 } 641 if (kdebugflag & 1) { 642 x = PPPDBG_LOG + PPPDBG_DRIVER; 643 strioctl(i6fd, PPPIO_DEBUG, &x, sizeof(int), 0); 644 } 645 #endif /* defined(INET6) && defined(SOL2) */ 646 647 #if defined(SOL2) 648 if (ioctl(ifd, I_PUSH, IP_MOD_NAME) < 0) { 649 close(ifd); 650 #if defined(INET6) 651 close(i6fd); 652 #endif /* defined(INET6) */ 653 fatal("Can't push IP module: %m"); 654 } 655 656 /* 657 * Assign ppa according to the unit number returned by ppp device 658 * after plumbing is completed above. 659 */ 660 if (sifppa(ifd, ifunit) < 0) { 661 close (ifd); 662 #if defined(INET6) 663 close(i6fd); 664 #endif /* defined(INET6) */ 665 fatal("Can't set ppa for unit %d: %m", ifunit); 666 } 667 668 #if defined(INET6) 669 /* 670 * An IPv6 interface is created anyway, even when the user does not 671 * explicitly enable it. Note that the interface will be marked 672 * IPv6 during slifname(). 673 */ 674 if (ioctl(i6fd, I_PUSH, IP_MOD_NAME) < 0) { 675 close(ifd); 676 close(i6fd); 677 fatal("Can't push IP module (2): %m"); 678 } 679 680 /* 681 * Assign ppa according to the unit number returned by ppp device 682 * after plumbing is completed above. In addition, mark the interface 683 * as an IPv6 interface. 684 */ 685 if (slifname(i6fd, ifunit) < 0) { 686 close(ifd); 687 close(i6fd); 688 fatal("Can't set ifname for unit %d: %m", ifunit); 689 } 690 #endif /* defined(INET6) */ 691 692 ipmuxid = ioctl(ipfd, I_PLINK, ifd); 693 close(ifd); 694 if (ipmuxid < 0) { 695 #if defined(INET6) 696 close(i6fd); 697 #endif /* defined(INET6) */ 698 fatal("Can't I_PLINK PPP device to IP: %m"); 699 } 700 701 memset(&ifr, 0, sizeof(ifr)); 702 sprintf(ifr.ifr_name, "%s", ifname); 703 ifr.ifr_ip_muxid = ipmuxid; 704 705 /* 706 * In Sol 8 and later, STREAMS dynamic module plumbing feature exists. 707 * This is so that an arbitrary module can be inserted, or deleted, 708 * between ip module and the device driver without tearing down the 709 * existing stream. Such feature requires the mux ids, which is set 710 * by SIOCSIFMUXID (or SIOCLSIFMUXID). 711 */ 712 if (ioctl(ipfd, SIOCSIFMUXID, &ifr) < 0) { 713 ioctl(ipfd, I_PUNLINK, ipmuxid); 714 #if defined(INET6) 715 close(i6fd); 716 #endif /* defined(INET6) */ 717 fatal("SIOCSIFMUXID: %m"); 718 } 719 720 #else /* else if !defined(SOL2) */ 721 722 if (dlpi_attach(ifd, ifunit) < 0 || 723 dlpi_get_reply(ifd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0) { 724 close(ifd); 725 fatal("Can't attach to ppp%d: %m", ifunit); 726 } 727 728 ipmuxid = ioctl(ipfd, I_LINK, ifd); 729 close(ifd); 730 if (ipmuxid < 0) 731 fatal("Can't link PPP device to IP: %m"); 732 #endif /* defined(SOL2) */ 733 734 #if defined(INET6) && defined(SOL2) 735 ip6muxid = ioctl(ip6fd, I_PLINK, i6fd); 736 close(i6fd); 737 if (ip6muxid < 0) { 738 ioctl(ipfd, I_PUNLINK, ipmuxid); 739 fatal("Can't I_PLINK PPP device to IP (2): %m"); 740 } 741 742 memset(&lifr, 0, sizeof(lifr)); 743 sprintf(lifr.lifr_name, "%s", ifname); 744 lifr.lifr_ip_muxid = ip6muxid; 745 746 /* 747 * Let IP know of the mux id [see comment for SIOCSIFMUXID above] 748 */ 749 if (ioctl(ip6fd, SIOCSLIFMUXID, &lifr) < 0) { 750 ioctl(ipfd, I_PUNLINK, ipmuxid); 751 ioctl(ip6fd, I_PUNLINK, ip6muxid); 752 fatal("Can't link PPP device to IP (2): %m"); 753 } 754 #endif /* defined(INET6) && defined(SOL2) */ 755 756 #if !defined(SOL2) 757 /* Set the interface name for the link. */ 758 slprintf(ifr.ifr_name, sizeof(ifr.ifr_name), PPP_DRV_NAME "%d", ifunit); 759 ifr.ifr_metric = ipmuxid; 760 if (strioctl(ipfd, SIOCSIFNAME, (char *)&ifr, sizeof ifr, 0) < 0) 761 fatal("Can't set interface name %s: %m", ifr.ifr_name); 762 #endif /* !defined(SOL2) */ 763 764 n_pollfds = 0; 765 } 766 767 /* 768 * sys_cleanup - restore any system state we modified before exiting: 769 * mark the interface down, delete default route and/or proxy arp entry. 770 * This should call die() because it's called from die(). 771 */ 772 void 773 sys_cleanup() 774 { 775 #if defined(SOL2) 776 struct ifreq ifr; 777 #if defined(INET6) 778 struct lifreq lifr; 779 #endif /* defined(INET6) */ 780 #endif /* defined(SOL2) */ 781 782 #if defined(SOL2) && defined(INET6) 783 if (if6_is_up) 784 sif6down(0); 785 #endif /* defined(SOL2) && defined(INET6) */ 786 if (if_is_up) 787 sifdown(0); 788 if (default_route_gateway) 789 cifdefaultroute(0, default_route_gateway, default_route_gateway); 790 if (proxy_arp_addr) 791 cifproxyarp(0, proxy_arp_addr); 792 #if defined(SOL2) 793 /* 794 * Make sure we ask ip what the muxid, because 'ifconfig modlist' will 795 * unlink and re-link the modules, causing the muxid to change. 796 */ 797 memset(&ifr, 0, sizeof(ifr)); 798 sprintf(ifr.ifr_name, "%s", ifname); 799 if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { 800 error("SIOCGIFFLAGS: %m"); 801 return; 802 } 803 804 if (ioctl(ipfd, SIOCGIFMUXID, &ifr) < 0) { 805 error("SIOCGIFMUXID: %m"); 806 return; 807 } 808 809 ipmuxid = ifr.ifr_ip_muxid; 810 811 if (ioctl(ipfd, I_PUNLINK, ipmuxid) < 0) { 812 error("Can't I_PUNLINK PPP from IP: %m"); 813 return; 814 } 815 #if defined(INET6) 816 /* 817 * Make sure we ask ip what the muxid, because 'ifconfig modlist' will 818 * unlink and re-link the modules, causing the muxid to change. 819 */ 820 memset(&lifr, 0, sizeof(lifr)); 821 sprintf(lifr.lifr_name, "%s", ifname); 822 if (ioctl(ip6fd, SIOCGLIFFLAGS, &lifr) < 0) { 823 error("SIOCGLIFFLAGS: %m"); 824 return; 825 } 826 827 if (ioctl(ip6fd, SIOCGLIFMUXID, &lifr) < 0) { 828 error("SIOCGLIFMUXID: %m"); 829 return; 830 } 831 832 ip6muxid = lifr.lifr_ip_muxid; 833 834 if (ioctl(ip6fd, I_PUNLINK, ip6muxid) < 0) { 835 error("Can't I_PUNLINK PPP from IP (2): %m"); 836 } 837 #endif /* defined(INET6) */ 838 #endif /* defined(SOL2) */ 839 } 840 841 /* 842 * sys_close - Clean up in a child process before execing. 843 */ 844 void 845 sys_close() 846 { 847 close(ipfd); 848 #if defined(INET6) && defined(SOL2) 849 close(ip6fd); 850 #endif /* defined(INET6) && defined(SOL2) */ 851 if (pppfd >= 0) 852 close(pppfd); 853 } 854 855 /* 856 * sys_check_options - check the options that the user specified 857 */ 858 int 859 sys_check_options() 860 { 861 return 1; 862 } 863 864 #if 0 865 /* 866 * daemon - Detach us from controlling terminal session. 867 */ 868 int 869 daemon(nochdir, noclose) 870 int nochdir, noclose; 871 { 872 int pid; 873 874 if ((pid = fork()) < 0) 875 return -1; 876 if (pid != 0) 877 exit(0); /* parent dies */ 878 setsid(); 879 if (!nochdir) 880 chdir("/"); 881 if (!noclose) { 882 fclose(stdin); /* don't need stdin, stdout, stderr */ 883 fclose(stdout); 884 fclose(stderr); 885 } 886 return 0; 887 } 888 #endif 889 890 /* 891 * ppp_available - check whether the system has any ppp interfaces 892 */ 893 int 894 ppp_available() 895 { 896 struct stat buf; 897 898 return stat(PPP_DEV_NAME, &buf) >= 0; 899 } 900 901 /* 902 * any_compressions - see if compression is enabled or not 903 * 904 * In the STREAMS implementation of kernel-portion pppd, 905 * the comp STREAMS module performs the ACFC, PFC, as well 906 * CCP and VJ compressions. However, if the user has explicitly 907 * declare to not enable them from the command line, there is 908 * no point of having the comp module be pushed on the stream. 909 */ 910 static int 911 any_compressions() 912 { 913 if ((!lcp_wantoptions[0].neg_accompression) && 914 (!lcp_wantoptions[0].neg_pcompression) && 915 (!ccp_protent.enabled_flag) && 916 (!ipcp_wantoptions[0].neg_vj)) { 917 return 0; 918 } 919 return 1; 920 } 921 922 /* 923 * tty_establish_ppp - Turn the serial port into a ppp interface. 924 */ 925 int 926 tty_establish_ppp(fd) 927 int fd; 928 { 929 int i; 930 931 /* Pop any existing modules off the tty stream. */ 932 for (i = 0;; ++i) 933 if (ioctl(fd, I_LOOK, tty_modules[i]) < 0 934 || strcmp(tty_modules[i], "ptem") == 0 935 || ioctl(fd, I_POP, 0) < 0) 936 break; 937 tty_nmodules = i; 938 939 /* Push the async hdlc module and the compressor module. */ 940 tty_npushed = 0; 941 942 if(!sync_serial) { 943 if (ioctl(fd, I_PUSH, AHDLC_MOD_NAME) < 0) { 944 error("Couldn't push PPP Async HDLC module: %m"); 945 return -1; 946 } 947 ++tty_npushed; 948 } 949 if (kdebugflag & 4) { 950 i = PPPDBG_LOG + PPPDBG_AHDLC; 951 strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0); 952 } 953 /* 954 * There's no need to push comp module if we don't intend 955 * to compress anything 956 */ 957 if (any_compressions()) { 958 if (ioctl(fd, I_PUSH, COMP_MOD_NAME) < 0) 959 error("Couldn't push PPP compression module: %m"); 960 else 961 ++tty_npushed; 962 } 963 964 if (kdebugflag & 2) { 965 i = PPPDBG_LOG; 966 if (any_compressions()) 967 i += PPPDBG_COMP; 968 strioctl(pppfd, PPPIO_DEBUG, &i, sizeof(int), 0); 969 } 970 971 /* Link the serial port under the PPP multiplexor. */ 972 if ((fdmuxid = ioctl(pppfd, I_LINK, fd)) < 0) { 973 error("Can't link tty to PPP mux: %m"); 974 return -1; 975 } 976 977 return pppfd; 978 } 979 980 /* 981 * tty_disestablish_ppp - Restore the serial port to normal operation. 982 * It attempts to reconstruct the stream with the previously popped 983 * modules. This shouldn't call die() because it's called from die(). 984 */ 985 void 986 tty_disestablish_ppp(fd) 987 int fd; 988 { 989 int i; 990 991 if (fdmuxid >= 0) { 992 if (ioctl(pppfd, I_UNLINK, fdmuxid) < 0) { 993 if (!hungup) 994 error("Can't unlink tty from PPP mux: %m"); 995 } 996 fdmuxid = -1; 997 998 if (!hungup) { 999 while (tty_npushed > 0 && ioctl(fd, I_POP, 0) >= 0) 1000 --tty_npushed; 1001 for (i = tty_nmodules - 1; i >= 0; --i) 1002 if (ioctl(fd, I_PUSH, tty_modules[i]) < 0) 1003 error("Couldn't restore tty module %s: %m", 1004 tty_modules[i]); 1005 } 1006 if (hungup && default_device && tty_sid > 0) { 1007 /* 1008 * If we have received a hangup, we need to send a SIGHUP 1009 * to the terminal's controlling process. The reason is 1010 * that the original stream head for the terminal hasn't 1011 * seen the M_HANGUP message (it went up through the ppp 1012 * driver to the stream head for our fd to /dev/ppp). 1013 */ 1014 kill(tty_sid, SIGHUP); 1015 } 1016 } 1017 } 1018 1019 /* 1020 * Check whether the link seems not to be 8-bit clean. 1021 */ 1022 void 1023 clean_check() 1024 { 1025 int x; 1026 char *s; 1027 1028 if (strioctl(pppfd, PPPIO_GCLEAN, &x, 0, sizeof(x)) < 0) 1029 return; 1030 s = NULL; 1031 switch (~x) { 1032 case RCV_B7_0: 1033 s = "bit 7 set to 1"; 1034 break; 1035 case RCV_B7_1: 1036 s = "bit 7 set to 0"; 1037 break; 1038 case RCV_EVNP: 1039 s = "odd parity"; 1040 break; 1041 case RCV_ODDP: 1042 s = "even parity"; 1043 break; 1044 } 1045 if (s != NULL) { 1046 warn("Serial link is not 8-bit clean:"); 1047 warn("All received characters had %s", s); 1048 } 1049 } 1050 1051 /* 1052 * List of valid speeds. 1053 */ 1054 struct speed { 1055 int speed_int, speed_val; 1056 } speeds[] = { 1057 #ifdef B50 1058 { 50, B50 }, 1059 #endif 1060 #ifdef B75 1061 { 75, B75 }, 1062 #endif 1063 #ifdef B110 1064 { 110, B110 }, 1065 #endif 1066 #ifdef B134 1067 { 134, B134 }, 1068 #endif 1069 #ifdef B150 1070 { 150, B150 }, 1071 #endif 1072 #ifdef B200 1073 { 200, B200 }, 1074 #endif 1075 #ifdef B300 1076 { 300, B300 }, 1077 #endif 1078 #ifdef B600 1079 { 600, B600 }, 1080 #endif 1081 #ifdef B1200 1082 { 1200, B1200 }, 1083 #endif 1084 #ifdef B1800 1085 { 1800, B1800 }, 1086 #endif 1087 #ifdef B2000 1088 { 2000, B2000 }, 1089 #endif 1090 #ifdef B2400 1091 { 2400, B2400 }, 1092 #endif 1093 #ifdef B3600 1094 { 3600, B3600 }, 1095 #endif 1096 #ifdef B4800 1097 { 4800, B4800 }, 1098 #endif 1099 #ifdef B7200 1100 { 7200, B7200 }, 1101 #endif 1102 #ifdef B9600 1103 { 9600, B9600 }, 1104 #endif 1105 #ifdef B19200 1106 { 19200, B19200 }, 1107 #endif 1108 #ifdef B38400 1109 { 38400, B38400 }, 1110 #endif 1111 #ifdef EXTA 1112 { 19200, EXTA }, 1113 #endif 1114 #ifdef EXTB 1115 { 38400, EXTB }, 1116 #endif 1117 #ifdef B57600 1118 { 57600, B57600 }, 1119 #endif 1120 #ifdef B76800 1121 { 76800, B76800 }, 1122 #endif 1123 #ifdef B115200 1124 { 115200, B115200 }, 1125 #endif 1126 #ifdef B153600 1127 { 153600, B153600 }, 1128 #endif 1129 #ifdef B230400 1130 { 230400, B230400 }, 1131 #endif 1132 #ifdef B307200 1133 { 307200, B307200 }, 1134 #endif 1135 #ifdef B460800 1136 { 460800, B460800 }, 1137 #endif 1138 { 0, 0 } 1139 }; 1140 1141 /* 1142 * Translate from bits/second to a speed_t. 1143 */ 1144 static int 1145 translate_speed(bps) 1146 int bps; 1147 { 1148 struct speed *speedp; 1149 1150 if (bps == 0) 1151 return 0; 1152 for (speedp = speeds; speedp->speed_int; speedp++) 1153 if (bps == speedp->speed_int) 1154 return speedp->speed_val; 1155 warn("speed %d not supported", bps); 1156 return 0; 1157 } 1158 1159 /* 1160 * Translate from a speed_t to bits/second. 1161 */ 1162 static int 1163 baud_rate_of(speed) 1164 int speed; 1165 { 1166 struct speed *speedp; 1167 1168 if (speed == 0) 1169 return 0; 1170 for (speedp = speeds; speedp->speed_int; speedp++) 1171 if (speed == speedp->speed_val) 1172 return speedp->speed_int; 1173 return 0; 1174 } 1175 1176 /* 1177 * set_up_tty: Set up the serial port on `fd' for 8 bits, no parity, 1178 * at the requested speed, etc. If `local' is true, set CLOCAL 1179 * regardless of whether the modem option was specified. 1180 */ 1181 void 1182 set_up_tty(fd, local) 1183 int fd, local; 1184 { 1185 int speed; 1186 struct termios tios; 1187 #if !defined (CRTSCTS) 1188 struct termiox tiox; 1189 #endif 1190 1191 if (!sync_serial && tcgetattr(fd, &tios) < 0) 1192 fatal("tcgetattr: %m"); 1193 1194 #ifndef CRTSCTS 1195 termiox_ok = 1; 1196 if (!sync_serial && ioctl (fd, TCGETX, &tiox) < 0) { 1197 termiox_ok = 0; 1198 if (errno != ENOTTY) 1199 error("TCGETX: %m"); 1200 } 1201 #endif 1202 1203 if (!restore_term) { 1204 inittermios = tios; 1205 #ifndef CRTSCTS 1206 inittermiox = tiox; 1207 #endif 1208 if (!sync_serial) 1209 ioctl(fd, TIOCGWINSZ, &wsinfo); 1210 } 1211 1212 tios.c_cflag &= ~(CSIZE | CSTOPB | PARENB | CLOCAL); 1213 #ifdef CRTSCTS 1214 if (crtscts > 0) 1215 tios.c_cflag |= CRTSCTS; 1216 else if (crtscts < 0) 1217 tios.c_cflag &= ~CRTSCTS; 1218 #else 1219 if (crtscts != 0 && !termiox_ok) { 1220 error("Can't set RTS/CTS flow control"); 1221 } else if (crtscts > 0) { 1222 tiox.x_hflag |= RTSXOFF|CTSXON; 1223 } else if (crtscts < 0) { 1224 tiox.x_hflag &= ~(RTSXOFF|CTSXON); 1225 } 1226 #endif 1227 1228 tios.c_cflag |= CS8 | CREAD | HUPCL; 1229 if (local || !modem) 1230 tios.c_cflag |= CLOCAL; 1231 tios.c_iflag = IGNBRK | IGNPAR; 1232 tios.c_oflag = 0; 1233 tios.c_lflag = 0; 1234 tios.c_cc[VMIN] = 1; 1235 tios.c_cc[VTIME] = 0; 1236 1237 if (crtscts == -2) { 1238 tios.c_iflag |= IXON | IXOFF; 1239 tios.c_cc[VSTOP] = 0x13; /* DC3 = XOFF = ^S */ 1240 tios.c_cc[VSTART] = 0x11; /* DC1 = XON = ^Q */ 1241 } 1242 1243 speed = translate_speed(inspeed); 1244 if (speed) { 1245 cfsetospeed(&tios, speed); 1246 cfsetispeed(&tios, speed); 1247 } else { 1248 speed = cfgetospeed(&tios); 1249 /* 1250 * We can't proceed if the serial port speed is 0, 1251 * since that implies that the serial port is disabled. 1252 */ 1253 if ((speed == B0) && !sync_serial) 1254 fatal("Baud rate for %s is 0; need explicit baud rate", devnam); 1255 } 1256 1257 if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &tios) < 0) 1258 fatal("tcsetattr: %m"); 1259 1260 #ifndef CRTSCTS 1261 if (!sync_serial && termiox_ok && ioctl (fd, TCSETXF, &tiox) < 0){ 1262 error("TCSETXF: %m"); 1263 } 1264 #endif 1265 1266 baud_rate = inspeed = baud_rate_of(speed); 1267 if (!sync_serial) 1268 restore_term = 1; 1269 } 1270 1271 /* 1272 * restore_tty - restore the terminal to the saved settings. 1273 */ 1274 void 1275 restore_tty(fd) 1276 int fd; 1277 { 1278 if (restore_term) { 1279 if (!default_device) { 1280 /* 1281 * Turn off echoing, because otherwise we can get into 1282 * a loop with the tty and the modem echoing to each other. 1283 * We presume we are the sole user of this tty device, so 1284 * when we close it, it will revert to its defaults anyway. 1285 */ 1286 inittermios.c_lflag &= ~(ECHO | ECHONL); 1287 } 1288 if (!sync_serial && tcsetattr(fd, TCSAFLUSH, &inittermios) < 0) 1289 if (!hungup && errno != ENXIO) 1290 warn("tcsetattr: %m"); 1291 #ifndef CRTSCTS 1292 if (!sync_serial && ioctl (fd, TCSETXF, &inittermiox) < 0){ 1293 if (!hungup && errno != ENXIO) 1294 error("TCSETXF: %m"); 1295 } 1296 #endif 1297 if (!sync_serial) 1298 ioctl(fd, TIOCSWINSZ, &wsinfo); 1299 restore_term = 0; 1300 } 1301 } 1302 1303 /* 1304 * setdtr - control the DTR line on the serial port. 1305 * This is called from die(), so it shouldn't call die(). 1306 */ 1307 void 1308 setdtr(fd, on) 1309 int fd, on; 1310 { 1311 int modembits = TIOCM_DTR; 1312 1313 ioctl(fd, (on? TIOCMBIS: TIOCMBIC), &modembits); 1314 } 1315 1316 /* 1317 * open_loopback - open the device we use for getting packets 1318 * in demand mode. Under Solaris 2, we use our existing fd 1319 * to the ppp driver. 1320 */ 1321 int 1322 open_ppp_loopback() 1323 { 1324 return pppfd; 1325 } 1326 1327 /* 1328 * output - Output PPP packet. 1329 */ 1330 void 1331 output(unit, p, len) 1332 int unit; 1333 u_char *p; 1334 int len; 1335 { 1336 struct strbuf data; 1337 int retries; 1338 struct pollfd pfd; 1339 1340 dump_packet("sent", p, len); 1341 if (snoop_send_hook) snoop_send_hook(p, len); 1342 1343 data.len = len; 1344 data.buf = (caddr_t) p; 1345 retries = 4; 1346 while (putmsg(pppfd, NULL, &data, 0) < 0) { 1347 if (--retries < 0 || (errno != EWOULDBLOCK && errno != EAGAIN)) { 1348 if (errno != ENXIO) 1349 error("Couldn't send packet: %m"); 1350 break; 1351 } 1352 pfd.fd = pppfd; 1353 pfd.events = POLLOUT; 1354 poll(&pfd, 1, 250); /* wait for up to 0.25 seconds */ 1355 } 1356 } 1357 1358 1359 /* 1360 * wait_input - wait until there is data available, 1361 * for the length of time specified by *timo (indefinite 1362 * if timo is NULL). 1363 */ 1364 void 1365 wait_input(timo) 1366 struct timeval *timo; 1367 { 1368 int t; 1369 1370 t = timo == NULL? -1: timo->tv_sec * 1000 + timo->tv_usec / 1000; 1371 if (poll(pollfds, n_pollfds, t) < 0 && errno != EINTR) 1372 fatal("poll: %m"); 1373 } 1374 1375 /* 1376 * add_fd - add an fd to the set that wait_input waits for. 1377 */ 1378 void add_fd(fd) 1379 int fd; 1380 { 1381 int n; 1382 1383 for (n = 0; n < n_pollfds; ++n) 1384 if (pollfds[n].fd == fd) 1385 return; 1386 if (n_pollfds < MAX_POLLFDS) { 1387 pollfds[n_pollfds].fd = fd; 1388 pollfds[n_pollfds].events = POLLIN | POLLPRI | POLLHUP; 1389 ++n_pollfds; 1390 } else 1391 error("Too many inputs!"); 1392 } 1393 1394 /* 1395 * remove_fd - remove an fd from the set that wait_input waits for. 1396 */ 1397 void remove_fd(fd) 1398 int fd; 1399 { 1400 int n; 1401 1402 for (n = 0; n < n_pollfds; ++n) { 1403 if (pollfds[n].fd == fd) { 1404 while (++n < n_pollfds) 1405 pollfds[n-1] = pollfds[n]; 1406 --n_pollfds; 1407 break; 1408 } 1409 } 1410 } 1411 1412 #if 0 1413 /* 1414 * wait_loop_output - wait until there is data available on the 1415 * loopback, for the length of time specified by *timo (indefinite 1416 * if timo is NULL). 1417 */ 1418 void 1419 wait_loop_output(timo) 1420 struct timeval *timo; 1421 { 1422 wait_input(timo); 1423 } 1424 1425 /* 1426 * wait_time - wait for a given length of time or until a 1427 * signal is received. 1428 */ 1429 void 1430 wait_time(timo) 1431 struct timeval *timo; 1432 { 1433 int n; 1434 1435 n = select(0, NULL, NULL, NULL, timo); 1436 if (n < 0 && errno != EINTR) 1437 fatal("select: %m"); 1438 } 1439 #endif 1440 1441 1442 /* 1443 * read_packet - get a PPP packet from the serial device. 1444 */ 1445 int 1446 read_packet(buf) 1447 u_char *buf; 1448 { 1449 struct strbuf ctrl, data; 1450 int flags, len; 1451 unsigned char ctrlbuf[sizeof(union DL_primitives) + 64]; 1452 1453 for (;;) { 1454 data.maxlen = PPP_MRU + PPP_HDRLEN; 1455 data.buf = (caddr_t) buf; 1456 ctrl.maxlen = sizeof(ctrlbuf); 1457 ctrl.buf = (caddr_t) ctrlbuf; 1458 flags = 0; 1459 len = getmsg(pppfd, &ctrl, &data, &flags); 1460 if (len < 0) { 1461 if (errno == EAGAIN || errno == EINTR) 1462 return -1; 1463 fatal("Error reading packet: %m"); 1464 } 1465 1466 if (ctrl.len <= 0) 1467 return data.len; 1468 1469 /* 1470 * Got a M_PROTO or M_PCPROTO message. Interpret it 1471 * as a DLPI primitive?? 1472 */ 1473 if (debug) 1474 dbglog("got dlpi prim 0x%x, len=%d", 1475 ((union DL_primitives *)ctrlbuf)->dl_primitive, ctrl.len); 1476 1477 } 1478 } 1479 1480 /* 1481 * get_loop_output - get outgoing packets from the ppp device, 1482 * and detect when we want to bring the real link up. 1483 * Return value is 1 if we need to bring up the link, 0 otherwise. 1484 */ 1485 int 1486 get_loop_output() 1487 { 1488 int len; 1489 int rv = 0; 1490 1491 while ((len = read_packet(inpacket_buf)) > 0) { 1492 if (loop_frame(inpacket_buf, len)) 1493 rv = 1; 1494 } 1495 return rv; 1496 } 1497 1498 /* 1499 * netif_set_mtu - set the MTU on the PPP network interface. 1500 */ 1501 void 1502 netif_set_mtu(unit, mtu) 1503 int unit, mtu; 1504 { 1505 struct ifreq ifr; 1506 #if defined(INET6) && defined(SOL2) 1507 struct lifreq lifr; 1508 int fd; 1509 #endif /* defined(INET6) && defined(SOL2) */ 1510 1511 memset(&ifr, 0, sizeof(ifr)); 1512 strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); 1513 ifr.ifr_metric = link_mtu; 1514 if (ioctl(ipfd, SIOCSIFMTU, &ifr) < 0) { 1515 error("Couldn't set IP MTU (%s): %m", ifr.ifr_name); 1516 } 1517 1518 #if defined(INET6) && defined(SOL2) 1519 fd = socket(AF_INET6, SOCK_DGRAM, 0); 1520 if (fd < 0) 1521 error("Couldn't open IPv6 socket: %m"); 1522 1523 memset(&lifr, 0, sizeof(lifr)); 1524 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1525 lifr.lifr_mtu = link_mtu; 1526 if (ioctl(fd, SIOCSLIFMTU, &lifr) < 0) { 1527 close(fd); 1528 error("Couldn't set IPv6 MTU (%s): %m", ifr.ifr_name); 1529 } 1530 close(fd); 1531 #endif /* defined(INET6) && defined(SOL2) */ 1532 } 1533 1534 /* 1535 * tty_send_config - configure the transmit characteristics of 1536 * the ppp interface. 1537 */ 1538 void 1539 tty_send_config(mtu, asyncmap, pcomp, accomp) 1540 int mtu; 1541 u_int32_t asyncmap; 1542 int pcomp, accomp; 1543 { 1544 int cf[2]; 1545 1546 link_mtu = mtu; 1547 if (strioctl(pppfd, PPPIO_MTU, &mtu, sizeof(mtu), 0) < 0) { 1548 if (hungup && errno == ENXIO) { 1549 ++error_count; 1550 return; 1551 } 1552 error("Couldn't set MTU: %m"); 1553 } 1554 if (fdmuxid >= 0) { 1555 if (!sync_serial) { 1556 if (strioctl(pppfd, PPPIO_XACCM, &asyncmap, sizeof(asyncmap), 0) < 0) 1557 error("Couldn't set transmit ACCM: %m"); 1558 } 1559 cf[0] = (pcomp? COMP_PROT: 0) + (accomp? COMP_AC: 0); 1560 cf[1] = COMP_PROT | COMP_AC; 1561 if (any_compressions() && 1562 strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) 1563 error("Couldn't set prot/AC compression: %m"); 1564 } 1565 } 1566 1567 /* 1568 * tty_set_xaccm - set the extended transmit ACCM for the interface. 1569 */ 1570 void 1571 tty_set_xaccm(accm) 1572 ext_accm accm; 1573 { 1574 if (sync_serial) 1575 return; 1576 1577 if (fdmuxid >= 0 1578 && strioctl(pppfd, PPPIO_XACCM, accm, sizeof(ext_accm), 0) < 0) { 1579 if (!hungup || errno != ENXIO) 1580 warn("Couldn't set extended ACCM: %m"); 1581 } 1582 } 1583 1584 /* 1585 * tty_recv_config - configure the receive-side characteristics of 1586 * the ppp interface. 1587 */ 1588 void 1589 tty_recv_config(mru, asyncmap, pcomp, accomp) 1590 int mru; 1591 u_int32_t asyncmap; 1592 int pcomp, accomp; 1593 { 1594 int cf[2]; 1595 1596 link_mru = mru; 1597 if (strioctl(pppfd, PPPIO_MRU, &mru, sizeof(mru), 0) < 0) { 1598 if (hungup && errno == ENXIO) { 1599 ++error_count; 1600 return; 1601 } 1602 error("Couldn't set MRU: %m"); 1603 } 1604 if (fdmuxid >= 0) { 1605 if (!sync_serial) { 1606 if (strioctl(pppfd, PPPIO_RACCM, &asyncmap, sizeof(asyncmap), 0) < 0) 1607 error("Couldn't set receive ACCM: %m"); 1608 } 1609 cf[0] = (pcomp? DECOMP_PROT: 0) + (accomp? DECOMP_AC: 0); 1610 cf[1] = DECOMP_PROT | DECOMP_AC; 1611 if (any_compressions() && 1612 strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) 1613 error("Couldn't set prot/AC decompression: %m"); 1614 } 1615 } 1616 1617 /* 1618 * ccp_test - ask kernel whether a given compression method 1619 * is acceptable for use. 1620 */ 1621 int 1622 ccp_test(unit, opt_ptr, opt_len, for_transmit) 1623 int unit, opt_len, for_transmit; 1624 u_char *opt_ptr; 1625 { 1626 if (strioctl(pppfd, (for_transmit? PPPIO_XCOMP: PPPIO_RCOMP), 1627 opt_ptr, opt_len, 0) >= 0) 1628 return 1; 1629 return (errno == ENOSR)? 0: -1; 1630 } 1631 1632 /* 1633 * ccp_flags_set - inform kernel about the current state of CCP. 1634 */ 1635 void 1636 ccp_flags_set(unit, isopen, isup) 1637 int unit, isopen, isup; 1638 { 1639 int cf[2]; 1640 1641 cf[0] = (isopen? CCP_ISOPEN: 0) + (isup? CCP_ISUP: 0); 1642 cf[1] = CCP_ISOPEN | CCP_ISUP | CCP_ERROR | CCP_FATALERROR; 1643 if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { 1644 if (!hungup || errno != ENXIO) 1645 error("Couldn't set kernel CCP state: %m"); 1646 } 1647 } 1648 1649 /* 1650 * get_idle_time - return how long the link has been idle. 1651 */ 1652 int 1653 get_idle_time(u, ip) 1654 int u; 1655 struct ppp_idle *ip; 1656 { 1657 return strioctl(pppfd, PPPIO_GIDLE, ip, 0, sizeof(struct ppp_idle)) >= 0; 1658 } 1659 1660 /* 1661 * get_ppp_stats - return statistics for the link. 1662 */ 1663 int 1664 get_ppp_stats(u, stats) 1665 int u; 1666 struct pppd_stats *stats; 1667 { 1668 struct ppp_stats s; 1669 1670 if (!sync_serial && 1671 strioctl(pppfd, PPPIO_GETSTAT, &s, 0, sizeof(s)) < 0) { 1672 error("Couldn't get link statistics: %m"); 1673 return 0; 1674 } 1675 stats->bytes_in = s.p.ppp_ibytes; 1676 stats->bytes_out = s.p.ppp_obytes; 1677 stats->pkts_in = s.p.ppp_ipackets; 1678 stats->pkts_out = s.p.ppp_opackets; 1679 return 1; 1680 } 1681 1682 #if 0 1683 /* 1684 * set_filters - transfer the pass and active filters to the kernel. 1685 */ 1686 int 1687 set_filters(pass, active) 1688 struct bpf_program *pass, *active; 1689 { 1690 int ret = 1; 1691 1692 if (pass->bf_len > 0) { 1693 if (strioctl(pppfd, PPPIO_PASSFILT, pass, 1694 sizeof(struct bpf_program), 0) < 0) { 1695 error("Couldn't set pass-filter in kernel: %m"); 1696 ret = 0; 1697 } 1698 } 1699 if (active->bf_len > 0) { 1700 if (strioctl(pppfd, PPPIO_ACTIVEFILT, active, 1701 sizeof(struct bpf_program), 0) < 0) { 1702 error("Couldn't set active-filter in kernel: %m"); 1703 ret = 0; 1704 } 1705 } 1706 return ret; 1707 } 1708 #endif 1709 1710 /* 1711 * ccp_fatal_error - returns 1 if decompression was disabled as a 1712 * result of an error detected after decompression of a packet, 1713 * 0 otherwise. This is necessary because of patent nonsense. 1714 */ 1715 int 1716 ccp_fatal_error(unit) 1717 int unit; 1718 { 1719 int cf[2]; 1720 1721 cf[0] = cf[1] = 0; 1722 if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { 1723 if (errno != ENXIO && errno != EINVAL) 1724 error("Couldn't get compression flags: %m"); 1725 return 0; 1726 } 1727 return cf[0] & CCP_FATALERROR; 1728 } 1729 1730 /* 1731 * sifvjcomp - config tcp header compression 1732 */ 1733 int 1734 sifvjcomp(u, vjcomp, xcidcomp, xmaxcid) 1735 int u, vjcomp, xcidcomp, xmaxcid; 1736 { 1737 int cf[2]; 1738 char maxcid[2]; 1739 1740 if (vjcomp) { 1741 maxcid[0] = xcidcomp; 1742 maxcid[1] = 15; /* XXX should be rmaxcid */ 1743 if (strioctl(pppfd, PPPIO_VJINIT, maxcid, sizeof(maxcid), 0) < 0) { 1744 error("Couldn't initialize VJ compression: %m"); 1745 } 1746 } 1747 1748 cf[0] = (vjcomp? COMP_VJC + DECOMP_VJC: 0) /* XXX this is wrong */ 1749 + (xcidcomp? COMP_VJCCID + DECOMP_VJCCID: 0); 1750 cf[1] = COMP_VJC + DECOMP_VJC + COMP_VJCCID + DECOMP_VJCCID; 1751 if (strioctl(pppfd, PPPIO_CFLAGS, cf, sizeof(cf), sizeof(int)) < 0) { 1752 if (vjcomp) 1753 error("Couldn't enable VJ compression: %m"); 1754 } 1755 1756 return 1; 1757 } 1758 1759 /* 1760 * sifup - Config the interface up and enable IP packets to pass. 1761 */ 1762 int 1763 sifup(u) 1764 int u; 1765 { 1766 struct ifreq ifr; 1767 1768 strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); 1769 if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { 1770 error("Couldn't mark interface up (get): %m"); 1771 return 0; 1772 } 1773 ifr.ifr_flags |= IFF_UP; 1774 if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { 1775 error("Couldn't mark interface up (set): %m"); 1776 return 0; 1777 } 1778 if_is_up = 1; 1779 return 1; 1780 } 1781 1782 /* 1783 * sifdown - Config the interface down and disable IP. 1784 */ 1785 int 1786 sifdown(u) 1787 int u; 1788 { 1789 struct ifreq ifr; 1790 1791 if (ipmuxid < 0) 1792 return 1; 1793 strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); 1794 if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) < 0) { 1795 error("Couldn't mark interface down (get): %m"); 1796 return 0; 1797 } 1798 ifr.ifr_flags &= ~IFF_UP; 1799 if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { 1800 error("Couldn't mark interface down (set): %m"); 1801 return 0; 1802 } 1803 if_is_up = 0; 1804 return 1; 1805 } 1806 1807 /* 1808 * sifnpmode - Set the mode for handling packets for a given NP. 1809 */ 1810 int 1811 sifnpmode(u, proto, mode) 1812 int u; 1813 int proto; 1814 enum NPmode mode; 1815 { 1816 int npi[2]; 1817 1818 npi[0] = proto; 1819 npi[1] = (int) mode; 1820 if (strioctl(pppfd, PPPIO_NPMODE, &npi, 2 * sizeof(int), 0) < 0) { 1821 error("ioctl(set NP %d mode to %d): %m", proto, mode); 1822 return 0; 1823 } 1824 return 1; 1825 } 1826 1827 #if defined(SOL2) && defined(INET6) 1828 /* 1829 * sif6up - Config the IPv6 interface up and enable IPv6 packets to pass. 1830 */ 1831 int 1832 sif6up(u) 1833 int u; 1834 { 1835 struct lifreq lifr; 1836 int fd; 1837 1838 fd = socket(AF_INET6, SOCK_DGRAM, 0); 1839 if (fd < 0) { 1840 return 0; 1841 } 1842 1843 memset(&lifr, 0, sizeof(lifr)); 1844 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1845 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { 1846 close(fd); 1847 return 0; 1848 } 1849 1850 lifr.lifr_flags |= IFF_UP; 1851 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1852 if (ioctl(fd, SIOCSLIFFLAGS, &lifr) < 0) { 1853 close(fd); 1854 return 0; 1855 } 1856 1857 if6_is_up = 1; 1858 close(fd); 1859 return 1; 1860 } 1861 1862 /* 1863 * sifdown - Config the IPv6 interface down and disable IPv6. 1864 */ 1865 int 1866 sif6down(u) 1867 int u; 1868 { 1869 struct lifreq lifr; 1870 int fd; 1871 1872 fd = socket(AF_INET6, SOCK_DGRAM, 0); 1873 if (fd < 0) 1874 return 0; 1875 1876 memset(&lifr, 0, sizeof(lifr)); 1877 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1878 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { 1879 close(fd); 1880 return 0; 1881 } 1882 1883 lifr.lifr_flags &= ~IFF_UP; 1884 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1885 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) < 0) { 1886 close(fd); 1887 return 0; 1888 } 1889 1890 if6_is_up = 0; 1891 close(fd); 1892 return 1; 1893 } 1894 1895 /* 1896 * sif6addr - Config the interface with an IPv6 link-local address 1897 */ 1898 int 1899 sif6addr(u, o, h) 1900 int u; 1901 eui64_t o, h; 1902 { 1903 struct lifreq lifr; 1904 struct sockaddr_storage laddr; 1905 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&laddr; 1906 int fd; 1907 1908 fd = socket(AF_INET6, SOCK_DGRAM, 0); 1909 if (fd < 0) 1910 return 0; 1911 1912 memset(&lifr, 0, sizeof(lifr)); 1913 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1914 1915 /* 1916 * Do this because /dev/ppp responds to DL_PHYS_ADDR_REQ with 1917 * zero values, hence the interface token came to be zero too, 1918 * and without this, in.ndpd will complain 1919 */ 1920 IN6_LLTOKEN_FROM_EUI64(lifr, sin6, o); 1921 if (ioctl(fd, SIOCSLIFTOKEN, &lifr) < 0) { 1922 close(fd); 1923 return 0; 1924 } 1925 1926 /* 1927 * Set the interface address and destination address 1928 */ 1929 IN6_LLADDR_FROM_EUI64(lifr, sin6, o); 1930 if (ioctl(fd, SIOCSLIFADDR, &lifr) < 0) { 1931 close(fd); 1932 return 0; 1933 } 1934 1935 memset(&lifr, 0, sizeof(lifr)); 1936 strlcpy(lifr.lifr_name, ifname, sizeof(lifr.lifr_name)); 1937 IN6_LLADDR_FROM_EUI64(lifr, sin6, h); 1938 if (ioctl(fd, SIOCSLIFDSTADDR, &lifr) < 0) { 1939 close(fd); 1940 return 0; 1941 } 1942 1943 return 1; 1944 } 1945 1946 /* 1947 * cif6addr - Remove the IPv6 address from interface 1948 */ 1949 int 1950 cif6addr(u, o, h) 1951 int u; 1952 eui64_t o, h; 1953 { 1954 return 1; 1955 } 1956 1957 #endif /* defined(SOL2) && defined(INET6) */ 1958 1959 1960 #define INET_ADDR(x) (((struct sockaddr_in *) &(x))->sin_addr.s_addr) 1961 1962 /* 1963 * sifaddr - Config the interface IP addresses and netmask. 1964 */ 1965 int 1966 sifaddr(u, o, h, m) 1967 int u; 1968 u_int32_t o, h, m; 1969 { 1970 struct ifreq ifr; 1971 int ret = 1; 1972 1973 memset(&ifr, 0, sizeof(ifr)); 1974 strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)); 1975 ifr.ifr_addr.sa_family = AF_INET; 1976 INET_ADDR(ifr.ifr_addr) = m; 1977 if (ioctl(ipfd, SIOCSIFNETMASK, &ifr) < 0) { 1978 error("Couldn't set IP netmask: %m"); 1979 ret = 0; 1980 } 1981 ifr.ifr_addr.sa_family = AF_INET; 1982 INET_ADDR(ifr.ifr_addr) = o; 1983 if (ioctl(ipfd, SIOCSIFADDR, &ifr) < 0) { 1984 error("Couldn't set local IP address: %m"); 1985 ret = 0; 1986 } 1987 1988 /* 1989 * On some systems, we have to explicitly set the point-to-point 1990 * flag bit before we can set a destination address. 1991 */ 1992 if (ioctl(ipfd, SIOCGIFFLAGS, &ifr) >= 0 1993 && (ifr.ifr_flags & IFF_POINTOPOINT) == 0) { 1994 ifr.ifr_flags |= IFF_POINTOPOINT; 1995 if (ioctl(ipfd, SIOCSIFFLAGS, &ifr) < 0) { 1996 error("Couldn't mark interface pt-to-pt: %m"); 1997 ret = 0; 1998 } 1999 } 2000 ifr.ifr_dstaddr.sa_family = AF_INET; 2001 INET_ADDR(ifr.ifr_dstaddr) = h; 2002 if (ioctl(ipfd, SIOCSIFDSTADDR, &ifr) < 0) { 2003 error("Couldn't set remote IP address: %m"); 2004 ret = 0; 2005 } 2006 2007 remote_addr = h; 2008 return ret; 2009 } 2010 2011 /* 2012 * cifaddr - Clear the interface IP addresses, and delete routes 2013 * through the interface if possible. 2014 */ 2015 int 2016 cifaddr(u, o, h) 2017 int u; 2018 u_int32_t o, h; 2019 { 2020 #if defined(__USLC__) /* was: #if 0 */ 2021 cifroute(unit, ouraddr, hisaddr); 2022 if (ipmuxid >= 0) { 2023 notice("Removing ppp interface unit"); 2024 if (ioctl(ipfd, I_UNLINK, ipmuxid) < 0) { 2025 error("Can't remove ppp interface unit: %m"); 2026 return 0; 2027 } 2028 ipmuxid = -1; 2029 } 2030 #endif 2031 remote_addr = 0; 2032 return 1; 2033 } 2034 2035 /* 2036 * sifdefaultroute - assign a default route through the address given. 2037 */ 2038 int 2039 sifdefaultroute(u, l, g) 2040 int u; 2041 u_int32_t l, g; 2042 { 2043 struct rtentry rt; 2044 2045 #if defined(__USLC__) 2046 g = l; /* use the local address as gateway */ 2047 #endif 2048 memset(&rt, 0, sizeof(rt)); 2049 rt.rt_dst.sa_family = AF_INET; 2050 INET_ADDR(rt.rt_dst) = 0; 2051 rt.rt_gateway.sa_family = AF_INET; 2052 INET_ADDR(rt.rt_gateway) = g; 2053 rt.rt_flags = RTF_GATEWAY; 2054 2055 if (ioctl(ipfd, SIOCADDRT, &rt) < 0) { 2056 error("Can't add default route: %m"); 2057 return 0; 2058 } 2059 2060 default_route_gateway = g; 2061 return 1; 2062 } 2063 2064 /* 2065 * cifdefaultroute - delete a default route through the address given. 2066 */ 2067 int 2068 cifdefaultroute(u, l, g) 2069 int u; 2070 u_int32_t l, g; 2071 { 2072 struct rtentry rt; 2073 2074 #if defined(__USLC__) 2075 g = l; /* use the local address as gateway */ 2076 #endif 2077 memset(&rt, 0, sizeof(rt)); 2078 rt.rt_dst.sa_family = AF_INET; 2079 INET_ADDR(rt.rt_dst) = 0; 2080 rt.rt_gateway.sa_family = AF_INET; 2081 INET_ADDR(rt.rt_gateway) = g; 2082 rt.rt_flags = RTF_GATEWAY; 2083 2084 if (ioctl(ipfd, SIOCDELRT, &rt) < 0) { 2085 error("Can't delete default route: %m"); 2086 return 0; 2087 } 2088 2089 default_route_gateway = 0; 2090 return 1; 2091 } 2092 2093 /* 2094 * sifproxyarp - Make a proxy ARP entry for the peer. 2095 */ 2096 int 2097 sifproxyarp(unit, hisaddr) 2098 int unit; 2099 u_int32_t hisaddr; 2100 { 2101 struct arpreq arpreq; 2102 2103 memset(&arpreq, 0, sizeof(arpreq)); 2104 if (!get_ether_addr(hisaddr, &arpreq.arp_ha)) 2105 return 0; 2106 2107 arpreq.arp_pa.sa_family = AF_INET; 2108 INET_ADDR(arpreq.arp_pa) = hisaddr; 2109 arpreq.arp_flags = ATF_PERM | ATF_PUBL; 2110 if (ioctl(ipfd, SIOCSARP, (caddr_t) &arpreq) < 0) { 2111 error("Couldn't set proxy ARP entry: %m"); 2112 return 0; 2113 } 2114 2115 proxy_arp_addr = hisaddr; 2116 return 1; 2117 } 2118 2119 /* 2120 * cifproxyarp - Delete the proxy ARP entry for the peer. 2121 */ 2122 int 2123 cifproxyarp(unit, hisaddr) 2124 int unit; 2125 u_int32_t hisaddr; 2126 { 2127 struct arpreq arpreq; 2128 2129 memset(&arpreq, 0, sizeof(arpreq)); 2130 arpreq.arp_pa.sa_family = AF_INET; 2131 INET_ADDR(arpreq.arp_pa) = hisaddr; 2132 if (ioctl(ipfd, SIOCDARP, (caddr_t)&arpreq) < 0) { 2133 error("Couldn't delete proxy ARP entry: %m"); 2134 return 0; 2135 } 2136 2137 proxy_arp_addr = 0; 2138 return 1; 2139 } 2140 2141 /* 2142 * get_ether_addr - get the hardware address of an interface on the 2143 * the same subnet as ipaddr. 2144 */ 2145 #define MAX_IFS 32 2146 2147 static int 2148 get_ether_addr(ipaddr, hwaddr) 2149 u_int32_t ipaddr; 2150 struct sockaddr *hwaddr; 2151 { 2152 struct ifreq *ifr, *ifend, ifreq; 2153 int nif; 2154 struct ifconf ifc; 2155 u_int32_t ina, mask; 2156 2157 /* 2158 * Scan through the system's network interfaces. 2159 */ 2160 #ifdef SIOCGIFNUM 2161 if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0) 2162 #endif 2163 nif = MAX_IFS; 2164 ifc.ifc_len = nif * sizeof(struct ifreq); 2165 ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len); 2166 if (ifc.ifc_buf == 0) 2167 return 0; 2168 if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) { 2169 warn("Couldn't get system interface list: %m"); 2170 free(ifc.ifc_buf); 2171 return 0; 2172 } 2173 ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len); 2174 for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) { 2175 if (ifr->ifr_addr.sa_family != AF_INET) 2176 continue; 2177 /* 2178 * Check that the interface is up, and not point-to-point or loopback. 2179 */ 2180 strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name)); 2181 if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0) 2182 continue; 2183 if ((ifreq.ifr_flags & 2184 (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT|IFF_LOOPBACK|IFF_NOARP)) 2185 != (IFF_UP|IFF_BROADCAST)) 2186 continue; 2187 /* 2188 * Get its netmask and check that it's on the right subnet. 2189 */ 2190 if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0) 2191 continue; 2192 ina = INET_ADDR(ifr->ifr_addr); 2193 mask = INET_ADDR(ifreq.ifr_addr); 2194 if ((ipaddr & mask) == (ina & mask)) 2195 break; 2196 } 2197 2198 if (ifr >= ifend) { 2199 warn("No suitable interface found for proxy ARP"); 2200 free(ifc.ifc_buf); 2201 return 0; 2202 } 2203 2204 info("found interface %s for proxy ARP", ifr->ifr_name); 2205 if (!get_hw_addr(ifr->ifr_name, ina, hwaddr)) { 2206 error("Couldn't get hardware address for %s", ifr->ifr_name); 2207 free(ifc.ifc_buf); 2208 return 0; 2209 } 2210 2211 free(ifc.ifc_buf); 2212 return 1; 2213 } 2214 2215 /* 2216 * get_hw_addr_dlpi - obtain the hardware address using DLPI 2217 */ 2218 static int 2219 get_hw_addr_dlpi(name, hwaddr) 2220 char *name; 2221 struct sockaddr *hwaddr; 2222 { 2223 char *p, *q; 2224 int unit, iffd, adrlen; 2225 unsigned char *adrp; 2226 char ifdev[24]; 2227 struct { 2228 union DL_primitives prim; 2229 char space[64]; 2230 } reply; 2231 2232 /* 2233 * We have to open the device and ask it for its hardware address. 2234 * First split apart the device name and unit. 2235 */ 2236 slprintf(ifdev, sizeof(ifdev), "/dev/%s", name); 2237 for (q = ifdev + strlen(ifdev); --q >= ifdev; ) 2238 if (!isdigit(*q)) 2239 break; 2240 unit = atoi(q+1); 2241 q[1] = 0; 2242 2243 /* 2244 * Open the device and do a DLPI attach and phys_addr_req. 2245 */ 2246 iffd = open(ifdev, O_RDWR); 2247 if (iffd < 0) { 2248 error("Can't open %s: %m", ifdev); 2249 return 0; 2250 } 2251 if (dlpi_attach(iffd, unit) < 0 2252 || dlpi_get_reply(iffd, &reply.prim, DL_OK_ACK, sizeof(reply)) < 0 2253 || dlpi_info_req(iffd) < 0 2254 || dlpi_get_reply(iffd, &reply.prim, DL_INFO_ACK, sizeof(reply)) < 0) { 2255 close(iffd); 2256 return 0; 2257 } 2258 2259 adrlen = reply.prim.info_ack.dl_addr_length; 2260 adrp = (unsigned char *)&reply + reply.prim.info_ack.dl_addr_offset; 2261 2262 #if DL_CURRENT_VERSION >= 2 2263 if (reply.prim.info_ack.dl_sap_length < 0) 2264 adrlen += reply.prim.info_ack.dl_sap_length; 2265 else 2266 adrp += reply.prim.info_ack.dl_sap_length; 2267 #endif 2268 2269 hwaddr->sa_family = AF_UNSPEC; 2270 memcpy(hwaddr->sa_data, adrp, adrlen); 2271 2272 return 1; 2273 } 2274 /* 2275 * get_hw_addr - obtain the hardware address for a named interface. 2276 */ 2277 static int 2278 get_hw_addr(name, ina, hwaddr) 2279 char *name; 2280 u_int32_t ina; 2281 struct sockaddr *hwaddr; 2282 { 2283 /* New way - get the address by doing an arp request. */ 2284 int s; 2285 struct arpreq req; 2286 2287 s = socket(AF_INET, SOCK_DGRAM, 0); 2288 if (s < 0) 2289 return 0; 2290 memset(&req, 0, sizeof(req)); 2291 req.arp_pa.sa_family = AF_INET; 2292 INET_ADDR(req.arp_pa) = ina; 2293 if (ioctl(s, SIOCGARP, &req) < 0) { 2294 error("Couldn't get ARP entry for %s: %m", ip_ntoa(ina)); 2295 return 0; 2296 } 2297 *hwaddr = req.arp_ha; 2298 hwaddr->sa_family = AF_UNSPEC; 2299 2300 return 1; 2301 } 2302 2303 static int 2304 dlpi_attach(fd, ppa) 2305 int fd, ppa; 2306 { 2307 dl_attach_req_t req; 2308 struct strbuf buf; 2309 2310 req.dl_primitive = DL_ATTACH_REQ; 2311 req.dl_ppa = ppa; 2312 buf.len = sizeof(req); 2313 buf.buf = (void *) &req; 2314 return putmsg(fd, &buf, NULL, RS_HIPRI); 2315 } 2316 2317 static int 2318 dlpi_info_req(fd) 2319 int fd; 2320 { 2321 dl_info_req_t req; 2322 struct strbuf buf; 2323 2324 req.dl_primitive = DL_INFO_REQ; 2325 buf.len = sizeof(req); 2326 buf.buf = (void *) &req; 2327 return putmsg(fd, &buf, NULL, RS_HIPRI); 2328 } 2329 2330 static int 2331 dlpi_get_reply(fd, reply, expected_prim, maxlen) 2332 union DL_primitives *reply; 2333 int fd, expected_prim, maxlen; 2334 { 2335 struct strbuf buf; 2336 int flags, n; 2337 struct pollfd pfd; 2338 2339 /* 2340 * Use poll to wait for a message with a timeout. 2341 */ 2342 pfd.fd = fd; 2343 pfd.events = POLLIN | POLLPRI; 2344 do { 2345 n = poll(&pfd, 1, 1000); 2346 } while (n == -1 && errno == EINTR); 2347 if (n <= 0) 2348 return -1; 2349 2350 /* 2351 * Get the reply. 2352 */ 2353 buf.maxlen = maxlen; 2354 buf.buf = (void *) reply; 2355 flags = 0; 2356 if (getmsg(fd, &buf, NULL, &flags) < 0) 2357 return -1; 2358 2359 if (buf.len < sizeof(ulong)) { 2360 if (debug) 2361 dbglog("dlpi response short (len=%d)\n", buf.len); 2362 return -1; 2363 } 2364 2365 if (reply->dl_primitive == expected_prim) 2366 return 0; 2367 2368 if (debug) { 2369 if (reply->dl_primitive == DL_ERROR_ACK) { 2370 dbglog("dlpi error %d (unix errno %d) for prim %x\n", 2371 reply->error_ack.dl_errno, reply->error_ack.dl_unix_errno, 2372 reply->error_ack.dl_error_primitive); 2373 } else { 2374 dbglog("dlpi unexpected response prim %x\n", 2375 reply->dl_primitive); 2376 } 2377 } 2378 2379 return -1; 2380 } 2381 2382 /* 2383 * Return user specified netmask, modified by any mask we might determine 2384 * for address `addr' (in network byte order). 2385 * Here we scan through the system's list of interfaces, looking for 2386 * any non-point-to-point interfaces which might appear to be on the same 2387 * network as `addr'. If we find any, we OR in their netmask to the 2388 * user-specified netmask. 2389 */ 2390 u_int32_t 2391 GetMask(addr) 2392 u_int32_t addr; 2393 { 2394 u_int32_t mask, nmask, ina; 2395 struct ifreq *ifr, *ifend, ifreq; 2396 int nif; 2397 struct ifconf ifc; 2398 2399 addr = ntohl(addr); 2400 if (IN_CLASSA(addr)) /* determine network mask for address class */ 2401 nmask = IN_CLASSA_NET; 2402 else if (IN_CLASSB(addr)) 2403 nmask = IN_CLASSB_NET; 2404 else 2405 nmask = IN_CLASSC_NET; 2406 /* class D nets are disallowed by bad_ip_adrs */ 2407 mask = netmask | htonl(nmask); 2408 2409 /* 2410 * Scan through the system's network interfaces. 2411 */ 2412 #ifdef SIOCGIFNUM 2413 if (ioctl(ipfd, SIOCGIFNUM, &nif) < 0) 2414 #endif 2415 nif = MAX_IFS; 2416 ifc.ifc_len = nif * sizeof(struct ifreq); 2417 ifc.ifc_buf = (caddr_t) malloc(ifc.ifc_len); 2418 if (ifc.ifc_buf == 0) 2419 return mask; 2420 if (ioctl(ipfd, SIOCGIFCONF, &ifc) < 0) { 2421 warn("Couldn't get system interface list: %m"); 2422 free(ifc.ifc_buf); 2423 return mask; 2424 } 2425 ifend = (struct ifreq *) (ifc.ifc_buf + ifc.ifc_len); 2426 for (ifr = ifc.ifc_req; ifr < ifend; ++ifr) { 2427 /* 2428 * Check the interface's internet address. 2429 */ 2430 if (ifr->ifr_addr.sa_family != AF_INET) 2431 continue; 2432 ina = INET_ADDR(ifr->ifr_addr); 2433 if ((ntohl(ina) & nmask) != (addr & nmask)) 2434 continue; 2435 /* 2436 * Check that the interface is up, and not point-to-point or loopback. 2437 */ 2438 strlcpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name)); 2439 if (ioctl(ipfd, SIOCGIFFLAGS, &ifreq) < 0) 2440 continue; 2441 if ((ifreq.ifr_flags & (IFF_UP|IFF_POINTOPOINT|IFF_LOOPBACK)) 2442 != IFF_UP) 2443 continue; 2444 /* 2445 * Get its netmask and OR it into our mask. 2446 */ 2447 if (ioctl(ipfd, SIOCGIFNETMASK, &ifreq) < 0) 2448 continue; 2449 mask |= INET_ADDR(ifreq.ifr_addr); 2450 } 2451 2452 free(ifc.ifc_buf); 2453 return mask; 2454 } 2455 2456 /* 2457 * logwtmp - write an accounting record to the /var/adm/wtmp file. 2458 */ 2459 void 2460 logwtmp(line, name, host) 2461 const char *line, *name, *host; 2462 { 2463 static struct utmpx utmpx; 2464 2465 if (name[0] != 0) { 2466 /* logging in */ 2467 strncpy(utmpx.ut_user, name, sizeof(utmpx.ut_user)); 2468 strncpy(utmpx.ut_id, ifname, sizeof(utmpx.ut_id)); 2469 strncpy(utmpx.ut_line, line, sizeof(utmpx.ut_line)); 2470 utmpx.ut_pid = getpid(); 2471 utmpx.ut_type = USER_PROCESS; 2472 } else { 2473 utmpx.ut_type = DEAD_PROCESS; 2474 } 2475 gettimeofday(&utmpx.ut_tv, NULL); 2476 updwtmpx("/var/adm/wtmpx", &utmpx); 2477 } 2478 2479 /* 2480 * get_host_seed - return the serial number of this machine. 2481 */ 2482 int 2483 get_host_seed() 2484 { 2485 char buf[32]; 2486 2487 if (sysinfo(SI_HW_SERIAL, buf, sizeof(buf)) < 0) { 2488 error("sysinfo: %m"); 2489 return 0; 2490 } 2491 return (int) strtoul(buf, NULL, 16); 2492 } 2493 2494 static int 2495 strioctl(fd, cmd, ptr, ilen, olen) 2496 int fd, cmd, ilen, olen; 2497 void *ptr; 2498 { 2499 struct strioctl str; 2500 2501 str.ic_cmd = cmd; 2502 str.ic_timout = 0; 2503 str.ic_len = ilen; 2504 str.ic_dp = ptr; 2505 if (ioctl(fd, I_STR, &str) == -1) 2506 return -1; 2507 if (str.ic_len != olen) 2508 dbglog("strioctl: expected %d bytes, got %d for cmd %x\n", 2509 olen, str.ic_len, cmd); 2510 return 0; 2511 } 2512 2513 #if 0 2514 /* 2515 * lock - create a lock file for the named lock device 2516 */ 2517 2518 #define LOCK_PREFIX "/var/spool/locks/LK." 2519 static char lock_file[40]; /* name of lock file created */ 2520 2521 int 2522 lock(dev) 2523 char *dev; 2524 { 2525 int n, fd, pid; 2526 struct stat sbuf; 2527 char ascii_pid[12]; 2528 2529 if (stat(dev, &sbuf) < 0) { 2530 error("Can't get device number for %s: %m", dev); 2531 return -1; 2532 } 2533 if ((sbuf.st_mode & S_IFMT) != S_IFCHR) { 2534 error("Can't lock %s: not a character device", dev); 2535 return -1; 2536 } 2537 slprintf(lock_file, sizeof(lock_file), "%s%03d.%03d.%03d", 2538 LOCK_PREFIX, major(sbuf.st_dev), 2539 major(sbuf.st_rdev), minor(sbuf.st_rdev)); 2540 2541 while ((fd = open(lock_file, O_EXCL | O_CREAT | O_RDWR, 0644)) < 0) { 2542 if (errno == EEXIST 2543 && (fd = open(lock_file, O_RDONLY, 0)) >= 0) { 2544 /* Read the lock file to find out who has the device locked */ 2545 n = read(fd, ascii_pid, 11); 2546 if (n <= 0) { 2547 error("Can't read pid from lock file %s", lock_file); 2548 close(fd); 2549 } else { 2550 ascii_pid[n] = 0; 2551 pid = atoi(ascii_pid); 2552 if (pid > 0 && kill(pid, 0) == -1 && errno == ESRCH) { 2553 /* pid no longer exists - remove the lock file */ 2554 if (unlink(lock_file) == 0) { 2555 close(fd); 2556 notice("Removed stale lock on %s (pid %d)", 2557 dev, pid); 2558 continue; 2559 } else 2560 warn("Couldn't remove stale lock on %s", 2561 dev); 2562 } else 2563 notice("Device %s is locked by pid %d", 2564 dev, pid); 2565 } 2566 close(fd); 2567 } else 2568 error("Can't create lock file %s: %m", lock_file); 2569 lock_file[0] = 0; 2570 return -1; 2571 } 2572 2573 slprintf(ascii_pid, sizeof(ascii_pid), "%10d\n", getpid()); 2574 write(fd, ascii_pid, 11); 2575 2576 close(fd); 2577 return 1; 2578 } 2579 2580 /* 2581 * unlock - remove our lockfile 2582 */ 2583 void 2584 unlock() 2585 { 2586 if (lock_file[0]) { 2587 unlink(lock_file); 2588 lock_file[0] = 0; 2589 } 2590 } 2591 #endif 2592 2593 /* 2594 * cifroute - delete a route through the addresses given. 2595 */ 2596 int 2597 cifroute(u, our, his) 2598 int u; 2599 u_int32_t our, his; 2600 { 2601 struct rtentry rt; 2602 2603 memset(&rt, 0, sizeof(rt)); 2604 rt.rt_dst.sa_family = AF_INET; 2605 INET_ADDR(rt.rt_dst) = his; 2606 rt.rt_gateway.sa_family = AF_INET; 2607 INET_ADDR(rt.rt_gateway) = our; 2608 rt.rt_flags = RTF_HOST; 2609 2610 if (ioctl(ipfd, SIOCDELRT, &rt) < 0) { 2611 error("Can't delete route: %m"); 2612 return 0; 2613 } 2614 2615 return 1; 2616 } 2617 2618 /* 2619 * have_route_to - determine if the system has a route to the specified 2620 * IP address. Returns 0 if not, 1 if so, -1 if we can't tell. 2621 * `addr' is in network byte order. 2622 * For demand mode to work properly, we have to ignore routes 2623 * through our own interface. 2624 */ 2625 #ifndef T_CURRENT /* needed for Solaris 2.5 */ 2626 #define T_CURRENT MI_T_CURRENT 2627 #endif 2628 2629 int 2630 have_route_to(addr) 2631 u_int32_t addr; 2632 { 2633 #ifdef SOL2 2634 int fd, r, flags, i; 2635 struct { 2636 struct T_optmgmt_req req; 2637 struct opthdr hdr; 2638 } req; 2639 union { 2640 struct T_optmgmt_ack ack; 2641 unsigned char space[64]; 2642 } ack; 2643 struct opthdr *rh; 2644 struct strbuf cbuf, dbuf; 2645 int nroutes; 2646 mib2_ipRouteEntry_t routes[8]; 2647 mib2_ipRouteEntry_t *rp; 2648 2649 fd = open(mux_dev_name, O_RDWR); 2650 if (fd < 0) { 2651 warn("have_route_to: couldn't open %s: %m", mux_dev_name); 2652 return -1; 2653 } 2654 2655 req.req.PRIM_type = T_OPTMGMT_REQ; 2656 req.req.OPT_offset = (char *) &req.hdr - (char *) &req; 2657 req.req.OPT_length = sizeof(req.hdr); 2658 req.req.MGMT_flags = T_CURRENT; 2659 2660 req.hdr.level = MIB2_IP; 2661 req.hdr.name = 0; 2662 req.hdr.len = 0; 2663 2664 cbuf.buf = (char *) &req; 2665 cbuf.len = sizeof(req); 2666 2667 if (putmsg(fd, &cbuf, NULL, 0) == -1) { 2668 warn("have_route_to: putmsg: %m"); 2669 close(fd); 2670 return -1; 2671 } 2672 2673 for (;;) { 2674 cbuf.buf = (char *) &ack; 2675 cbuf.maxlen = sizeof(ack); 2676 dbuf.buf = (char *) routes; 2677 dbuf.maxlen = sizeof(routes); 2678 flags = 0; 2679 r = getmsg(fd, &cbuf, &dbuf, &flags); 2680 if (r == -1) { 2681 warn("have_route_to: getmsg: %m"); 2682 close(fd); 2683 return -1; 2684 } 2685 2686 if (cbuf.len < sizeof(struct T_optmgmt_ack) 2687 || ack.ack.PRIM_type != T_OPTMGMT_ACK 2688 || ack.ack.MGMT_flags != T_SUCCESS 2689 || ack.ack.OPT_length < sizeof(struct opthdr)) { 2690 dbglog("have_route_to: bad message len=%d prim=%d", 2691 cbuf.len, ack.ack.PRIM_type); 2692 close(fd); 2693 return -1; 2694 } 2695 2696 rh = (struct opthdr *) ((char *)&ack + ack.ack.OPT_offset); 2697 if (rh->level == 0 && rh->name == 0) 2698 break; 2699 if (rh->level != MIB2_IP || rh->name != MIB2_IP_21) { 2700 while (r == MOREDATA) 2701 r = getmsg(fd, NULL, &dbuf, &flags); 2702 continue; 2703 } 2704 2705 for (;;) { 2706 nroutes = dbuf.len / sizeof(mib2_ipRouteEntry_t); 2707 for (rp = routes, i = 0; i < nroutes; ++i, ++rp) { 2708 if (rp->ipRouteMask != ~0) { 2709 dbglog("have_route_to: dest=%x gw=%x mask=%x\n", 2710 rp->ipRouteDest, rp->ipRouteNextHop, 2711 rp->ipRouteMask); 2712 if (((addr ^ rp->ipRouteDest) & rp->ipRouteMask) == 0 2713 && rp->ipRouteNextHop != remote_addr) 2714 return 1; 2715 } 2716 } 2717 if (r == 0) 2718 break; 2719 r = getmsg(fd, NULL, &dbuf, &flags); 2720 } 2721 } 2722 close(fd); 2723 return 0; 2724 #else 2725 return -1; 2726 #endif /* SOL2 */ 2727 } 2728 2729 /* 2730 * get_pty - get a pty master/slave pair and chown the slave side to 2731 * the uid given. Assumes slave_name points to MAXPATHLEN bytes of space. 2732 */ 2733 int 2734 get_pty(master_fdp, slave_fdp, slave_name, uid) 2735 int *master_fdp; 2736 int *slave_fdp; 2737 char *slave_name; 2738 int uid; 2739 { 2740 int mfd, sfd; 2741 char *pty_name; 2742 struct termios tios; 2743 2744 mfd = open("/dev/ptmx", O_RDWR); 2745 if (mfd < 0) { 2746 error("Couldn't open pty master: %m"); 2747 return 0; 2748 } 2749 2750 pty_name = ptsname(mfd); 2751 if (pty_name == NULL) { 2752 error("Couldn't get name of pty slave"); 2753 close(mfd); 2754 return 0; 2755 } 2756 if (chown(pty_name, uid, -1) < 0) 2757 warn("Couldn't change owner of pty slave: %m"); 2758 if (chmod(pty_name, S_IRUSR | S_IWUSR) < 0) 2759 warn("Couldn't change permissions on pty slave: %m"); 2760 if (unlockpt(mfd) < 0) 2761 warn("Couldn't unlock pty slave: %m"); 2762 2763 sfd = open(pty_name, O_RDWR); 2764 if (sfd < 0) { 2765 error("Couldn't open pty slave %s: %m", pty_name); 2766 close(mfd); 2767 return 0; 2768 } 2769 if (ioctl(sfd, I_PUSH, "ptem") < 0) 2770 warn("Couldn't push ptem module on pty slave: %m"); 2771 2772 dbglog("Using %s", pty_name); 2773 strlcpy(slave_name, pty_name, MAXPATHLEN); 2774 *master_fdp = mfd; 2775 *slave_fdp = sfd; 2776 2777 return 1; 2778 } 2779