Home | History | Annotate | Download | only in safer
      1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
      2  *
      3  * LibTomCrypt is a library that provides various cryptographic
      4  * algorithms in a highly modular and flexible manner.
      5  *
      6  * The library is free for all purposes without any express
      7  * guarantee it works.
      8  *
      9  * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com
     10  */
     11 
     12 /**
     13    @file saferp.c
     14    SAFER+ Implementation by Tom St Denis
     15 */
     16 #include "tomcrypt.h"
     17 
     18 #ifdef SAFERP
     19 
     20 const struct ltc_cipher_descriptor saferp_desc =
     21 {
     22     "safer+",
     23     4,
     24     16, 32, 16, 8,
     25     &saferp_setup,
     26     &saferp_ecb_encrypt,
     27     &saferp_ecb_decrypt,
     28     &saferp_test,
     29     &saferp_done,
     30     &saferp_keysize,
     31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
     32 };
     33 
     34 /* ROUND(b,i)
     35  *
     36  * This is one forward key application.  Note the basic form is
     37  * key addition, substitution, key addition.  The safer_ebox and safer_lbox
     38  * are the exponentiation box and logarithm boxes respectively.
     39  * The value of 'i' is the current round number which allows this
     40  * function to be unrolled massively.  Most of SAFER+'s speed
     41  * comes from not having to compute indirect accesses into the
     42  * array of 16 bytes b[0..15] which is the block of data
     43 */
     44 
     45 extern const unsigned char safer_ebox[], safer_lbox[];
     46 
     47 #define ROUND(b, i)                                                                        \
     48     b[0]  = (safer_ebox[(b[0] ^ skey->saferp.K[i][0]) & 255] + skey->saferp.K[i+1][0]) & 255;    \
     49     b[1]  = safer_lbox[(b[1] + skey->saferp.K[i][1]) & 255] ^ skey->saferp.K[i+1][1];            \
     50     b[2]  = safer_lbox[(b[2] + skey->saferp.K[i][2]) & 255] ^ skey->saferp.K[i+1][2];            \
     51     b[3]  = (safer_ebox[(b[3] ^ skey->saferp.K[i][3]) & 255] + skey->saferp.K[i+1][3]) & 255;    \
     52     b[4]  = (safer_ebox[(b[4] ^ skey->saferp.K[i][4]) & 255] + skey->saferp.K[i+1][4]) & 255;    \
     53     b[5]  = safer_lbox[(b[5] + skey->saferp.K[i][5]) & 255] ^ skey->saferp.K[i+1][5];            \
     54     b[6]  = safer_lbox[(b[6] + skey->saferp.K[i][6]) & 255] ^ skey->saferp.K[i+1][6];            \
     55     b[7]  = (safer_ebox[(b[7] ^ skey->saferp.K[i][7]) & 255] + skey->saferp.K[i+1][7]) & 255;    \
     56     b[8]  = (safer_ebox[(b[8] ^ skey->saferp.K[i][8]) & 255] + skey->saferp.K[i+1][8]) & 255;    \
     57     b[9]  = safer_lbox[(b[9] + skey->saferp.K[i][9]) & 255] ^ skey->saferp.K[i+1][9];            \
     58     b[10] = safer_lbox[(b[10] + skey->saferp.K[i][10]) & 255] ^ skey->saferp.K[i+1][10];         \
     59     b[11] = (safer_ebox[(b[11] ^ skey->saferp.K[i][11]) & 255] + skey->saferp.K[i+1][11]) & 255; \
     60     b[12] = (safer_ebox[(b[12] ^ skey->saferp.K[i][12]) & 255] + skey->saferp.K[i+1][12]) & 255; \
     61     b[13] = safer_lbox[(b[13] + skey->saferp.K[i][13]) & 255] ^ skey->saferp.K[i+1][13];         \
     62     b[14] = safer_lbox[(b[14] + skey->saferp.K[i][14]) & 255] ^ skey->saferp.K[i+1][14];         \
     63     b[15] = (safer_ebox[(b[15] ^ skey->saferp.K[i][15]) & 255] + skey->saferp.K[i+1][15]) & 255;
     64 
     65 /* This is one inverse key application */
     66 #define iROUND(b, i)                                                                       \
     67     b[0]  = safer_lbox[(b[0] - skey->saferp.K[i+1][0]) & 255] ^ skey->saferp.K[i][0];            \
     68     b[1]  = (safer_ebox[(b[1] ^ skey->saferp.K[i+1][1]) & 255] - skey->saferp.K[i][1]) & 255;    \
     69     b[2]  = (safer_ebox[(b[2] ^ skey->saferp.K[i+1][2]) & 255] - skey->saferp.K[i][2]) & 255;    \
     70     b[3]  = safer_lbox[(b[3] - skey->saferp.K[i+1][3]) & 255] ^ skey->saferp.K[i][3];            \
     71     b[4]  = safer_lbox[(b[4] - skey->saferp.K[i+1][4]) & 255] ^ skey->saferp.K[i][4];            \
     72     b[5]  = (safer_ebox[(b[5] ^ skey->saferp.K[i+1][5]) & 255] - skey->saferp.K[i][5]) & 255;    \
     73     b[6]  = (safer_ebox[(b[6] ^ skey->saferp.K[i+1][6]) & 255] - skey->saferp.K[i][6]) & 255;    \
     74     b[7]  = safer_lbox[(b[7] - skey->saferp.K[i+1][7]) & 255] ^ skey->saferp.K[i][7];            \
     75     b[8]  = safer_lbox[(b[8] - skey->saferp.K[i+1][8]) & 255] ^ skey->saferp.K[i][8];            \
     76     b[9]  = (safer_ebox[(b[9] ^ skey->saferp.K[i+1][9]) & 255] - skey->saferp.K[i][9]) & 255;    \
     77     b[10] = (safer_ebox[(b[10] ^ skey->saferp.K[i+1][10]) & 255] - skey->saferp.K[i][10]) & 255; \
     78     b[11] = safer_lbox[(b[11] - skey->saferp.K[i+1][11]) & 255] ^ skey->saferp.K[i][11];         \
     79     b[12] = safer_lbox[(b[12] - skey->saferp.K[i+1][12]) & 255] ^ skey->saferp.K[i][12];         \
     80     b[13] = (safer_ebox[(b[13] ^ skey->saferp.K[i+1][13]) & 255] - skey->saferp.K[i][13]) & 255; \
     81     b[14] = (safer_ebox[(b[14] ^ skey->saferp.K[i+1][14]) & 255] - skey->saferp.K[i][14]) & 255; \
     82     b[15] = safer_lbox[(b[15] - skey->saferp.K[i+1][15]) & 255] ^ skey->saferp.K[i][15];
     83 
     84 /* This is a forward single layer PHT transform.  */
     85 #define PHT(b)                                               \
     86     b[0]  = (b[0] + (b[1] = (b[0] + b[1]) & 255)) & 255;     \
     87     b[2]  = (b[2] + (b[3] = (b[3] + b[2]) & 255)) & 255;     \
     88     b[4]  = (b[4] + (b[5] = (b[5] + b[4]) & 255)) & 255;     \
     89     b[6]  = (b[6] + (b[7] = (b[7] + b[6]) & 255)) & 255;     \
     90     b[8]  = (b[8] + (b[9] = (b[9] + b[8]) & 255)) & 255;     \
     91     b[10] = (b[10] + (b[11] = (b[11] + b[10]) & 255)) & 255; \
     92     b[12] = (b[12] + (b[13] = (b[13] + b[12]) & 255)) & 255; \
     93     b[14] = (b[14] + (b[15] = (b[15] + b[14]) & 255)) & 255;
     94 
     95 /* This is an inverse single layer PHT transform */
     96 #define iPHT(b)                                               \
     97     b[15] = (b[15] - (b[14] = (b[14] - b[15]) & 255)) & 255;  \
     98     b[13] = (b[13] - (b[12] = (b[12] - b[13]) & 255)) & 255;  \
     99     b[11] = (b[11] - (b[10] = (b[10] - b[11]) & 255)) & 255;  \
    100     b[9]  = (b[9] - (b[8] = (b[8] - b[9]) & 255)) & 255;      \
    101     b[7]  = (b[7] - (b[6] = (b[6] - b[7]) & 255)) & 255;      \
    102     b[5]  = (b[5] - (b[4] = (b[4] - b[5]) & 255)) & 255;      \
    103     b[3]  = (b[3] - (b[2] = (b[2] - b[3]) & 255)) & 255;      \
    104     b[1]  = (b[1] - (b[0] = (b[0] - b[1]) & 255)) & 255;      \
    105 
    106 /* This is the "Armenian" Shuffle.  It takes the input from b and stores it in b2 */
    107 #define SHUF(b, b2)                                              \
    108     b2[0] = b[8]; b2[1] = b[11]; b2[2] = b[12]; b2[3] = b[15];   \
    109     b2[4] = b[2]; b2[5] = b[1]; b2[6] = b[6]; b2[7] = b[5];      \
    110     b2[8] = b[10]; b2[9] = b[9]; b2[10] = b[14]; b2[11] = b[13]; \
    111     b2[12] = b[0]; b2[13] = b[7]; b2[14] = b[4]; b2[15] = b[3];
    112 
    113 /* This is the inverse shuffle.  It takes from b and gives to b2 */
    114 #define iSHUF(b, b2)                                               \
    115     b2[0] = b[12]; b2[1] = b[5]; b2[2] = b[4]; b2[3] = b[15];      \
    116     b2[4] = b[14]; b2[5] = b[7]; b2[6] = b[6]; b2[7] = b[13];      \
    117     b2[8] = b[0]; b2[9] = b[9]; b2[10] = b[8]; b2[11] = b[1];      \
    118     b2[12] = b[2]; b2[13] = b[11]; b2[14] = b[10]; b2[15] = b[3];
    119 
    120 /* The complete forward Linear Transform layer.
    121  * Note that alternating usage of b and b2.
    122  * Each round of LT starts in 'b' and ends in 'b2'.
    123  */
    124 #define LT(b, b2)             \
    125     PHT(b);  SHUF(b, b2);     \
    126     PHT(b2); SHUF(b2, b);     \
    127     PHT(b);  SHUF(b, b2);     \
    128     PHT(b2);
    129 
    130 /* This is the inverse linear transform layer.  */
    131 #define iLT(b, b2)            \
    132     iPHT(b);                  \
    133     iSHUF(b, b2); iPHT(b2);   \
    134     iSHUF(b2, b); iPHT(b);    \
    135     iSHUF(b, b2); iPHT(b2);
    136 
    137 #ifdef LTC_SMALL_CODE
    138 
    139 static void _round(unsigned char *b, int i, symmetric_key *skey)
    140 {
    141    ROUND(b, i);
    142 }
    143 
    144 static void _iround(unsigned char *b, int i, symmetric_key *skey)
    145 {
    146    iROUND(b, i);
    147 }
    148 
    149 static void _lt(unsigned char *b, unsigned char *b2)
    150 {
    151    LT(b, b2);
    152 }
    153 
    154 static void _ilt(unsigned char *b, unsigned char *b2)
    155 {
    156    iLT(b, b2);
    157 }
    158 
    159 #undef ROUND
    160 #define ROUND(b, i) _round(b, i, skey)
    161 
    162 #undef iROUND
    163 #define iROUND(b, i) _iround(b, i, skey)
    164 
    165 #undef LT
    166 #define LT(b, b2) _lt(b, b2)
    167 
    168 #undef iLT
    169 #define iLT(b, b2) _ilt(b, b2)
    170 
    171 #endif
    172 
    173 /* These are the 33, 128-bit bias words for the key schedule */
    174 static const unsigned char safer_bias[33][16] = {
    175 {  70, 151, 177, 186, 163, 183,  16,  10, 197,  55, 179, 201,  90,  40, 172, 100},
    176 { 236, 171, 170, 198, 103, 149,  88,  13, 248, 154, 246, 110, 102, 220,   5,  61},
    177 { 138, 195, 216, 137, 106, 233,  54,  73,  67, 191, 235, 212, 150, 155, 104, 160},
    178 {  93,  87, 146,  31, 213, 113,  92, 187,  34, 193, 190, 123, 188, 153,  99, 148},
    179 {  42,  97, 184,  52,  50,  25, 253, 251,  23,  64, 230,  81,  29,  65,  68, 143},
    180 { 221,   4, 128, 222, 231,  49, 214, 127,   1, 162, 247,  57, 218, 111,  35, 202},
    181 {  58, 208,  28, 209,  48,  62,  18, 161, 205,  15, 224, 168, 175, 130,  89,  44},
    182 { 125, 173, 178, 239, 194, 135, 206, 117,   6,  19,   2, 144,  79,  46, 114,  51},
    183 { 192, 141, 207, 169, 129, 226, 196,  39,  47, 108, 122, 159,  82, 225,  21,  56},
    184 { 252,  32,  66, 199,   8, 228,   9,  85,  94, 140,  20, 118,  96, 255, 223, 215},
    185 { 250,  11,  33,   0,  26, 249, 166, 185, 232, 158,  98,  76, 217, 145,  80, 210},
    186 {  24, 180,   7, 132, 234,  91, 164, 200,  14, 203,  72, 105,  75,  78, 156,  53},
    187 {  69,  77,  84, 229,  37,  60,  12,  74, 139,  63, 204, 167, 219, 107, 174, 244},
    188 {  45, 243, 124, 109, 157, 181,  38, 116, 242, 147,  83, 176, 240,  17, 237, 131},
    189 { 182,   3,  22, 115,  59,  30, 142, 112, 189, 134,  27,  71, 126,  36,  86, 241},
    190 { 136,  70, 151, 177, 186, 163, 183,  16,  10, 197,  55, 179, 201,  90,  40, 172},
    191 { 220, 134, 119, 215, 166,  17, 251, 244, 186, 146, 145, 100, 131, 241,  51, 239},
    192 {  44, 181, 178,  43, 136, 209, 153, 203, 140, 132,  29,  20, 129, 151, 113, 202},
    193 { 163, 139,  87,  60, 130, 196,  82,  92,  28, 232, 160,   4, 180, 133,  74, 246},
    194 {  84, 182, 223,  12,  26, 142, 222, 224,  57, 252,  32, 155,  36,  78, 169, 152},
    195 { 171, 242,  96, 208, 108, 234, 250, 199, 217,   0, 212,  31, 110,  67, 188, 236},
    196 { 137, 254, 122,  93,  73, 201,  50, 194, 249, 154, 248, 109,  22, 219,  89, 150},
    197 { 233, 205, 230,  70,  66, 143,  10, 193, 204, 185, 101, 176, 210, 198, 172,  30},
    198 {  98,  41,  46,  14, 116,  80,   2,  90, 195,  37, 123, 138,  42,  91, 240,   6},
    199 {  71, 111, 112, 157, 126,  16, 206,  18,  39, 213,  76,  79, 214, 121,  48, 104},
    200 { 117, 125, 228, 237, 128, 106, 144,  55, 162,  94, 118, 170, 197, 127,  61, 175},
    201 { 229,  25,  97, 253,  77, 124, 183,  11, 238, 173,  75,  34, 245, 231, 115,  35},
    202 { 200,   5, 225, 102, 221, 179,  88, 105,  99,  86,  15, 161,  49, 149,  23,   7},
    203 {  40,   1,  45, 226, 147, 190,  69,  21, 174, 120,   3, 135, 164, 184,  56, 207},
    204 {   8, 103,   9, 148, 235,  38, 168, 107, 189,  24,  52,  27, 187, 191, 114, 247},
    205 {  53,  72, 156,  81,  47,  59,  85, 227, 192, 159, 216, 211, 243, 141, 177, 255},
    206 {  62, 220, 134, 119, 215, 166,  17, 251, 244, 186, 146, 145, 100, 131, 241,  51}};
    207 
    208  /**
    209     Initialize the SAFER+ block cipher
    210     @param key The symmetric key you wish to pass
    211     @param keylen The key length in bytes
    212     @param num_rounds The number of rounds desired (0 for default)
    213     @param skey The key in as scheduled by this function.
    214     @return CRYPT_OK if successful
    215  */
    216 int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
    217 {
    218    unsigned x, y, z;
    219    unsigned char t[33];
    220    static const int rounds[3] = { 8, 12, 16 };
    221 
    222    LTC_ARGCHK(key  != NULL);
    223    LTC_ARGCHK(skey != NULL);
    224 
    225    /* check arguments */
    226    if (keylen != 16 && keylen != 24 && keylen != 32) {
    227       return CRYPT_INVALID_KEYSIZE;
    228    }
    229 
    230    /* Is the number of rounds valid?  Either use zero for default or
    231     * 8,12,16 rounds for 16,24,32 byte keys
    232     */
    233    if (num_rounds != 0 && num_rounds != rounds[(keylen/8)-2]) {
    234       return CRYPT_INVALID_ROUNDS;
    235    }
    236 
    237    /* 128 bit key version */
    238    if (keylen == 16) {
    239        /* copy key into t */
    240        for (x = y = 0; x < 16; x++) {
    241            t[x] = key[x];
    242            y ^= key[x];
    243        }
    244        t[16] = y;
    245 
    246        /* make round keys */
    247        for (x = 0; x < 16; x++) {
    248            skey->saferp.K[0][x] = t[x];
    249        }
    250 
    251        /* make the 16 other keys as a transformation of the first key */
    252        for (x = 1; x < 17; x++) {
    253            /* rotate 3 bits each */
    254            for (y = 0; y < 17; y++) {
    255                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
    256            }
    257 
    258            /* select and add */
    259            z = x;
    260            for (y = 0; y < 16; y++) {
    261                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
    262                if (++z == 17) { z = 0; }
    263            }
    264        }
    265        skey->saferp.rounds = 8;
    266    } else if (keylen == 24) {
    267        /* copy key into t */
    268        for (x = y = 0; x < 24; x++) {
    269            t[x] = key[x];
    270            y ^= key[x];
    271        }
    272        t[24] = y;
    273 
    274        /* make round keys */
    275        for (x = 0; x < 16; x++) {
    276            skey->saferp.K[0][x] = t[x];
    277        }
    278 
    279        for (x = 1; x < 25; x++) {
    280            /* rotate 3 bits each */
    281            for (y = 0; y < 25; y++) {
    282                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
    283            }
    284 
    285            /* select and add */
    286            z = x;
    287            for (y = 0; y < 16; y++) {
    288                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
    289                if (++z == 25) { z = 0; }
    290            }
    291        }
    292        skey->saferp.rounds = 12;
    293    } else {
    294        /* copy key into t */
    295        for (x = y = 0; x < 32; x++) {
    296            t[x] = key[x];
    297            y ^= key[x];
    298        }
    299        t[32] = y;
    300 
    301        /* make round keys */
    302        for (x = 0; x < 16; x++) {
    303            skey->saferp.K[0][x] = t[x];
    304        }
    305 
    306        for (x = 1; x < 33; x++) {
    307            /* rotate 3 bits each */
    308            for (y = 0; y < 33; y++) {
    309                t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
    310            }
    311 
    312            /* select and add */
    313            z = x;
    314            for (y = 0; y < 16; y++) {
    315                skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
    316                if (++z == 33) { z = 0; }
    317            }
    318        }
    319        skey->saferp.rounds = 16;
    320    }
    321 #ifdef LTC_CLEAN_STACK
    322    zeromem(t, sizeof(t));
    323 #endif
    324    return CRYPT_OK;
    325 }
    326 
    327 /**
    328   Encrypts a block of text with SAFER+
    329   @param pt The input plaintext (16 bytes)
    330   @param ct The output ciphertext (16 bytes)
    331   @param skey The key as scheduled
    332   @return CRYPT_OK if successful
    333 */
    334 int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    335 {
    336    unsigned char b[16];
    337    int x;
    338 
    339    LTC_ARGCHK(pt   != NULL);
    340    LTC_ARGCHK(ct   != NULL);
    341    LTC_ARGCHK(skey != NULL);
    342 
    343    /* do eight rounds */
    344    for (x = 0; x < 16; x++) {
    345        b[x] = pt[x];
    346    }
    347    ROUND(b,  0);  LT(b, ct);
    348    ROUND(ct, 2);  LT(ct, b);
    349    ROUND(b,  4);  LT(b, ct);
    350    ROUND(ct, 6);  LT(ct, b);
    351    ROUND(b,  8);  LT(b, ct);
    352    ROUND(ct, 10); LT(ct, b);
    353    ROUND(b,  12); LT(b, ct);
    354    ROUND(ct, 14); LT(ct, b);
    355    /* 192-bit key? */
    356    if (skey->saferp.rounds > 8) {
    357       ROUND(b, 16);  LT(b, ct);
    358       ROUND(ct, 18); LT(ct, b);
    359       ROUND(b, 20);  LT(b, ct);
    360       ROUND(ct, 22); LT(ct, b);
    361    }
    362    /* 256-bit key? */
    363    if (skey->saferp.rounds > 12) {
    364       ROUND(b, 24);  LT(b, ct);
    365       ROUND(ct, 26); LT(ct, b);
    366       ROUND(b, 28);  LT(b, ct);
    367       ROUND(ct, 30); LT(ct, b);
    368    }
    369    ct[0] = b[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
    370    ct[1] = (b[1] + skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
    371    ct[2] = (b[2] + skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
    372    ct[3] = b[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
    373    ct[4] = b[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
    374    ct[5] = (b[5] + skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
    375    ct[6] = (b[6] + skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
    376    ct[7] = b[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
    377    ct[8] = b[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
    378    ct[9] = (b[9] + skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
    379    ct[10] = (b[10] + skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
    380    ct[11] = b[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
    381    ct[12] = b[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
    382    ct[13] = (b[13] + skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
    383    ct[14] = (b[14] + skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
    384    ct[15] = b[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
    385 #ifdef LTC_CLEAN_STACK
    386    zeromem(b, sizeof(b));
    387 #endif
    388    return CRYPT_OK;
    389 }
    390 
    391 /**
    392   Decrypts a block of text with SAFER+
    393   @param ct The input ciphertext (16 bytes)
    394   @param pt The output plaintext (16 bytes)
    395   @param skey The key as scheduled
    396   @return CRYPT_OK if successful
    397 */
    398 int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    399 {
    400    unsigned char b[16];
    401    int x;
    402 
    403    LTC_ARGCHK(pt   != NULL);
    404    LTC_ARGCHK(ct   != NULL);
    405    LTC_ARGCHK(skey != NULL);
    406 
    407    /* do eight rounds */
    408    b[0] = ct[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
    409    b[1] = (ct[1] - skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
    410    b[2] = (ct[2] - skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
    411    b[3] = ct[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
    412    b[4] = ct[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
    413    b[5] = (ct[5] - skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
    414    b[6] = (ct[6] - skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
    415    b[7] = ct[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
    416    b[8] = ct[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
    417    b[9] = (ct[9] - skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
    418    b[10] = (ct[10] - skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
    419    b[11] = ct[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
    420    b[12] = ct[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
    421    b[13] = (ct[13] - skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
    422    b[14] = (ct[14] - skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
    423    b[15] = ct[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
    424    /* 256-bit key? */
    425    if (skey->saferp.rounds > 12) {
    426       iLT(b, pt); iROUND(pt, 30);
    427       iLT(pt, b); iROUND(b, 28);
    428       iLT(b, pt); iROUND(pt, 26);
    429       iLT(pt, b); iROUND(b, 24);
    430    }
    431    /* 192-bit key? */
    432    if (skey->saferp.rounds > 8) {
    433       iLT(b, pt); iROUND(pt, 22);
    434       iLT(pt, b); iROUND(b, 20);
    435       iLT(b, pt); iROUND(pt, 18);
    436       iLT(pt, b); iROUND(b, 16);
    437    }
    438    iLT(b, pt); iROUND(pt, 14);
    439    iLT(pt, b); iROUND(b, 12);
    440    iLT(b, pt); iROUND(pt,10);
    441    iLT(pt, b); iROUND(b, 8);
    442    iLT(b, pt); iROUND(pt,6);
    443    iLT(pt, b); iROUND(b, 4);
    444    iLT(b, pt); iROUND(pt,2);
    445    iLT(pt, b); iROUND(b, 0);
    446    for (x = 0; x < 16; x++) {
    447        pt[x] = b[x];
    448    }
    449 #ifdef LTC_CLEAN_STACK
    450    zeromem(b, sizeof(b));
    451 #endif
    452    return CRYPT_OK;
    453 }
    454 
    455 /**
    456   Performs a self-test of the SAFER+ block cipher
    457   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
    458 */
    459 int saferp_test(void)
    460 {
    461  #ifndef LTC_TEST
    462     return CRYPT_NOP;
    463  #else
    464    static const struct {
    465        int keylen;
    466        unsigned char key[32], pt[16], ct[16];
    467    } tests[] = {
    468        {
    469            16,
    470            { 41, 35, 190, 132, 225, 108, 214, 174,
    471              82, 144, 73, 241, 241, 187, 233, 235 },
    472            { 179, 166, 219, 60, 135, 12, 62, 153,
    473              36, 94, 13, 28, 6, 183, 71, 222 },
    474            { 224, 31, 182, 10, 12, 255, 84, 70,
    475              127, 13, 89, 249, 9, 57, 165, 220 }
    476        }, {
    477            24,
    478            { 72, 211, 143, 117, 230, 217, 29, 42,
    479              229, 192, 247, 43, 120, 129, 135, 68,
    480              14, 95, 80, 0, 212, 97, 141, 190 },
    481            { 123, 5, 21, 7, 59, 51, 130, 31,
    482              24, 112, 146, 218, 100, 84, 206, 177 },
    483            { 92, 136, 4, 63, 57, 95, 100, 0,
    484              150, 130, 130, 16, 193, 111, 219, 133 }
    485        }, {
    486            32,
    487            { 243, 168, 141, 254, 190, 242, 235, 113,
    488              255, 160, 208, 59, 117, 6, 140, 126,
    489              135, 120, 115, 77, 208, 190, 130, 190,
    490              219, 194, 70, 65, 43, 140, 250, 48 },
    491            { 127, 112, 240, 167, 84, 134, 50, 149,
    492              170, 91, 104, 19, 11, 230, 252, 245 },
    493            { 88, 11, 25, 36, 172, 229, 202, 213,
    494              170, 65, 105, 153, 220, 104, 153, 138 }
    495        }
    496     };
    497 
    498    unsigned char tmp[2][16];
    499    symmetric_key skey;
    500    int err, i, y;
    501 
    502    for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
    503       if ((err = saferp_setup(tests[i].key, tests[i].keylen, 0, &skey)) != CRYPT_OK)  {
    504          return err;
    505       }
    506       saferp_ecb_encrypt(tests[i].pt, tmp[0], &skey);
    507       saferp_ecb_decrypt(tmp[0], tmp[1], &skey);
    508 
    509       /* compare */
    510       if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) {
    511          return CRYPT_FAIL_TESTVECTOR;
    512       }
    513 
    514       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
    515       for (y = 0; y < 16; y++) tmp[0][y] = 0;
    516       for (y = 0; y < 1000; y++) saferp_ecb_encrypt(tmp[0], tmp[0], &skey);
    517       for (y = 0; y < 1000; y++) saferp_ecb_decrypt(tmp[0], tmp[0], &skey);
    518       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
    519    }
    520 
    521    return CRYPT_OK;
    522  #endif
    523 }
    524 
    525 /** Terminate the context
    526    @param skey    The scheduled key
    527 */
    528 void saferp_done(symmetric_key *skey)
    529 {
    530 }
    531 
    532 /**
    533   Gets suitable key size
    534   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
    535   @return CRYPT_OK if the input key size is acceptable.
    536 */
    537 int saferp_keysize(int *keysize)
    538 {
    539    LTC_ARGCHK(keysize != NULL);
    540 
    541    if (*keysize < 16)
    542       return CRYPT_INVALID_KEYSIZE;
    543    if (*keysize < 24) {
    544       *keysize = 16;
    545    } else if (*keysize < 32) {
    546       *keysize = 24;
    547    } else {
    548       *keysize = 32;
    549    }
    550    return CRYPT_OK;
    551 }
    552 
    553 #endif
    554 
    555 
    556 
    557 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/safer/saferp.c,v $ */
    558 /* $Revision: 1.12 $ */
    559 /* $Date: 2006/11/08 23:01:06 $ */
    560