1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <algorithm> // for min() 8 #include "base/atomicops.h" 9 #include "base/logging.h" 10 #include "testing/gtest/include/gtest/gtest.h" 11 12 // Number of bits in a size_t. 13 static const int kSizeBits = 8 * sizeof(size_t); 14 // The maximum size of a size_t. 15 static const size_t kMaxSize = ~static_cast<size_t>(0); 16 // Maximum positive size of a size_t if it were signed. 17 static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1); 18 // An allocation size which is not too big to be reasonable. 19 static const size_t kNotTooBig = 100000; 20 // An allocation size which is just too big. 21 static const size_t kTooBig = ~static_cast<size_t>(0); 22 23 namespace { 24 25 using std::min; 26 27 // Fill a buffer of the specified size with a predetermined pattern 28 static void Fill(unsigned char* buffer, int n) { 29 for (int i = 0; i < n; i++) { 30 buffer[i] = (i & 0xff); 31 } 32 } 33 34 // Check that the specified buffer has the predetermined pattern 35 // generated by Fill() 36 static bool Valid(unsigned char* buffer, int n) { 37 for (int i = 0; i < n; i++) { 38 if (buffer[i] != (i & 0xff)) { 39 return false; 40 } 41 } 42 return true; 43 } 44 45 // Check that a buffer is completely zeroed. 46 static bool IsZeroed(unsigned char* buffer, int n) { 47 for (int i = 0; i < n; i++) { 48 if (buffer[i] != 0) { 49 return false; 50 } 51 } 52 return true; 53 } 54 55 // Check alignment 56 static void CheckAlignment(void* p, int align) { 57 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1)); 58 } 59 60 // Return the next interesting size/delta to check. Returns -1 if no more. 61 static int NextSize(int size) { 62 if (size < 100) 63 return size+1; 64 65 if (size < 100000) { 66 // Find next power of two 67 int power = 1; 68 while (power < size) 69 power <<= 1; 70 71 // Yield (power-1, power, power+1) 72 if (size < power-1) 73 return power-1; 74 75 if (size == power-1) 76 return power; 77 78 assert(size == power); 79 return power+1; 80 } else { 81 return -1; 82 } 83 } 84 85 #define GG_ULONGLONG(x) static_cast<uint64>(x) 86 87 template <class AtomicType> 88 static void TestAtomicIncrement() { 89 // For now, we just test single threaded execution 90 91 // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go 92 // outside the expected address bounds. This is in particular to 93 // test that some future change to the asm code doesn't cause the 94 // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines. 95 struct { 96 AtomicType prev_word; 97 AtomicType count; 98 AtomicType next_word; 99 } s; 100 101 AtomicType prev_word_value, next_word_value; 102 memset(&prev_word_value, 0xFF, sizeof(AtomicType)); 103 memset(&next_word_value, 0xEE, sizeof(AtomicType)); 104 105 s.prev_word = prev_word_value; 106 s.count = 0; 107 s.next_word = next_word_value; 108 109 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1); 110 EXPECT_EQ(s.count, 1); 111 EXPECT_EQ(s.prev_word, prev_word_value); 112 EXPECT_EQ(s.next_word, next_word_value); 113 114 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3); 115 EXPECT_EQ(s.count, 3); 116 EXPECT_EQ(s.prev_word, prev_word_value); 117 EXPECT_EQ(s.next_word, next_word_value); 118 119 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6); 120 EXPECT_EQ(s.count, 6); 121 EXPECT_EQ(s.prev_word, prev_word_value); 122 EXPECT_EQ(s.next_word, next_word_value); 123 124 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3); 125 EXPECT_EQ(s.count, 3); 126 EXPECT_EQ(s.prev_word, prev_word_value); 127 EXPECT_EQ(s.next_word, next_word_value); 128 129 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1); 130 EXPECT_EQ(s.count, 1); 131 EXPECT_EQ(s.prev_word, prev_word_value); 132 EXPECT_EQ(s.next_word, next_word_value); 133 134 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0); 135 EXPECT_EQ(s.count, 0); 136 EXPECT_EQ(s.prev_word, prev_word_value); 137 EXPECT_EQ(s.next_word, next_word_value); 138 139 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1); 140 EXPECT_EQ(s.count, -1); 141 EXPECT_EQ(s.prev_word, prev_word_value); 142 EXPECT_EQ(s.next_word, next_word_value); 143 144 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5); 145 EXPECT_EQ(s.count, -5); 146 EXPECT_EQ(s.prev_word, prev_word_value); 147 EXPECT_EQ(s.next_word, next_word_value); 148 149 EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0); 150 EXPECT_EQ(s.count, 0); 151 EXPECT_EQ(s.prev_word, prev_word_value); 152 EXPECT_EQ(s.next_word, next_word_value); 153 } 154 155 156 #define NUM_BITS(T) (sizeof(T) * 8) 157 158 159 template <class AtomicType> 160 static void TestCompareAndSwap() { 161 AtomicType value = 0; 162 AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1); 163 EXPECT_EQ(1, value); 164 EXPECT_EQ(0, prev); 165 166 // Use test value that has non-zero bits in both halves, more for testing 167 // 64-bit implementation on 32-bit platforms. 168 const AtomicType k_test_val = (GG_ULONGLONG(1) << 169 (NUM_BITS(AtomicType) - 2)) + 11; 170 value = k_test_val; 171 prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5); 172 EXPECT_EQ(k_test_val, value); 173 EXPECT_EQ(k_test_val, prev); 174 175 value = k_test_val; 176 prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5); 177 EXPECT_EQ(5, value); 178 EXPECT_EQ(k_test_val, prev); 179 } 180 181 182 template <class AtomicType> 183 static void TestAtomicExchange() { 184 AtomicType value = 0; 185 AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1); 186 EXPECT_EQ(1, value); 187 EXPECT_EQ(0, new_value); 188 189 // Use test value that has non-zero bits in both halves, more for testing 190 // 64-bit implementation on 32-bit platforms. 191 const AtomicType k_test_val = (GG_ULONGLONG(1) << 192 (NUM_BITS(AtomicType) - 2)) + 11; 193 value = k_test_val; 194 new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val); 195 EXPECT_EQ(k_test_val, value); 196 EXPECT_EQ(k_test_val, new_value); 197 198 value = k_test_val; 199 new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5); 200 EXPECT_EQ(5, value); 201 EXPECT_EQ(k_test_val, new_value); 202 } 203 204 205 template <class AtomicType> 206 static void TestAtomicIncrementBounds() { 207 // Test increment at the half-width boundary of the atomic type. 208 // It is primarily for testing at the 32-bit boundary for 64-bit atomic type. 209 AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2); 210 AtomicType value = test_val - 1; 211 AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1); 212 EXPECT_EQ(test_val, value); 213 EXPECT_EQ(value, new_value); 214 215 base::subtle::NoBarrier_AtomicIncrement(&value, -1); 216 EXPECT_EQ(test_val - 1, value); 217 } 218 219 // This is a simple sanity check that values are correct. Not testing 220 // atomicity 221 template <class AtomicType> 222 static void TestStore() { 223 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); 224 const AtomicType kVal2 = static_cast<AtomicType>(-1); 225 226 AtomicType value; 227 228 base::subtle::NoBarrier_Store(&value, kVal1); 229 EXPECT_EQ(kVal1, value); 230 base::subtle::NoBarrier_Store(&value, kVal2); 231 EXPECT_EQ(kVal2, value); 232 233 base::subtle::Acquire_Store(&value, kVal1); 234 EXPECT_EQ(kVal1, value); 235 base::subtle::Acquire_Store(&value, kVal2); 236 EXPECT_EQ(kVal2, value); 237 238 base::subtle::Release_Store(&value, kVal1); 239 EXPECT_EQ(kVal1, value); 240 base::subtle::Release_Store(&value, kVal2); 241 EXPECT_EQ(kVal2, value); 242 } 243 244 // This is a simple sanity check that values are correct. Not testing 245 // atomicity 246 template <class AtomicType> 247 static void TestLoad() { 248 const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); 249 const AtomicType kVal2 = static_cast<AtomicType>(-1); 250 251 AtomicType value; 252 253 value = kVal1; 254 EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value)); 255 value = kVal2; 256 EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value)); 257 258 value = kVal1; 259 EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value)); 260 value = kVal2; 261 EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value)); 262 263 value = kVal1; 264 EXPECT_EQ(kVal1, base::subtle::Release_Load(&value)); 265 value = kVal2; 266 EXPECT_EQ(kVal2, base::subtle::Release_Load(&value)); 267 } 268 269 template <class AtomicType> 270 static void TestAtomicOps() { 271 TestCompareAndSwap<AtomicType>(); 272 TestAtomicExchange<AtomicType>(); 273 TestAtomicIncrementBounds<AtomicType>(); 274 TestStore<AtomicType>(); 275 TestLoad<AtomicType>(); 276 } 277 278 static void TestCalloc(size_t n, size_t s, bool ok) { 279 char* p = reinterpret_cast<char*>(calloc(n, s)); 280 if (!ok) { 281 EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed"; 282 } else { 283 EXPECT_NE(reinterpret_cast<void*>(NULL), p) << 284 "calloc(n, s) should succeed"; 285 for (int i = 0; i < n*s; i++) { 286 EXPECT_EQ('\0', p[i]); 287 } 288 free(p); 289 } 290 } 291 292 293 // A global test counter for number of times the NewHandler is called. 294 static int news_handled = 0; 295 static void TestNewHandler() { 296 ++news_handled; 297 throw std::bad_alloc(); 298 } 299 300 // Because we compile without exceptions, we expect these will not throw. 301 static void TestOneNewWithoutExceptions(void* (*func)(size_t), 302 bool should_throw) { 303 // success test 304 try { 305 void* ptr = (*func)(kNotTooBig); 306 EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) << 307 "allocation should not have failed."; 308 } catch(...) { 309 EXPECT_EQ(0, 1) << "allocation threw unexpected exception."; 310 } 311 312 // failure test 313 try { 314 void* rv = (*func)(kTooBig); 315 EXPECT_EQ(NULL, rv); 316 EXPECT_FALSE(should_throw) << "allocation should have thrown."; 317 } catch(...) { 318 EXPECT_TRUE(should_throw) << "allocation threw unexpected exception."; 319 } 320 } 321 322 static void TestNothrowNew(void* (*func)(size_t)) { 323 news_handled = 0; 324 325 // test without new_handler: 326 std::new_handler saved_handler = std::set_new_handler(0); 327 TestOneNewWithoutExceptions(func, false); 328 329 // test with new_handler: 330 std::set_new_handler(TestNewHandler); 331 TestOneNewWithoutExceptions(func, true); 332 EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called."; 333 std::set_new_handler(saved_handler); 334 } 335 336 } // namespace 337 338 //----------------------------------------------------------------------------- 339 340 TEST(Atomics, AtomicIncrementWord) { 341 TestAtomicIncrement<AtomicWord>(); 342 } 343 344 TEST(Atomics, AtomicIncrement32) { 345 TestAtomicIncrement<Atomic32>(); 346 } 347 348 TEST(Atomics, AtomicOpsWord) { 349 TestAtomicIncrement<AtomicWord>(); 350 } 351 352 TEST(Atomics, AtomicOps32) { 353 TestAtomicIncrement<Atomic32>(); 354 } 355 356 TEST(Allocators, Malloc) { 357 // Try allocating data with a bunch of alignments and sizes 358 for (int size = 1; size < 1048576; size *= 2) { 359 unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size)); 360 CheckAlignment(ptr, 2); // Should be 2 byte aligned 361 Fill(ptr, size); 362 EXPECT_TRUE(Valid(ptr, size)); 363 free(ptr); 364 } 365 } 366 367 TEST(Allocators, Calloc) { 368 TestCalloc(0, 0, true); 369 TestCalloc(0, 1, true); 370 TestCalloc(1, 1, true); 371 TestCalloc(1<<10, 0, true); 372 TestCalloc(1<<20, 0, true); 373 TestCalloc(0, 1<<10, true); 374 TestCalloc(0, 1<<20, true); 375 TestCalloc(1<<20, 2, true); 376 TestCalloc(2, 1<<20, true); 377 TestCalloc(1000, 1000, true); 378 379 TestCalloc(kMaxSize, 2, false); 380 TestCalloc(2, kMaxSize, false); 381 TestCalloc(kMaxSize, kMaxSize, false); 382 383 TestCalloc(kMaxSignedSize, 3, false); 384 TestCalloc(3, kMaxSignedSize, false); 385 TestCalloc(kMaxSignedSize, kMaxSignedSize, false); 386 } 387 388 TEST(Allocators, New) { 389 TestNothrowNew(&::operator new); 390 TestNothrowNew(&::operator new[]); 391 } 392 393 // This makes sure that reallocing a small number of bytes in either 394 // direction doesn't cause us to allocate new memory. 395 TEST(Allocators, Realloc1) { 396 int start_sizes[] = { 100, 1000, 10000, 100000 }; 397 int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 }; 398 399 for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) { 400 void* p = malloc(start_sizes[s]); 401 CHECK(p); 402 // The larger the start-size, the larger the non-reallocing delta. 403 for (int d = 0; d < s*2; ++d) { 404 void* new_p = realloc(p, start_sizes[s] + deltas[d]); 405 CHECK_EQ(p, new_p); // realloc should not allocate new memory 406 } 407 // Test again, but this time reallocing smaller first. 408 for (int d = 0; d < s*2; ++d) { 409 void* new_p = realloc(p, start_sizes[s] - deltas[d]); 410 CHECK_EQ(p, new_p); // realloc should not allocate new memory 411 } 412 free(p); 413 } 414 } 415 416 TEST(Allocators, Realloc2) { 417 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { 418 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { 419 unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size)); 420 Fill(src, src_size); 421 unsigned char* dst = 422 reinterpret_cast<unsigned char*>(realloc(src, dst_size)); 423 EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); 424 Fill(dst, dst_size); 425 EXPECT_TRUE(Valid(dst, dst_size)); 426 if (dst != NULL) free(dst); 427 } 428 } 429 430 // Now make sure realloc works correctly even when we overflow the 431 // packed cache, so some entries are evicted from the cache. 432 // The cache has 2^12 entries, keyed by page number. 433 const int kNumEntries = 1 << 14; 434 int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries)); 435 int sum = 0; 436 for (int i = 0; i < kNumEntries; i++) { 437 // no page size is likely to be bigger than 8192? 438 p[i] = reinterpret_cast<int*>(malloc(8192)); 439 p[i][1000] = i; // use memory deep in the heart of p 440 } 441 for (int i = 0; i < kNumEntries; i++) { 442 p[i] = reinterpret_cast<int*>(realloc(p[i], 9000)); 443 } 444 for (int i = 0; i < kNumEntries; i++) { 445 sum += p[i][1000]; 446 free(p[i]); 447 } 448 EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even 449 free(p); 450 } 451 452 TEST(Allocators, ReallocZero) { 453 // Test that realloc to zero does not return NULL. 454 for (int size = 0; size >= 0; size = NextSize(size)) { 455 char* ptr = reinterpret_cast<char*>(malloc(size)); 456 EXPECT_NE(static_cast<char*>(NULL), ptr); 457 ptr = reinterpret_cast<char*>(realloc(ptr, 0)); 458 EXPECT_NE(static_cast<char*>(NULL), ptr); 459 if (ptr) 460 free(ptr); 461 } 462 } 463 464 #ifdef WIN32 465 // Test recalloc 466 TEST(Allocators, Recalloc) { 467 for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { 468 for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { 469 unsigned char* src = 470 reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size)); 471 EXPECT_TRUE(IsZeroed(src, src_size)); 472 Fill(src, src_size); 473 unsigned char* dst = 474 reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size)); 475 EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); 476 Fill(dst, dst_size); 477 EXPECT_TRUE(Valid(dst, dst_size)); 478 if (dst != NULL) 479 free(dst); 480 } 481 } 482 } 483 #endif 484 485 486 int main(int argc, char** argv) { 487 testing::InitGoogleTest(&argc, argv); 488 return RUN_ALL_TESTS(); 489 } 490