1 // 2 // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. 3 // Use of this source code is governed by a BSD-style license that can be 4 // found in the LICENSE file. 5 // 6 7 #include "compiler/ParseHelper.h" 8 9 #include <stdarg.h> 10 #include <stdio.h> 11 12 #include "compiler/glslang.h" 13 #include "compiler/osinclude.h" 14 #include "compiler/InitializeParseContext.h" 15 16 extern "C" { 17 extern int InitPreprocessor(); 18 extern int FinalizePreprocessor(); 19 extern void PredefineIntMacro(const char *name, int value); 20 } 21 22 static void ReportInfo(TInfoSinkBase& sink, 23 TPrefixType type, TSourceLoc loc, 24 const char* reason, const char* token, 25 const char* extraInfo) 26 { 27 /* VC++ format: file(linenum) : error #: 'token' : extrainfo */ 28 sink.prefix(type); 29 sink.location(loc); 30 sink << "'" << token << "' : " << reason << " " << extraInfo << "\n"; 31 } 32 33 static void DefineExtensionMacros(const TExtensionBehavior& extBehavior) 34 { 35 for (TExtensionBehavior::const_iterator iter = extBehavior.begin(); 36 iter != extBehavior.end(); ++iter) { 37 PredefineIntMacro(iter->first.c_str(), 1); 38 } 39 } 40 41 /////////////////////////////////////////////////////////////////////// 42 // 43 // Sub- vector and matrix fields 44 // 45 //////////////////////////////////////////////////////////////////////// 46 47 // 48 // Look at a '.' field selector string and change it into offsets 49 // for a vector. 50 // 51 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line) 52 { 53 fields.num = (int) compString.size(); 54 if (fields.num > 4) { 55 error(line, "illegal vector field selection", compString.c_str(), ""); 56 return false; 57 } 58 59 enum { 60 exyzw, 61 ergba, 62 estpq, 63 } fieldSet[4]; 64 65 for (int i = 0; i < fields.num; ++i) { 66 switch (compString[i]) { 67 case 'x': 68 fields.offsets[i] = 0; 69 fieldSet[i] = exyzw; 70 break; 71 case 'r': 72 fields.offsets[i] = 0; 73 fieldSet[i] = ergba; 74 break; 75 case 's': 76 fields.offsets[i] = 0; 77 fieldSet[i] = estpq; 78 break; 79 case 'y': 80 fields.offsets[i] = 1; 81 fieldSet[i] = exyzw; 82 break; 83 case 'g': 84 fields.offsets[i] = 1; 85 fieldSet[i] = ergba; 86 break; 87 case 't': 88 fields.offsets[i] = 1; 89 fieldSet[i] = estpq; 90 break; 91 case 'z': 92 fields.offsets[i] = 2; 93 fieldSet[i] = exyzw; 94 break; 95 case 'b': 96 fields.offsets[i] = 2; 97 fieldSet[i] = ergba; 98 break; 99 case 'p': 100 fields.offsets[i] = 2; 101 fieldSet[i] = estpq; 102 break; 103 104 case 'w': 105 fields.offsets[i] = 3; 106 fieldSet[i] = exyzw; 107 break; 108 case 'a': 109 fields.offsets[i] = 3; 110 fieldSet[i] = ergba; 111 break; 112 case 'q': 113 fields.offsets[i] = 3; 114 fieldSet[i] = estpq; 115 break; 116 default: 117 error(line, "illegal vector field selection", compString.c_str(), ""); 118 return false; 119 } 120 } 121 122 for (int i = 0; i < fields.num; ++i) { 123 if (fields.offsets[i] >= vecSize) { 124 error(line, "vector field selection out of range", compString.c_str(), ""); 125 return false; 126 } 127 128 if (i > 0) { 129 if (fieldSet[i] != fieldSet[i-1]) { 130 error(line, "illegal - vector component fields not from the same set", compString.c_str(), ""); 131 return false; 132 } 133 } 134 } 135 136 return true; 137 } 138 139 140 // 141 // Look at a '.' field selector string and change it into offsets 142 // for a matrix. 143 // 144 bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line) 145 { 146 fields.wholeRow = false; 147 fields.wholeCol = false; 148 fields.row = -1; 149 fields.col = -1; 150 151 if (compString.size() != 2) { 152 error(line, "illegal length of matrix field selection", compString.c_str(), ""); 153 return false; 154 } 155 156 if (compString[0] == '_') { 157 if (compString[1] < '0' || compString[1] > '3') { 158 error(line, "illegal matrix field selection", compString.c_str(), ""); 159 return false; 160 } 161 fields.wholeCol = true; 162 fields.col = compString[1] - '0'; 163 } else if (compString[1] == '_') { 164 if (compString[0] < '0' || compString[0] > '3') { 165 error(line, "illegal matrix field selection", compString.c_str(), ""); 166 return false; 167 } 168 fields.wholeRow = true; 169 fields.row = compString[0] - '0'; 170 } else { 171 if (compString[0] < '0' || compString[0] > '3' || 172 compString[1] < '0' || compString[1] > '3') { 173 error(line, "illegal matrix field selection", compString.c_str(), ""); 174 return false; 175 } 176 fields.row = compString[0] - '0'; 177 fields.col = compString[1] - '0'; 178 } 179 180 if (fields.row >= matSize || fields.col >= matSize) { 181 error(line, "matrix field selection out of range", compString.c_str(), ""); 182 return false; 183 } 184 185 return true; 186 } 187 188 /////////////////////////////////////////////////////////////////////// 189 // 190 // Errors 191 // 192 //////////////////////////////////////////////////////////////////////// 193 194 // 195 // Track whether errors have occurred. 196 // 197 void TParseContext::recover() 198 { 199 recoveredFromError = true; 200 } 201 202 // 203 // Used by flex/bison to output all syntax and parsing errors. 204 // 205 void TParseContext::error(TSourceLoc loc, 206 const char* reason, const char* token, 207 const char* extraInfoFormat, ...) 208 { 209 char extraInfo[512]; 210 va_list marker; 211 va_start(marker, extraInfoFormat); 212 vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); 213 214 ReportInfo(infoSink.info, EPrefixError, loc, reason, token, extraInfo); 215 216 va_end(marker); 217 ++numErrors; 218 } 219 220 void TParseContext::warning(TSourceLoc loc, 221 const char* reason, const char* token, 222 const char* extraInfoFormat, ...) { 223 char extraInfo[512]; 224 va_list marker; 225 va_start(marker, extraInfoFormat); 226 vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); 227 228 ReportInfo(infoSink.info, EPrefixWarning, loc, reason, token, extraInfo); 229 230 va_end(marker); 231 } 232 233 // 234 // Same error message for all places assignments don't work. 235 // 236 void TParseContext::assignError(int line, const char* op, TString left, TString right) 237 { 238 error(line, "", op, "cannot convert from '%s' to '%s'", 239 right.c_str(), left.c_str()); 240 } 241 242 // 243 // Same error message for all places unary operations don't work. 244 // 245 void TParseContext::unaryOpError(int line, const char* op, TString operand) 246 { 247 error(line, " wrong operand type", op, 248 "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", 249 op, operand.c_str()); 250 } 251 252 // 253 // Same error message for all binary operations don't work. 254 // 255 void TParseContext::binaryOpError(int line, const char* op, TString left, TString right) 256 { 257 error(line, " wrong operand types ", op, 258 "no operation '%s' exists that takes a left-hand operand of type '%s' and " 259 "a right operand of type '%s' (or there is no acceptable conversion)", 260 op, left.c_str(), right.c_str()); 261 } 262 263 bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){ 264 switch( type ){ 265 case EbtFloat: 266 if( precision == EbpUndefined ){ 267 error( line, "No precision specified for (float)", "", "" ); 268 return true; 269 } 270 break; 271 case EbtInt: 272 if( precision == EbpUndefined ){ 273 error( line, "No precision specified (int)", "", "" ); 274 return true; 275 } 276 break; 277 } 278 return false; 279 } 280 281 // 282 // Both test and if necessary, spit out an error, to see if the node is really 283 // an l-value that can be operated on this way. 284 // 285 // Returns true if the was an error. 286 // 287 bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node) 288 { 289 TIntermSymbol* symNode = node->getAsSymbolNode(); 290 TIntermBinary* binaryNode = node->getAsBinaryNode(); 291 292 if (binaryNode) { 293 bool errorReturn; 294 295 switch(binaryNode->getOp()) { 296 case EOpIndexDirect: 297 case EOpIndexIndirect: 298 case EOpIndexDirectStruct: 299 return lValueErrorCheck(line, op, binaryNode->getLeft()); 300 case EOpVectorSwizzle: 301 errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); 302 if (!errorReturn) { 303 int offset[4] = {0,0,0,0}; 304 305 TIntermTyped* rightNode = binaryNode->getRight(); 306 TIntermAggregate *aggrNode = rightNode->getAsAggregate(); 307 308 for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); 309 p != aggrNode->getSequence().end(); p++) { 310 int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst(); 311 offset[value]++; 312 if (offset[value] > 1) { 313 error(line, " l-value of swizzle cannot have duplicate components", op, "", ""); 314 315 return true; 316 } 317 } 318 } 319 320 return errorReturn; 321 default: 322 break; 323 } 324 error(line, " l-value required", op, "", ""); 325 326 return true; 327 } 328 329 330 const char* symbol = 0; 331 if (symNode != 0) 332 symbol = symNode->getSymbol().c_str(); 333 334 const char* message = 0; 335 switch (node->getQualifier()) { 336 case EvqConst: message = "can't modify a const"; break; 337 case EvqConstReadOnly: message = "can't modify a const"; break; 338 case EvqAttribute: message = "can't modify an attribute"; break; 339 case EvqUniform: message = "can't modify a uniform"; break; 340 case EvqVaryingIn: message = "can't modify a varying"; break; 341 case EvqInput: message = "can't modify an input"; break; 342 case EvqFragCoord: message = "can't modify gl_FragCoord"; break; 343 case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; 344 case EvqPointCoord: message = "can't modify gl_PointCoord"; break; 345 default: 346 347 // 348 // Type that can't be written to? 349 // 350 switch (node->getBasicType()) { 351 case EbtSampler2D: 352 case EbtSamplerCube: 353 message = "can't modify a sampler"; 354 break; 355 case EbtVoid: 356 message = "can't modify void"; 357 break; 358 default: 359 break; 360 } 361 } 362 363 if (message == 0 && binaryNode == 0 && symNode == 0) { 364 error(line, " l-value required", op, "", ""); 365 366 return true; 367 } 368 369 370 // 371 // Everything else is okay, no error. 372 // 373 if (message == 0) 374 return false; 375 376 // 377 // If we get here, we have an error and a message. 378 // 379 if (symNode) 380 error(line, " l-value required", op, "\"%s\" (%s)", symbol, message); 381 else 382 error(line, " l-value required", op, "(%s)", message); 383 384 return true; 385 } 386 387 // 388 // Both test, and if necessary spit out an error, to see if the node is really 389 // a constant. 390 // 391 // Returns true if the was an error. 392 // 393 bool TParseContext::constErrorCheck(TIntermTyped* node) 394 { 395 if (node->getQualifier() == EvqConst) 396 return false; 397 398 error(node->getLine(), "constant expression required", "", ""); 399 400 return true; 401 } 402 403 // 404 // Both test, and if necessary spit out an error, to see if the node is really 405 // an integer. 406 // 407 // Returns true if the was an error. 408 // 409 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) 410 { 411 if (node->getBasicType() == EbtInt && node->getNominalSize() == 1) 412 return false; 413 414 error(node->getLine(), "integer expression required", token, ""); 415 416 return true; 417 } 418 419 // 420 // Both test, and if necessary spit out an error, to see if we are currently 421 // globally scoped. 422 // 423 // Returns true if the was an error. 424 // 425 bool TParseContext::globalErrorCheck(int line, bool global, const char* token) 426 { 427 if (global) 428 return false; 429 430 error(line, "only allowed at global scope", token, ""); 431 432 return true; 433 } 434 435 // 436 // For now, keep it simple: if it starts "gl_", it's reserved, independent 437 // of scope. Except, if the symbol table is at the built-in push-level, 438 // which is when we are parsing built-ins. 439 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a 440 // webgl shader. 441 // 442 // Returns true if there was an error. 443 // 444 bool TParseContext::reservedErrorCheck(int line, const TString& identifier) 445 { 446 static const char* reservedErrMsg = "reserved built-in name"; 447 if (!symbolTable.atBuiltInLevel()) { 448 if (identifier.substr(0, 3) == TString("gl_")) { 449 error(line, reservedErrMsg, "gl_", ""); 450 return true; 451 } 452 if (shaderSpec == SH_WEBGL_SPEC) { 453 if (identifier.substr(0, 6) == TString("webgl_")) { 454 error(line, reservedErrMsg, "webgl_", ""); 455 return true; 456 } 457 if (identifier.substr(0, 7) == TString("_webgl_")) { 458 error(line, reservedErrMsg, "_webgl_", ""); 459 return true; 460 } 461 } 462 if (identifier.find("__") != TString::npos) { 463 //error(line, "Two consecutive underscores are reserved for future use.", identifier.c_str(), "", ""); 464 //return true; 465 infoSink.info.message(EPrefixWarning, "Two consecutive underscores are reserved for future use.", line); 466 return false; 467 } 468 } 469 470 return false; 471 } 472 473 // 474 // Make sure there is enough data provided to the constructor to build 475 // something of the type of the constructor. Also returns the type of 476 // the constructor. 477 // 478 // Returns true if there was an error in construction. 479 // 480 bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type) 481 { 482 *type = function.getReturnType(); 483 484 bool constructingMatrix = false; 485 switch(op) { 486 case EOpConstructMat2: 487 case EOpConstructMat3: 488 case EOpConstructMat4: 489 constructingMatrix = true; 490 break; 491 default: 492 break; 493 } 494 495 // 496 // Note: It's okay to have too many components available, but not okay to have unused 497 // arguments. 'full' will go to true when enough args have been seen. If we loop 498 // again, there is an extra argument, so 'overfull' will become true. 499 // 500 501 int size = 0; 502 bool constType = true; 503 bool full = false; 504 bool overFull = false; 505 bool matrixInMatrix = false; 506 bool arrayArg = false; 507 for (int i = 0; i < function.getParamCount(); ++i) { 508 const TParameter& param = function.getParam(i); 509 size += param.type->getObjectSize(); 510 511 if (constructingMatrix && param.type->isMatrix()) 512 matrixInMatrix = true; 513 if (full) 514 overFull = true; 515 if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) 516 full = true; 517 if (param.type->getQualifier() != EvqConst) 518 constType = false; 519 if (param.type->isArray()) 520 arrayArg = true; 521 } 522 523 if (constType) 524 type->setQualifier(EvqConst); 525 526 if (type->isArray() && type->getArraySize() != function.getParamCount()) { 527 error(line, "array constructor needs one argument per array element", "constructor", ""); 528 return true; 529 } 530 531 if (arrayArg && op != EOpConstructStruct) { 532 error(line, "constructing from a non-dereferenced array", "constructor", ""); 533 return true; 534 } 535 536 if (matrixInMatrix && !type->isArray()) { 537 if (function.getParamCount() != 1) { 538 error(line, "constructing matrix from matrix can only take one argument", "constructor", ""); 539 return true; 540 } 541 } 542 543 if (overFull) { 544 error(line, "too many arguments", "constructor", ""); 545 return true; 546 } 547 548 if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) { 549 error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); 550 return true; 551 } 552 553 if (!type->isMatrix()) { 554 if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || 555 (op == EOpConstructStruct && size < type->getObjectSize())) { 556 error(line, "not enough data provided for construction", "constructor", ""); 557 return true; 558 } 559 } 560 561 TIntermTyped* typed = node->getAsTyped(); 562 if (typed == 0) { 563 error(line, "constructor argument does not have a type", "constructor", ""); 564 return true; 565 } 566 if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { 567 error(line, "cannot convert a sampler", "constructor", ""); 568 return true; 569 } 570 if (typed->getBasicType() == EbtVoid) { 571 error(line, "cannot convert a void", "constructor", ""); 572 return true; 573 } 574 575 return false; 576 } 577 578 // This function checks to see if a void variable has been declared and raise an error message for such a case 579 // 580 // returns true in case of an error 581 // 582 bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType) 583 { 584 if (pubType.type == EbtVoid) { 585 error(line, "illegal use of type 'void'", identifier.c_str(), ""); 586 return true; 587 } 588 589 return false; 590 } 591 592 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not 593 // 594 // returns true in case of an error 595 // 596 bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type) 597 { 598 if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { 599 error(line, "boolean expression expected", "", ""); 600 return true; 601 } 602 603 return false; 604 } 605 606 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not 607 // 608 // returns true in case of an error 609 // 610 bool TParseContext::boolErrorCheck(int line, const TPublicType& pType) 611 { 612 if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) { 613 error(line, "boolean expression expected", "", ""); 614 return true; 615 } 616 617 return false; 618 } 619 620 bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason) 621 { 622 if (pType.type == EbtStruct) { 623 if (containsSampler(*pType.userDef)) { 624 error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); 625 626 return true; 627 } 628 629 return false; 630 } else if (IsSampler(pType.type)) { 631 error(line, reason, getBasicString(pType.type), ""); 632 633 return true; 634 } 635 636 return false; 637 } 638 639 bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType) 640 { 641 if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) && 642 pType.type == EbtStruct) { 643 error(line, "cannot be used with a structure", getQualifierString(pType.qualifier), ""); 644 645 return true; 646 } 647 648 if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) 649 return true; 650 651 return false; 652 } 653 654 bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type) 655 { 656 if ((qualifier == EvqOut || qualifier == EvqInOut) && 657 type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { 658 error(line, "samplers cannot be output parameters", type.getBasicString(), ""); 659 return true; 660 } 661 662 return false; 663 } 664 665 bool TParseContext::containsSampler(TType& type) 666 { 667 if (IsSampler(type.getBasicType())) 668 return true; 669 670 if (type.getBasicType() == EbtStruct) { 671 TTypeList& structure = *type.getStruct(); 672 for (unsigned int i = 0; i < structure.size(); ++i) { 673 if (containsSampler(*structure[i].type)) 674 return true; 675 } 676 } 677 678 return false; 679 } 680 681 // 682 // Do size checking for an array type's size. 683 // 684 // Returns true if there was an error. 685 // 686 bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size) 687 { 688 TIntermConstantUnion* constant = expr->getAsConstantUnion(); 689 if (constant == 0 || constant->getBasicType() != EbtInt) { 690 error(line, "array size must be a constant integer expression", "", ""); 691 return true; 692 } 693 694 size = constant->getUnionArrayPointer()->getIConst(); 695 696 if (size <= 0) { 697 error(line, "array size must be a positive integer", "", ""); 698 size = 1; 699 return true; 700 } 701 702 return false; 703 } 704 705 // 706 // See if this qualifier can be an array. 707 // 708 // Returns true if there is an error. 709 // 710 bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type) 711 { 712 if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) { 713 error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str(), ""); 714 return true; 715 } 716 717 return false; 718 } 719 720 // 721 // See if this type can be an array. 722 // 723 // Returns true if there is an error. 724 // 725 bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type) 726 { 727 // 728 // Can the type be an array? 729 // 730 if (type.array) { 731 error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str(), ""); 732 return true; 733 } 734 735 return false; 736 } 737 738 // 739 // Do all the semantic checking for declaring an array, with and 740 // without a size, and make the right changes to the symbol table. 741 // 742 // size == 0 means no specified size. 743 // 744 // Returns true if there was an error. 745 // 746 bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable) 747 { 748 // 749 // Don't check for reserved word use until after we know it's not in the symbol table, 750 // because reserved arrays can be redeclared. 751 // 752 753 bool builtIn = false; 754 bool sameScope = false; 755 TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope); 756 if (symbol == 0 || !sameScope) { 757 if (reservedErrorCheck(line, identifier)) 758 return true; 759 760 variable = new TVariable(&identifier, TType(type)); 761 762 if (type.arraySize) 763 variable->getType().setArraySize(type.arraySize); 764 765 if (! symbolTable.insert(*variable)) { 766 delete variable; 767 error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str(), ""); 768 return true; 769 } 770 } else { 771 if (! symbol->isVariable()) { 772 error(line, "variable expected", identifier.c_str(), ""); 773 return true; 774 } 775 776 variable = static_cast<TVariable*>(symbol); 777 if (! variable->getType().isArray()) { 778 error(line, "redeclaring non-array as array", identifier.c_str(), ""); 779 return true; 780 } 781 if (variable->getType().getArraySize() > 0) { 782 error(line, "redeclaration of array with size", identifier.c_str(), ""); 783 return true; 784 } 785 786 if (! variable->getType().sameElementType(TType(type))) { 787 error(line, "redeclaration of array with a different type", identifier.c_str(), ""); 788 return true; 789 } 790 791 TType* t = variable->getArrayInformationType(); 792 while (t != 0) { 793 if (t->getMaxArraySize() > type.arraySize) { 794 error(line, "higher index value already used for the array", identifier.c_str(), ""); 795 return true; 796 } 797 t->setArraySize(type.arraySize); 798 t = t->getArrayInformationType(); 799 } 800 801 if (type.arraySize) 802 variable->getType().setArraySize(type.arraySize); 803 } 804 805 if (voidErrorCheck(line, identifier, type)) 806 return true; 807 808 return false; 809 } 810 811 bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line) 812 { 813 bool builtIn = false; 814 TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn); 815 if (symbol == 0) { 816 error(line, " undeclared identifier", node->getSymbol().c_str(), ""); 817 return true; 818 } 819 TVariable* variable = static_cast<TVariable*>(symbol); 820 821 type->setArrayInformationType(variable->getArrayInformationType()); 822 variable->updateArrayInformationType(type); 823 824 // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers 825 // its an error 826 if (node->getSymbol() == "gl_FragData") { 827 TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn); 828 if (fragData == 0) { 829 infoSink.info.message(EPrefixInternalError, "gl_MaxDrawBuffers not defined", line); 830 return true; 831 } 832 833 int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst(); 834 if (fragDataValue <= size) { 835 error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers", ""); 836 return true; 837 } 838 } 839 840 // we dont want to update the maxArraySize when this flag is not set, we just want to include this 841 // node type in the chain of node types so that its updated when a higher maxArraySize comes in. 842 if (!updateFlag) 843 return false; 844 845 size++; 846 variable->getType().setMaxArraySize(size); 847 type->setMaxArraySize(size); 848 TType* tt = type; 849 850 while(tt->getArrayInformationType() != 0) { 851 tt = tt->getArrayInformationType(); 852 tt->setMaxArraySize(size); 853 } 854 855 return false; 856 } 857 858 // 859 // Enforce non-initializer type/qualifier rules. 860 // 861 // Returns true if there was an error. 862 // 863 bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type) 864 { 865 // 866 // Make the qualifier make sense. 867 // 868 if (type.qualifier == EvqConst) { 869 type.qualifier = EvqTemporary; 870 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str(), ""); 871 return true; 872 } 873 874 return false; 875 } 876 877 // 878 // Do semantic checking for a variable declaration that has no initializer, 879 // and update the symbol table. 880 // 881 // Returns true if there was an error. 882 // 883 bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type) 884 { 885 if (reservedErrorCheck(line, identifier)) 886 recover(); 887 888 TVariable* variable = new TVariable(&identifier, TType(type)); 889 890 if (! symbolTable.insert(*variable)) { 891 error(line, "redefinition", variable->getName().c_str(), ""); 892 delete variable; 893 return true; 894 } 895 896 if (voidErrorCheck(line, identifier, type)) 897 return true; 898 899 return false; 900 } 901 902 bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type) 903 { 904 if (qualifier != EvqConst && qualifier != EvqTemporary) { 905 error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier), ""); 906 return true; 907 } 908 if (qualifier == EvqConst && paramQualifier != EvqIn) { 909 error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); 910 return true; 911 } 912 913 if (qualifier == EvqConst) 914 type->setQualifier(EvqConstReadOnly); 915 else 916 type->setQualifier(paramQualifier); 917 918 return false; 919 } 920 921 bool TParseContext::extensionErrorCheck(int line, const TString& extension) 922 { 923 TExtensionBehavior::const_iterator iter = extensionBehavior.find(extension); 924 if (iter == extensionBehavior.end()) { 925 error(line, "extension", extension.c_str(), "is not supported"); 926 return true; 927 } 928 if (iter->second == EBhDisable) { 929 error(line, "extension", extension.c_str(), "is disabled"); 930 return true; 931 } 932 if (iter->second == EBhWarn) { 933 TString msg = "extension " + extension + " is being used"; 934 infoSink.info.message(EPrefixWarning, msg.c_str(), line); 935 return false; 936 } 937 938 return false; 939 } 940 941 ///////////////////////////////////////////////////////////////////////////////// 942 // 943 // Non-Errors. 944 // 945 ///////////////////////////////////////////////////////////////////////////////// 946 947 // 948 // Look up a function name in the symbol table, and make sure it is a function. 949 // 950 // Return the function symbol if found, otherwise 0. 951 // 952 const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn) 953 { 954 // First find by unmangled name to check whether the function name has been 955 // hidden by a variable name or struct typename. 956 const TSymbol* symbol = symbolTable.find(call->getName(), builtIn); 957 if (symbol == 0) { 958 symbol = symbolTable.find(call->getMangledName(), builtIn); 959 } 960 961 if (symbol == 0) { 962 error(line, "no matching overloaded function found", call->getName().c_str(), ""); 963 return 0; 964 } 965 966 if (!symbol->isFunction()) { 967 error(line, "function name expected", call->getName().c_str(), ""); 968 return 0; 969 } 970 971 return static_cast<const TFunction*>(symbol); 972 } 973 974 // 975 // Initializers show up in several places in the grammar. Have one set of 976 // code to handle them here. 977 // 978 bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, 979 TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable) 980 { 981 TType type = TType(pType); 982 983 if (variable == 0) { 984 if (reservedErrorCheck(line, identifier)) 985 return true; 986 987 if (voidErrorCheck(line, identifier, pType)) 988 return true; 989 990 // 991 // add variable to symbol table 992 // 993 variable = new TVariable(&identifier, type); 994 if (! symbolTable.insert(*variable)) { 995 error(line, "redefinition", variable->getName().c_str(), ""); 996 return true; 997 // don't delete variable, it's used by error recovery, and the pool 998 // pop will take care of the memory 999 } 1000 } 1001 1002 // 1003 // identifier must be of type constant, a global, or a temporary 1004 // 1005 TQualifier qualifier = variable->getType().getQualifier(); 1006 if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { 1007 error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), ""); 1008 return true; 1009 } 1010 // 1011 // test for and propagate constant 1012 // 1013 1014 if (qualifier == EvqConst) { 1015 if (qualifier != initializer->getType().getQualifier()) { 1016 error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str()); 1017 variable->getType().setQualifier(EvqTemporary); 1018 return true; 1019 } 1020 if (type != initializer->getType()) { 1021 error(line, " non-matching types for const initializer ", 1022 variable->getType().getQualifierString(), ""); 1023 variable->getType().setQualifier(EvqTemporary); 1024 return true; 1025 } 1026 if (initializer->getAsConstantUnion()) { 1027 ConstantUnion* unionArray = variable->getConstPointer(); 1028 1029 if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) { 1030 *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0]; 1031 } else { 1032 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); 1033 } 1034 } else if (initializer->getAsSymbolNode()) { 1035 const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol()); 1036 const TVariable* tVar = static_cast<const TVariable*>(symbol); 1037 1038 ConstantUnion* constArray = tVar->getConstPointer(); 1039 variable->shareConstPointer(constArray); 1040 } else { 1041 error(line, " cannot assign to", "=", "'%s'", variable->getType().getCompleteString().c_str()); 1042 variable->getType().setQualifier(EvqTemporary); 1043 return true; 1044 } 1045 } 1046 1047 if (qualifier != EvqConst) { 1048 TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); 1049 intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line); 1050 if (intermNode == 0) { 1051 assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); 1052 return true; 1053 } 1054 } else 1055 intermNode = 0; 1056 1057 return false; 1058 } 1059 1060 bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode) 1061 { 1062 ASSERT(aggrNode != NULL); 1063 if (!aggrNode->isConstructor()) 1064 return false; 1065 1066 bool allConstant = true; 1067 1068 // check if all the child nodes are constants so that they can be inserted into 1069 // the parent node 1070 TIntermSequence &sequence = aggrNode->getSequence() ; 1071 for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) { 1072 if (!(*p)->getAsTyped()->getAsConstantUnion()) 1073 return false; 1074 } 1075 1076 return allConstant; 1077 } 1078 1079 // This function is used to test for the correctness of the parameters passed to various constructor functions 1080 // and also convert them to the right datatype if it is allowed and required. 1081 // 1082 // Returns 0 for an error or the constructed node (aggregate or typed) for no error. 1083 // 1084 TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line) 1085 { 1086 if (node == 0) 1087 return 0; 1088 1089 TIntermAggregate* aggrNode = node->getAsAggregate(); 1090 1091 TTypeList::const_iterator memberTypes; 1092 if (op == EOpConstructStruct) 1093 memberTypes = type->getStruct()->begin(); 1094 1095 TType elementType = *type; 1096 if (type->isArray()) 1097 elementType.clearArrayness(); 1098 1099 bool singleArg; 1100 if (aggrNode) { 1101 if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1) 1102 singleArg = true; 1103 else 1104 singleArg = false; 1105 } else 1106 singleArg = true; 1107 1108 TIntermTyped *newNode; 1109 if (singleArg) { 1110 // If structure constructor or array constructor is being called 1111 // for only one parameter inside the structure, we need to call constructStruct function once. 1112 if (type->isArray()) 1113 newNode = constructStruct(node, &elementType, 1, node->getLine(), false); 1114 else if (op == EOpConstructStruct) 1115 newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false); 1116 else 1117 newNode = constructBuiltIn(type, op, node, node->getLine(), false); 1118 1119 if (newNode && newNode->getAsAggregate()) { 1120 TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type); 1121 if (constConstructor) 1122 return constConstructor; 1123 } 1124 1125 return newNode; 1126 } 1127 1128 // 1129 // Handle list of arguments. 1130 // 1131 TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor 1132 // if the structure constructor contains more than one parameter, then construct 1133 // each parameter 1134 1135 int paramCount = 0; // keeps a track of the constructor parameter number being checked 1136 1137 // for each parameter to the constructor call, check to see if the right type is passed or convert them 1138 // to the right type if possible (and allowed). 1139 // for structure constructors, just check if the right type is passed, no conversion is allowed. 1140 1141 for (TIntermSequence::iterator p = sequenceVector.begin(); 1142 p != sequenceVector.end(); p++, paramCount++) { 1143 if (type->isArray()) 1144 newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true); 1145 else if (op == EOpConstructStruct) 1146 newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true); 1147 else 1148 newNode = constructBuiltIn(type, op, *p, node->getLine(), true); 1149 1150 if (newNode) { 1151 *p = newNode; 1152 } 1153 } 1154 1155 TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line); 1156 TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type); 1157 if (constConstructor) 1158 return constConstructor; 1159 1160 return constructor; 1161 } 1162 1163 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) 1164 { 1165 bool canBeFolded = areAllChildConst(aggrNode); 1166 aggrNode->setType(type); 1167 if (canBeFolded) { 1168 bool returnVal = false; 1169 ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; 1170 if (aggrNode->getSequence().size() == 1) { 1171 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true); 1172 } 1173 else { 1174 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type); 1175 } 1176 if (returnVal) 1177 return 0; 1178 1179 return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); 1180 } 1181 1182 return 0; 1183 } 1184 1185 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value 1186 // for the parameter to the constructor (passed to this function). Essentially, it converts 1187 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a 1188 // float, then float is converted to int. 1189 // 1190 // Returns 0 for an error or the constructed node. 1191 // 1192 TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset) 1193 { 1194 TIntermTyped* newNode; 1195 TOperator basicOp; 1196 1197 // 1198 // First, convert types as needed. 1199 // 1200 switch (op) { 1201 case EOpConstructVec2: 1202 case EOpConstructVec3: 1203 case EOpConstructVec4: 1204 case EOpConstructMat2: 1205 case EOpConstructMat3: 1206 case EOpConstructMat4: 1207 case EOpConstructFloat: 1208 basicOp = EOpConstructFloat; 1209 break; 1210 1211 case EOpConstructIVec2: 1212 case EOpConstructIVec3: 1213 case EOpConstructIVec4: 1214 case EOpConstructInt: 1215 basicOp = EOpConstructInt; 1216 break; 1217 1218 case EOpConstructBVec2: 1219 case EOpConstructBVec3: 1220 case EOpConstructBVec4: 1221 case EOpConstructBool: 1222 basicOp = EOpConstructBool; 1223 break; 1224 1225 default: 1226 error(line, "unsupported construction", "", ""); 1227 recover(); 1228 1229 return 0; 1230 } 1231 newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable); 1232 if (newNode == 0) { 1233 error(line, "can't convert", "constructor", ""); 1234 return 0; 1235 } 1236 1237 // 1238 // Now, if there still isn't an operation to do the construction, and we need one, add one. 1239 // 1240 1241 // Otherwise, skip out early. 1242 if (subset || (newNode != node && newNode->getType() == *type)) 1243 return newNode; 1244 1245 // setAggregateOperator will insert a new node for the constructor, as needed. 1246 return intermediate.setAggregateOperator(newNode, op, line); 1247 } 1248 1249 // This function tests for the type of the parameters to the structures constructors. Raises 1250 // an error message if the expected type does not match the parameter passed to the constructor. 1251 // 1252 // Returns 0 for an error or the input node itself if the expected and the given parameter types match. 1253 // 1254 TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset) 1255 { 1256 if (*type == node->getAsTyped()->getType()) { 1257 if (subset) 1258 return node->getAsTyped(); 1259 else 1260 return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line); 1261 } else { 1262 error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, 1263 node->getAsTyped()->getType().getBasicString(), type->getBasicString()); 1264 recover(); 1265 } 1266 1267 return 0; 1268 } 1269 1270 // 1271 // This function returns the tree representation for the vector field(s) being accessed from contant vector. 1272 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is 1273 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol 1274 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of 1275 // a constant matrix. 1276 // 1277 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line) 1278 { 1279 TIntermTyped* typedNode; 1280 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); 1281 1282 ConstantUnion *unionArray; 1283 if (tempConstantNode) { 1284 unionArray = tempConstantNode->getUnionArrayPointer(); 1285 1286 if (!unionArray) { // this error message should never be raised 1287 infoSink.info.message(EPrefixInternalError, "ConstantUnion not initialized in addConstVectorNode function", line); 1288 recover(); 1289 1290 return node; 1291 } 1292 } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error 1293 error(line, "Cannot offset into the vector", "Error", ""); 1294 recover(); 1295 1296 return 0; 1297 } 1298 1299 ConstantUnion* constArray = new ConstantUnion[fields.num]; 1300 1301 for (int i = 0; i < fields.num; i++) { 1302 if (fields.offsets[i] >= node->getType().getObjectSize()) { 1303 error(line, "", "[", "vector field selection out of range '%d'", fields.offsets[i]); 1304 recover(); 1305 fields.offsets[i] = 0; 1306 } 1307 1308 constArray[i] = unionArray[fields.offsets[i]]; 1309 1310 } 1311 typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); 1312 return typedNode; 1313 } 1314 1315 // 1316 // This function returns the column being accessed from a constant matrix. The values are retrieved from 1317 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input 1318 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a 1319 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) 1320 // 1321 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line) 1322 { 1323 TIntermTyped* typedNode; 1324 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); 1325 1326 if (index >= node->getType().getNominalSize()) { 1327 error(line, "", "[", "matrix field selection out of range '%d'", index); 1328 recover(); 1329 index = 0; 1330 } 1331 1332 if (tempConstantNode) { 1333 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); 1334 int size = tempConstantNode->getType().getNominalSize(); 1335 typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); 1336 } else { 1337 error(line, "Cannot offset into the matrix", "Error", ""); 1338 recover(); 1339 1340 return 0; 1341 } 1342 1343 return typedNode; 1344 } 1345 1346 1347 // 1348 // This function returns an element of an array accessed from a constant array. The values are retrieved from 1349 // the symbol table and parse-tree is built for the type of the element. The input 1350 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a 1351 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) 1352 // 1353 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line) 1354 { 1355 TIntermTyped* typedNode; 1356 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); 1357 TType arrayElementType = node->getType(); 1358 arrayElementType.clearArrayness(); 1359 1360 if (index >= node->getType().getArraySize()) { 1361 error(line, "", "[", "array field selection out of range '%d'", index); 1362 recover(); 1363 index = 0; 1364 } 1365 1366 int arrayElementSize = arrayElementType.getObjectSize(); 1367 1368 if (tempConstantNode) { 1369 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); 1370 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); 1371 } else { 1372 error(line, "Cannot offset into the array", "Error", ""); 1373 recover(); 1374 1375 return 0; 1376 } 1377 1378 return typedNode; 1379 } 1380 1381 1382 // 1383 // This function returns the value of a particular field inside a constant structure from the symbol table. 1384 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr 1385 // function and returns the parse-tree with the values of the embedded/nested struct. 1386 // 1387 TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line) 1388 { 1389 const TTypeList* fields = node->getType().getStruct(); 1390 TIntermTyped *typedNode; 1391 int instanceSize = 0; 1392 unsigned int index = 0; 1393 TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); 1394 1395 for ( index = 0; index < fields->size(); ++index) { 1396 if ((*fields)[index].type->getFieldName() == identifier) { 1397 break; 1398 } else { 1399 instanceSize += (*fields)[index].type->getObjectSize(); 1400 } 1401 } 1402 1403 if (tempConstantNode) { 1404 ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); 1405 1406 typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function 1407 } else { 1408 error(line, "Cannot offset into the structure", "Error", ""); 1409 recover(); 1410 1411 return 0; 1412 } 1413 1414 return typedNode; 1415 } 1416 1417 // 1418 // Parse an array of strings using yyparse. 1419 // 1420 // Returns 0 for success. 1421 // 1422 int PaParseStrings(int count, const char* const string[], const int length[], 1423 TParseContext* context) { 1424 if ((count == 0) || (string == NULL)) 1425 return 1; 1426 1427 // setup preprocessor. 1428 if (InitPreprocessor()) 1429 return 1; 1430 DefineExtensionMacros(context->extensionBehavior); 1431 1432 if (glslang_initialize(context)) 1433 return 1; 1434 1435 glslang_scan(count, string, length, context); 1436 int error = glslang_parse(context); 1437 1438 glslang_finalize(context); 1439 FinalizePreprocessor(); 1440 return (error == 0) && (context->numErrors == 0) ? 0 : 1; 1441 } 1442 1443 OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX; 1444 1445 bool InitializeParseContextIndex() 1446 { 1447 if (GlobalParseContextIndex != OS_INVALID_TLS_INDEX) { 1448 assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); 1449 return false; 1450 } 1451 1452 // 1453 // Allocate a TLS index. 1454 // 1455 GlobalParseContextIndex = OS_AllocTLSIndex(); 1456 1457 if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { 1458 assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); 1459 return false; 1460 } 1461 1462 return true; 1463 } 1464 1465 bool FreeParseContextIndex() 1466 { 1467 OS_TLSIndex tlsiIndex = GlobalParseContextIndex; 1468 1469 if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { 1470 assert(0 && "FreeParseContextIndex(): Parse Context index not initalised"); 1471 return false; 1472 } 1473 1474 GlobalParseContextIndex = OS_INVALID_TLS_INDEX; 1475 1476 return OS_FreeTLSIndex(tlsiIndex); 1477 } 1478 1479 bool InitializeGlobalParseContext() 1480 { 1481 if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { 1482 assert(0 && "InitializeGlobalParseContext(): Parse Context index not initalised"); 1483 return false; 1484 } 1485 1486 TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); 1487 if (lpParseContext != 0) { 1488 assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); 1489 return false; 1490 } 1491 1492 TThreadParseContext *lpThreadData = new TThreadParseContext(); 1493 if (lpThreadData == 0) { 1494 assert(0 && "InitializeGlobalParseContext(): Unable to create thread parse context"); 1495 return false; 1496 } 1497 1498 lpThreadData->lpGlobalParseContext = 0; 1499 OS_SetTLSValue(GlobalParseContextIndex, lpThreadData); 1500 1501 return true; 1502 } 1503 1504 bool FreeParseContext() 1505 { 1506 if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { 1507 assert(0 && "FreeParseContext(): Parse Context index not initalised"); 1508 return false; 1509 } 1510 1511 TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); 1512 if (lpParseContext) 1513 delete lpParseContext; 1514 1515 return true; 1516 } 1517 1518 TParseContextPointer& GetGlobalParseContext() 1519 { 1520 // 1521 // Minimal error checking for speed 1522 // 1523 1524 TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); 1525 1526 return lpParseContext->lpGlobalParseContext; 1527 } 1528 1529