Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include <algorithm>
     32 #include <ctime>
     33 #include <set>
     34 #include <vector>
     35 
     36 #ifndef CERES_NO_CXSPARSE
     37 #include "cs.h"
     38 #endif  // CERES_NO_CXSPARSE
     39 
     40 #include "Eigen/Dense"
     41 #include "ceres/block_random_access_dense_matrix.h"
     42 #include "ceres/block_random_access_matrix.h"
     43 #include "ceres/block_random_access_sparse_matrix.h"
     44 #include "ceres/block_sparse_matrix.h"
     45 #include "ceres/block_structure.h"
     46 #include "ceres/detect_structure.h"
     47 #include "ceres/linear_solver.h"
     48 #include "ceres/schur_complement_solver.h"
     49 #include "ceres/suitesparse.h"
     50 #include "ceres/triplet_sparse_matrix.h"
     51 #include "ceres/internal/eigen.h"
     52 #include "ceres/internal/port.h"
     53 #include "ceres/internal/scoped_ptr.h"
     54 #include "ceres/types.h"
     55 
     56 
     57 namespace ceres {
     58 namespace internal {
     59 
     60 LinearSolver::Summary SchurComplementSolver::SolveImpl(
     61     BlockSparseMatrixBase* A,
     62     const double* b,
     63     const LinearSolver::PerSolveOptions& per_solve_options,
     64     double* x) {
     65   const time_t start_time = time(NULL);
     66   if (eliminator_.get() == NULL) {
     67     InitStorage(A->block_structure());
     68     DetectStructure(*A->block_structure(),
     69                     options_.elimination_groups[0],
     70                     &options_.row_block_size,
     71                     &options_.e_block_size,
     72                     &options_.f_block_size);
     73     eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
     74     eliminator_->Init(options_.elimination_groups[0], A->block_structure());
     75   };
     76   const time_t init_time = time(NULL);
     77   fill(x, x + A->num_cols(), 0.0);
     78 
     79   LinearSolver::Summary summary;
     80   summary.num_iterations = 1;
     81   summary.termination_type = FAILURE;
     82   eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
     83   const time_t eliminate_time = time(NULL);
     84 
     85   double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
     86   const bool status = SolveReducedLinearSystem(reduced_solution);
     87   const time_t solve_time = time(NULL);
     88 
     89   if (!status) {
     90     return summary;
     91   }
     92 
     93   eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
     94   const time_t backsubstitute_time = time(NULL);
     95   summary.termination_type = TOLERANCE;
     96 
     97   VLOG(2) << "time (sec) total: " << (backsubstitute_time - start_time)
     98           << " init: " << (init_time - start_time)
     99           << " eliminate: " << (eliminate_time - init_time)
    100           << " solve: " << (solve_time - eliminate_time)
    101           << " backsubstitute: " << (backsubstitute_time - solve_time);
    102   return summary;
    103 }
    104 
    105 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
    106 // complement.
    107 void DenseSchurComplementSolver::InitStorage(
    108     const CompressedRowBlockStructure* bs) {
    109   const int num_eliminate_blocks = options().elimination_groups[0];
    110   const int num_col_blocks = bs->cols.size();
    111 
    112   vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
    113   for (int i = num_eliminate_blocks, j = 0;
    114        i < num_col_blocks;
    115        ++i, ++j) {
    116     blocks[j] = bs->cols[i].size;
    117   }
    118 
    119   set_lhs(new BlockRandomAccessDenseMatrix(blocks));
    120   set_rhs(new double[lhs()->num_rows()]);
    121 }
    122 
    123 // Solve the system Sx = r, assuming that the matrix S is stored in a
    124 // BlockRandomAccessDenseMatrix. The linear system is solved using
    125 // Eigen's Cholesky factorization.
    126 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
    127   const BlockRandomAccessDenseMatrix* m =
    128       down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
    129   const int num_rows = m->num_rows();
    130 
    131   // The case where there are no f blocks, and the system is block
    132   // diagonal.
    133   if (num_rows == 0) {
    134     return true;
    135   }
    136 
    137   // TODO(sameeragarwal): Add proper error handling; this completely ignores
    138   // the quality of the solution to the solve.
    139   VectorRef(solution, num_rows) =
    140       ConstMatrixRef(m->values(), num_rows, num_rows)
    141       .selfadjointView<Eigen::Upper>()
    142       .ldlt()
    143       .solve(ConstVectorRef(rhs(), num_rows));
    144 
    145   return true;
    146 }
    147 
    148 
    149 SparseSchurComplementSolver::SparseSchurComplementSolver(
    150     const LinearSolver::Options& options)
    151     : SchurComplementSolver(options) {
    152 #ifndef CERES_NO_SUITESPARSE
    153   factor_ = NULL;
    154 #endif  // CERES_NO_SUITESPARSE
    155 
    156 #ifndef CERES_NO_CXSPARSE
    157   cxsparse_factor_ = NULL;
    158 #endif  // CERES_NO_CXSPARSE
    159 }
    160 
    161 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
    162 #ifndef CERES_NO_SUITESPARSE
    163   if (factor_ != NULL) {
    164     ss_.Free(factor_);
    165     factor_ = NULL;
    166   }
    167 #endif  // CERES_NO_SUITESPARSE
    168 
    169 #ifndef CERES_NO_CXSPARSE
    170   if (cxsparse_factor_ != NULL) {
    171     cxsparse_.Free(cxsparse_factor_);
    172     cxsparse_factor_ = NULL;
    173   }
    174 #endif  // CERES_NO_CXSPARSE
    175 }
    176 
    177 // Determine the non-zero blocks in the Schur Complement matrix, and
    178 // initialize a BlockRandomAccessSparseMatrix object.
    179 void SparseSchurComplementSolver::InitStorage(
    180     const CompressedRowBlockStructure* bs) {
    181   const int num_eliminate_blocks = options().elimination_groups[0];
    182   const int num_col_blocks = bs->cols.size();
    183   const int num_row_blocks = bs->rows.size();
    184 
    185   blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
    186   for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
    187     blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
    188   }
    189 
    190   set<pair<int, int> > block_pairs;
    191   for (int i = 0; i < blocks_.size(); ++i) {
    192     block_pairs.insert(make_pair(i, i));
    193   }
    194 
    195   int r = 0;
    196   while (r < num_row_blocks) {
    197     int e_block_id = bs->rows[r].cells.front().block_id;
    198     if (e_block_id >= num_eliminate_blocks) {
    199       break;
    200     }
    201     vector<int> f_blocks;
    202 
    203     // Add to the chunk until the first block in the row is
    204     // different than the one in the first row for the chunk.
    205     for (; r < num_row_blocks; ++r) {
    206       const CompressedRow& row = bs->rows[r];
    207       if (row.cells.front().block_id != e_block_id) {
    208         break;
    209       }
    210 
    211       // Iterate over the blocks in the row, ignoring the first
    212       // block since it is the one to be eliminated.
    213       for (int c = 1; c < row.cells.size(); ++c) {
    214         const Cell& cell = row.cells[c];
    215         f_blocks.push_back(cell.block_id - num_eliminate_blocks);
    216       }
    217     }
    218 
    219     sort(f_blocks.begin(), f_blocks.end());
    220     f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
    221     for (int i = 0; i < f_blocks.size(); ++i) {
    222       for (int j = i + 1; j < f_blocks.size(); ++j) {
    223         block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
    224       }
    225     }
    226   }
    227 
    228   // Remaing rows do not contribute to the chunks and directly go
    229   // into the schur complement via an outer product.
    230   for (; r < num_row_blocks; ++r) {
    231     const CompressedRow& row = bs->rows[r];
    232     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
    233     for (int i = 0; i < row.cells.size(); ++i) {
    234       int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
    235       for (int j = 0; j < row.cells.size(); ++j) {
    236         int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
    237         if (r_block1_id <= r_block2_id) {
    238           block_pairs.insert(make_pair(r_block1_id, r_block2_id));
    239         }
    240       }
    241     }
    242   }
    243 
    244   set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
    245   set_rhs(new double[lhs()->num_rows()]);
    246 }
    247 
    248 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
    249   switch (options().sparse_linear_algebra_library) {
    250     case SUITE_SPARSE:
    251       return SolveReducedLinearSystemUsingSuiteSparse(solution);
    252     case CX_SPARSE:
    253       return SolveReducedLinearSystemUsingCXSparse(solution);
    254     default:
    255       LOG(FATAL) << "Unknown sparse linear algebra library : "
    256                  << options().sparse_linear_algebra_library;
    257   }
    258 
    259   LOG(FATAL) << "Unknown sparse linear algebra library : "
    260              << options().sparse_linear_algebra_library;
    261   return false;
    262 }
    263 
    264 #ifndef CERES_NO_SUITESPARSE
    265 // Solve the system Sx = r, assuming that the matrix S is stored in a
    266 // BlockRandomAccessSparseMatrix.  The linear system is solved using
    267 // CHOLMOD's sparse cholesky factorization routines.
    268 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
    269     double* solution) {
    270   const time_t start_time = time(NULL);
    271 
    272   TripletSparseMatrix* tsm =
    273       const_cast<TripletSparseMatrix*>(
    274           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
    275 
    276   const int num_rows = tsm->num_rows();
    277 
    278   // The case where there are no f blocks, and the system is block
    279   // diagonal.
    280   if (num_rows == 0) {
    281     return true;
    282   }
    283 
    284   cholmod_sparse* cholmod_lhs = ss_.CreateSparseMatrix(tsm);
    285   // The matrix is symmetric, and the upper triangular part of the
    286   // matrix contains the values.
    287   cholmod_lhs->stype = 1;
    288   const time_t lhs_time = time(NULL);
    289 
    290   cholmod_dense*  cholmod_rhs =
    291       ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
    292   const time_t rhs_time = time(NULL);
    293 
    294   // Symbolic factorization is computed if we don't already have one handy.
    295   if (factor_ == NULL) {
    296     if (options().use_block_amd) {
    297       factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
    298     } else {
    299       factor_ = ss_.AnalyzeCholesky(cholmod_lhs);
    300     }
    301 
    302     if (VLOG_IS_ON(2)) {
    303       cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
    304     }
    305   }
    306 
    307   CHECK_NOTNULL(factor_);
    308 
    309   const time_t symbolic_time = time(NULL);
    310   cholmod_dense* cholmod_solution =
    311       ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
    312 
    313   const time_t solve_time = time(NULL);
    314 
    315   ss_.Free(cholmod_lhs);
    316   cholmod_lhs = NULL;
    317   ss_.Free(cholmod_rhs);
    318   cholmod_rhs = NULL;
    319 
    320   if (cholmod_solution == NULL) {
    321     LOG(WARNING) << "CHOLMOD solve failed.";
    322     return false;
    323   }
    324 
    325   VectorRef(solution, num_rows)
    326       = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
    327   ss_.Free(cholmod_solution);
    328   const time_t final_time = time(NULL);
    329   VLOG(2) << "time: " << (final_time - start_time)
    330           << " lhs : " << (lhs_time - start_time)
    331           << " rhs:  " << (rhs_time - lhs_time)
    332           << " analyze: " <<  (symbolic_time - rhs_time)
    333           << " factor_and_solve: " << (solve_time - symbolic_time)
    334           << " cleanup: " << (final_time - solve_time);
    335   return true;
    336 }
    337 #else
    338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
    339     double* solution) {
    340   LOG(FATAL) << "No SuiteSparse support in Ceres.";
    341   return false;
    342 }
    343 #endif  // CERES_NO_SUITESPARSE
    344 
    345 #ifndef CERES_NO_CXSPARSE
    346 // Solve the system Sx = r, assuming that the matrix S is stored in a
    347 // BlockRandomAccessSparseMatrix.  The linear system is solved using
    348 // CXSparse's sparse cholesky factorization routines.
    349 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
    350     double* solution) {
    351   // Extract the TripletSparseMatrix that is used for actually storing S.
    352   TripletSparseMatrix* tsm =
    353       const_cast<TripletSparseMatrix*>(
    354           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
    355 
    356   const int num_rows = tsm->num_rows();
    357 
    358   // The case where there are no f blocks, and the system is block
    359   // diagonal.
    360   if (num_rows == 0) {
    361     return true;
    362   }
    363 
    364   cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
    365   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
    366 
    367   // Compute symbolic factorization if not available.
    368   if (cxsparse_factor_ == NULL) {
    369     cxsparse_factor_ = CHECK_NOTNULL(cxsparse_.AnalyzeCholesky(lhs));
    370   }
    371 
    372   // Solve the linear system.
    373   bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
    374 
    375   cxsparse_.Free(lhs);
    376   return ok;
    377 }
    378 #else
    379 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
    380     double* solution) {
    381   LOG(FATAL) << "No CXSparse support in Ceres.";
    382   return false;
    383 }
    384 #endif  // CERES_NO_CXPARSE
    385 
    386 }  // namespace internal
    387 }  // namespace ceres
    388