Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea with assistance from members of JCP JSR-166
      3  * Expert Group and released to the public domain, as explained at
      4  * http://creativecommons.org/publicdomain/zero/1.0/
      5  */
      6 
      7 package java.util.concurrent;
      8 
      9 import java.util.concurrent.TimeUnit;
     10 import java.util.concurrent.TimeoutException;
     11 import java.util.concurrent.atomic.AtomicReference;
     12 import java.util.concurrent.locks.LockSupport;
     13 
     14 /**
     15  * A reusable synchronization barrier, similar in functionality to
     16  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
     17  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
     18  * but supporting more flexible usage.
     19  *
     20  * <p> <b>Registration.</b> Unlike the case for other barriers, the
     21  * number of parties <em>registered</em> to synchronize on a phaser
     22  * may vary over time.  Tasks may be registered at any time (using
     23  * methods {@link #register}, {@link #bulkRegister}, or forms of
     24  * constructors establishing initial numbers of parties), and
     25  * optionally deregistered upon any arrival (using {@link
     26  * #arriveAndDeregister}).  As is the case with most basic
     27  * synchronization constructs, registration and deregistration affect
     28  * only internal counts; they do not establish any further internal
     29  * bookkeeping, so tasks cannot query whether they are registered.
     30  * (However, you can introduce such bookkeeping by subclassing this
     31  * class.)
     32  *
     33  * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
     34  * Phaser} may be repeatedly awaited.  Method {@link
     35  * #arriveAndAwaitAdvance} has effect analogous to {@link
     36  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
     37  * generation of a phaser has an associated phase number. The phase
     38  * number starts at zero, and advances when all parties arrive at the
     39  * phaser, wrapping around to zero after reaching {@code
     40  * Integer.MAX_VALUE}. The use of phase numbers enables independent
     41  * control of actions upon arrival at a phaser and upon awaiting
     42  * others, via two kinds of methods that may be invoked by any
     43  * registered party:
     44  *
     45  * <ul>
     46  *
     47  *   <li> <b>Arrival.</b> Methods {@link #arrive} and
     48  *       {@link #arriveAndDeregister} record arrival.  These methods
     49  *       do not block, but return an associated <em>arrival phase
     50  *       number</em>; that is, the phase number of the phaser to which
     51  *       the arrival applied. When the final party for a given phase
     52  *       arrives, an optional action is performed and the phase
     53  *       advances.  These actions are performed by the party
     54  *       triggering a phase advance, and are arranged by overriding
     55  *       method {@link #onAdvance(int, int)}, which also controls
     56  *       termination. Overriding this method is similar to, but more
     57  *       flexible than, providing a barrier action to a {@code
     58  *       CyclicBarrier}.
     59  *
     60  *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
     61  *       argument indicating an arrival phase number, and returns when
     62  *       the phaser advances to (or is already at) a different phase.
     63  *       Unlike similar constructions using {@code CyclicBarrier},
     64  *       method {@code awaitAdvance} continues to wait even if the
     65  *       waiting thread is interrupted. Interruptible and timeout
     66  *       versions are also available, but exceptions encountered while
     67  *       tasks wait interruptibly or with timeout do not change the
     68  *       state of the phaser. If necessary, you can perform any
     69  *       associated recovery within handlers of those exceptions,
     70  *       often after invoking {@code forceTermination}.  Phasers may
     71  *       also be used by tasks executing in a {@link ForkJoinPool},
     72  *       which will ensure sufficient parallelism to execute tasks
     73  *       when others are blocked waiting for a phase to advance.
     74  *
     75  * </ul>
     76  *
     77  * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
     78  * state, that may be checked using method {@link #isTerminated}. Upon
     79  * termination, all synchronization methods immediately return without
     80  * waiting for advance, as indicated by a negative return value.
     81  * Similarly, attempts to register upon termination have no effect.
     82  * Termination is triggered when an invocation of {@code onAdvance}
     83  * returns {@code true}. The default implementation returns {@code
     84  * true} if a deregistration has caused the number of registered
     85  * parties to become zero.  As illustrated below, when phasers control
     86  * actions with a fixed number of iterations, it is often convenient
     87  * to override this method to cause termination when the current phase
     88  * number reaches a threshold. Method {@link #forceTermination} is
     89  * also available to abruptly release waiting threads and allow them
     90  * to terminate.
     91  *
     92  * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
     93  * constructed in tree structures) to reduce contention. Phasers with
     94  * large numbers of parties that would otherwise experience heavy
     95  * synchronization contention costs may instead be set up so that
     96  * groups of sub-phasers share a common parent.  This may greatly
     97  * increase throughput even though it incurs greater per-operation
     98  * overhead.
     99  *
    100  * <p>In a tree of tiered phasers, registration and deregistration of
    101  * child phasers with their parent are managed automatically.
    102  * Whenever the number of registered parties of a child phaser becomes
    103  * non-zero (as established in the {@link #Phaser(Phaser,int)}
    104  * constructor, {@link #register}, or {@link #bulkRegister}), the
    105  * child phaser is registered with its parent.  Whenever the number of
    106  * registered parties becomes zero as the result of an invocation of
    107  * {@link #arriveAndDeregister}, the child phaser is deregistered
    108  * from its parent.
    109  *
    110  * <p><b>Monitoring.</b> While synchronization methods may be invoked
    111  * only by registered parties, the current state of a phaser may be
    112  * monitored by any caller.  At any given moment there are {@link
    113  * #getRegisteredParties} parties in total, of which {@link
    114  * #getArrivedParties} have arrived at the current phase ({@link
    115  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
    116  * parties arrive, the phase advances.  The values returned by these
    117  * methods may reflect transient states and so are not in general
    118  * useful for synchronization control.  Method {@link #toString}
    119  * returns snapshots of these state queries in a form convenient for
    120  * informal monitoring.
    121  *
    122  * <p><b>Sample usages:</b>
    123  *
    124  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
    125  * to control a one-shot action serving a variable number of parties.
    126  * The typical idiom is for the method setting this up to first
    127  * register, then start the actions, then deregister, as in:
    128  *
    129  *  <pre> {@code
    130  * void runTasks(List<Runnable> tasks) {
    131  *   final Phaser phaser = new Phaser(1); // "1" to register self
    132  *   // create and start threads
    133  *   for (final Runnable task : tasks) {
    134  *     phaser.register();
    135  *     new Thread() {
    136  *       public void run() {
    137  *         phaser.arriveAndAwaitAdvance(); // await all creation
    138  *         task.run();
    139  *       }
    140  *     }.start();
    141  *   }
    142  *
    143  *   // allow threads to start and deregister self
    144  *   phaser.arriveAndDeregister();
    145  * }}</pre>
    146  *
    147  * <p>One way to cause a set of threads to repeatedly perform actions
    148  * for a given number of iterations is to override {@code onAdvance}:
    149  *
    150  *  <pre> {@code
    151  * void startTasks(List<Runnable> tasks, final int iterations) {
    152  *   final Phaser phaser = new Phaser() {
    153  *     protected boolean onAdvance(int phase, int registeredParties) {
    154  *       return phase >= iterations || registeredParties == 0;
    155  *     }
    156  *   };
    157  *   phaser.register();
    158  *   for (final Runnable task : tasks) {
    159  *     phaser.register();
    160  *     new Thread() {
    161  *       public void run() {
    162  *         do {
    163  *           task.run();
    164  *           phaser.arriveAndAwaitAdvance();
    165  *         } while (!phaser.isTerminated());
    166  *       }
    167  *     }.start();
    168  *   }
    169  *   phaser.arriveAndDeregister(); // deregister self, don't wait
    170  * }}</pre>
    171  *
    172  * If the main task must later await termination, it
    173  * may re-register and then execute a similar loop:
    174  *  <pre> {@code
    175  *   // ...
    176  *   phaser.register();
    177  *   while (!phaser.isTerminated())
    178  *     phaser.arriveAndAwaitAdvance();}</pre>
    179  *
    180  * <p>Related constructions may be used to await particular phase numbers
    181  * in contexts where you are sure that the phase will never wrap around
    182  * {@code Integer.MAX_VALUE}. For example:
    183  *
    184  *  <pre> {@code
    185  * void awaitPhase(Phaser phaser, int phase) {
    186  *   int p = phaser.register(); // assumes caller not already registered
    187  *   while (p < phase) {
    188  *     if (phaser.isTerminated())
    189  *       // ... deal with unexpected termination
    190  *     else
    191  *       p = phaser.arriveAndAwaitAdvance();
    192  *   }
    193  *   phaser.arriveAndDeregister();
    194  * }}</pre>
    195  *
    196  *
    197  * <p>To create a set of {@code n} tasks using a tree of phasers, you
    198  * could use code of the following form, assuming a Task class with a
    199  * constructor accepting a {@code Phaser} that it registers with upon
    200  * construction. After invocation of {@code build(new Task[n], 0, n,
    201  * new Phaser())}, these tasks could then be started, for example by
    202  * submitting to a pool:
    203  *
    204  *  <pre> {@code
    205  * void build(Task[] tasks, int lo, int hi, Phaser ph) {
    206  *   if (hi - lo > TASKS_PER_PHASER) {
    207  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
    208  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
    209  *       build(tasks, i, j, new Phaser(ph));
    210  *     }
    211  *   } else {
    212  *     for (int i = lo; i < hi; ++i)
    213  *       tasks[i] = new Task(ph);
    214  *       // assumes new Task(ph) performs ph.register()
    215  *   }
    216  * }}</pre>
    217  *
    218  * The best value of {@code TASKS_PER_PHASER} depends mainly on
    219  * expected synchronization rates. A value as low as four may
    220  * be appropriate for extremely small per-phase task bodies (thus
    221  * high rates), or up to hundreds for extremely large ones.
    222  *
    223  * <p><b>Implementation notes</b>: This implementation restricts the
    224  * maximum number of parties to 65535. Attempts to register additional
    225  * parties result in {@code IllegalStateException}. However, you can and
    226  * should create tiered phasers to accommodate arbitrarily large sets
    227  * of participants.
    228  *
    229  * @since 1.7
    230  * @hide
    231  * @author Doug Lea
    232  */
    233 public class Phaser {
    234     /*
    235      * This class implements an extension of X10 "clocks".  Thanks to
    236      * Vijay Saraswat for the idea, and to Vivek Sarkar for
    237      * enhancements to extend functionality.
    238      */
    239 
    240     /**
    241      * Primary state representation, holding four bit-fields:
    242      *
    243      * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
    244      * parties    -- the number of parties to wait            (bits 16-31)
    245      * phase      -- the generation of the barrier            (bits 32-62)
    246      * terminated -- set if barrier is terminated             (bit  63 / sign)
    247      *
    248      * Except that a phaser with no registered parties is
    249      * distinguished by the otherwise illegal state of having zero
    250      * parties and one unarrived parties (encoded as EMPTY below).
    251      *
    252      * To efficiently maintain atomicity, these values are packed into
    253      * a single (atomic) long. Good performance relies on keeping
    254      * state decoding and encoding simple, and keeping race windows
    255      * short.
    256      *
    257      * All state updates are performed via CAS except initial
    258      * registration of a sub-phaser (i.e., one with a non-null
    259      * parent).  In this (relatively rare) case, we use built-in
    260      * synchronization to lock while first registering with its
    261      * parent.
    262      *
    263      * The phase of a subphaser is allowed to lag that of its
    264      * ancestors until it is actually accessed -- see method
    265      * reconcileState.
    266      */
    267     private volatile long state;
    268 
    269     private static final int  MAX_PARTIES     = 0xffff;
    270     private static final int  MAX_PHASE       = Integer.MAX_VALUE;
    271     private static final int  PARTIES_SHIFT   = 16;
    272     private static final int  PHASE_SHIFT     = 32;
    273     private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
    274     private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
    275     private static final long COUNTS_MASK     = 0xffffffffL;
    276     private static final long TERMINATION_BIT = 1L << 63;
    277 
    278     // some special values
    279     private static final int  ONE_ARRIVAL     = 1;
    280     private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
    281     private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
    282     private static final int  EMPTY           = 1;
    283 
    284     // The following unpacking methods are usually manually inlined
    285 
    286     private static int unarrivedOf(long s) {
    287         int counts = (int)s;
    288         return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    289     }
    290 
    291     private static int partiesOf(long s) {
    292         return (int)s >>> PARTIES_SHIFT;
    293     }
    294 
    295     private static int phaseOf(long s) {
    296         return (int)(s >>> PHASE_SHIFT);
    297     }
    298 
    299     private static int arrivedOf(long s) {
    300         int counts = (int)s;
    301         return (counts == EMPTY) ? 0 :
    302             (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
    303     }
    304 
    305     /**
    306      * The parent of this phaser, or null if none
    307      */
    308     private final Phaser parent;
    309 
    310     /**
    311      * The root of phaser tree. Equals this if not in a tree.
    312      */
    313     private final Phaser root;
    314 
    315     /**
    316      * Heads of Treiber stacks for waiting threads. To eliminate
    317      * contention when releasing some threads while adding others, we
    318      * use two of them, alternating across even and odd phases.
    319      * Subphasers share queues with root to speed up releases.
    320      */
    321     private final AtomicReference<QNode> evenQ;
    322     private final AtomicReference<QNode> oddQ;
    323 
    324     private AtomicReference<QNode> queueFor(int phase) {
    325         return ((phase & 1) == 0) ? evenQ : oddQ;
    326     }
    327 
    328     /**
    329      * Returns message string for bounds exceptions on arrival.
    330      */
    331     private String badArrive(long s) {
    332         return "Attempted arrival of unregistered party for " +
    333             stateToString(s);
    334     }
    335 
    336     /**
    337      * Returns message string for bounds exceptions on registration.
    338      */
    339     private String badRegister(long s) {
    340         return "Attempt to register more than " +
    341             MAX_PARTIES + " parties for " + stateToString(s);
    342     }
    343 
    344     /**
    345      * Main implementation for methods arrive and arriveAndDeregister.
    346      * Manually tuned to speed up and minimize race windows for the
    347      * common case of just decrementing unarrived field.
    348      *
    349      * @param adjust value to subtract from state;
    350      *               ONE_ARRIVAL for arrive,
    351      *               ONE_DEREGISTER for arriveAndDeregister
    352      */
    353     private int doArrive(int adjust) {
    354         final Phaser root = this.root;
    355         for (;;) {
    356             long s = (root == this) ? state : reconcileState();
    357             int phase = (int)(s >>> PHASE_SHIFT);
    358             if (phase < 0)
    359                 return phase;
    360             int counts = (int)s;
    361             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    362             if (unarrived <= 0)
    363                 throw new IllegalStateException(badArrive(s));
    364             if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
    365                 if (unarrived == 1) {
    366                     long n = s & PARTIES_MASK;  // base of next state
    367                     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    368                     if (root == this) {
    369                         if (onAdvance(phase, nextUnarrived))
    370                             n |= TERMINATION_BIT;
    371                         else if (nextUnarrived == 0)
    372                             n |= EMPTY;
    373                         else
    374                             n |= nextUnarrived;
    375                         int nextPhase = (phase + 1) & MAX_PHASE;
    376                         n |= (long)nextPhase << PHASE_SHIFT;
    377                         UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
    378                         releaseWaiters(phase);
    379                     }
    380                     else if (nextUnarrived == 0) { // propagate deregistration
    381                         phase = parent.doArrive(ONE_DEREGISTER);
    382                         UNSAFE.compareAndSwapLong(this, stateOffset,
    383                                                   s, s | EMPTY);
    384                     }
    385                     else
    386                         phase = parent.doArrive(ONE_ARRIVAL);
    387                 }
    388                 return phase;
    389             }
    390         }
    391     }
    392 
    393     /**
    394      * Implementation of register, bulkRegister
    395      *
    396      * @param registrations number to add to both parties and
    397      * unarrived fields. Must be greater than zero.
    398      */
    399     private int doRegister(int registrations) {
    400         // adjustment to state
    401         long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
    402         final Phaser parent = this.parent;
    403         int phase;
    404         for (;;) {
    405             long s = (parent == null) ? state : reconcileState();
    406             int counts = (int)s;
    407             int parties = counts >>> PARTIES_SHIFT;
    408             int unarrived = counts & UNARRIVED_MASK;
    409             if (registrations > MAX_PARTIES - parties)
    410                 throw new IllegalStateException(badRegister(s));
    411             phase = (int)(s >>> PHASE_SHIFT);
    412             if (phase < 0)
    413                 break;
    414             if (counts != EMPTY) {                  // not 1st registration
    415                 if (parent == null || reconcileState() == s) {
    416                     if (unarrived == 0)             // wait out advance
    417                         root.internalAwaitAdvance(phase, null);
    418                     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
    419                                                        s, s + adjust))
    420                         break;
    421                 }
    422             }
    423             else if (parent == null) {              // 1st root registration
    424                 long next = ((long)phase << PHASE_SHIFT) | adjust;
    425                 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
    426                     break;
    427             }
    428             else {
    429                 synchronized (this) {               // 1st sub registration
    430                     if (state == s) {               // recheck under lock
    431                         phase = parent.doRegister(1);
    432                         if (phase < 0)
    433                             break;
    434                         // finish registration whenever parent registration
    435                         // succeeded, even when racing with termination,
    436                         // since these are part of the same "transaction".
    437                         while (!UNSAFE.compareAndSwapLong
    438                                (this, stateOffset, s,
    439                                 ((long)phase << PHASE_SHIFT) | adjust)) {
    440                             s = state;
    441                             phase = (int)(root.state >>> PHASE_SHIFT);
    442                             // assert (int)s == EMPTY;
    443                         }
    444                         break;
    445                     }
    446                 }
    447             }
    448         }
    449         return phase;
    450     }
    451 
    452     /**
    453      * Resolves lagged phase propagation from root if necessary.
    454      * Reconciliation normally occurs when root has advanced but
    455      * subphasers have not yet done so, in which case they must finish
    456      * their own advance by setting unarrived to parties (or if
    457      * parties is zero, resetting to unregistered EMPTY state).
    458      *
    459      * @return reconciled state
    460      */
    461     private long reconcileState() {
    462         final Phaser root = this.root;
    463         long s = state;
    464         if (root != this) {
    465             int phase, p;
    466             // CAS to root phase with current parties, tripping unarrived
    467             while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
    468                    (int)(s >>> PHASE_SHIFT) &&
    469                    !UNSAFE.compareAndSwapLong
    470                    (this, stateOffset, s,
    471                     s = (((long)phase << PHASE_SHIFT) |
    472                          ((phase < 0) ? (s & COUNTS_MASK) :
    473                           (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
    474                            ((s & PARTIES_MASK) | p))))))
    475                 s = state;
    476         }
    477         return s;
    478     }
    479 
    480     /**
    481      * Creates a new phaser with no initially registered parties, no
    482      * parent, and initial phase number 0. Any thread using this
    483      * phaser will need to first register for it.
    484      */
    485     public Phaser() {
    486         this(null, 0);
    487     }
    488 
    489     /**
    490      * Creates a new phaser with the given number of registered
    491      * unarrived parties, no parent, and initial phase number 0.
    492      *
    493      * @param parties the number of parties required to advance to the
    494      * next phase
    495      * @throws IllegalArgumentException if parties less than zero
    496      * or greater than the maximum number of parties supported
    497      */
    498     public Phaser(int parties) {
    499         this(null, parties);
    500     }
    501 
    502     /**
    503      * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
    504      *
    505      * @param parent the parent phaser
    506      */
    507     public Phaser(Phaser parent) {
    508         this(parent, 0);
    509     }
    510 
    511     /**
    512      * Creates a new phaser with the given parent and number of
    513      * registered unarrived parties.  When the given parent is non-null
    514      * and the given number of parties is greater than zero, this
    515      * child phaser is registered with its parent.
    516      *
    517      * @param parent the parent phaser
    518      * @param parties the number of parties required to advance to the
    519      * next phase
    520      * @throws IllegalArgumentException if parties less than zero
    521      * or greater than the maximum number of parties supported
    522      */
    523     public Phaser(Phaser parent, int parties) {
    524         if (parties >>> PARTIES_SHIFT != 0)
    525             throw new IllegalArgumentException("Illegal number of parties");
    526         int phase = 0;
    527         this.parent = parent;
    528         if (parent != null) {
    529             final Phaser root = parent.root;
    530             this.root = root;
    531             this.evenQ = root.evenQ;
    532             this.oddQ = root.oddQ;
    533             if (parties != 0)
    534                 phase = parent.doRegister(1);
    535         }
    536         else {
    537             this.root = this;
    538             this.evenQ = new AtomicReference<QNode>();
    539             this.oddQ = new AtomicReference<QNode>();
    540         }
    541         this.state = (parties == 0) ? (long)EMPTY :
    542             ((long)phase << PHASE_SHIFT) |
    543             ((long)parties << PARTIES_SHIFT) |
    544             ((long)parties);
    545     }
    546 
    547     /**
    548      * Adds a new unarrived party to this phaser.  If an ongoing
    549      * invocation of {@link #onAdvance} is in progress, this method
    550      * may await its completion before returning.  If this phaser has
    551      * a parent, and this phaser previously had no registered parties,
    552      * this child phaser is also registered with its parent. If
    553      * this phaser is terminated, the attempt to register has
    554      * no effect, and a negative value is returned.
    555      *
    556      * @return the arrival phase number to which this registration
    557      * applied.  If this value is negative, then this phaser has
    558      * terminated, in which case registration has no effect.
    559      * @throws IllegalStateException if attempting to register more
    560      * than the maximum supported number of parties
    561      */
    562     public int register() {
    563         return doRegister(1);
    564     }
    565 
    566     /**
    567      * Adds the given number of new unarrived parties to this phaser.
    568      * If an ongoing invocation of {@link #onAdvance} is in progress,
    569      * this method may await its completion before returning.  If this
    570      * phaser has a parent, and the given number of parties is greater
    571      * than zero, and this phaser previously had no registered
    572      * parties, this child phaser is also registered with its parent.
    573      * If this phaser is terminated, the attempt to register has no
    574      * effect, and a negative value is returned.
    575      *
    576      * @param parties the number of additional parties required to
    577      * advance to the next phase
    578      * @return the arrival phase number to which this registration
    579      * applied.  If this value is negative, then this phaser has
    580      * terminated, in which case registration has no effect.
    581      * @throws IllegalStateException if attempting to register more
    582      * than the maximum supported number of parties
    583      * @throws IllegalArgumentException if {@code parties < 0}
    584      */
    585     public int bulkRegister(int parties) {
    586         if (parties < 0)
    587             throw new IllegalArgumentException();
    588         if (parties == 0)
    589             return getPhase();
    590         return doRegister(parties);
    591     }
    592 
    593     /**
    594      * Arrives at this phaser, without waiting for others to arrive.
    595      *
    596      * <p>It is a usage error for an unregistered party to invoke this
    597      * method.  However, this error may result in an {@code
    598      * IllegalStateException} only upon some subsequent operation on
    599      * this phaser, if ever.
    600      *
    601      * @return the arrival phase number, or a negative value if terminated
    602      * @throws IllegalStateException if not terminated and the number
    603      * of unarrived parties would become negative
    604      */
    605     public int arrive() {
    606         return doArrive(ONE_ARRIVAL);
    607     }
    608 
    609     /**
    610      * Arrives at this phaser and deregisters from it without waiting
    611      * for others to arrive. Deregistration reduces the number of
    612      * parties required to advance in future phases.  If this phaser
    613      * has a parent, and deregistration causes this phaser to have
    614      * zero parties, this phaser is also deregistered from its parent.
    615      *
    616      * <p>It is a usage error for an unregistered party to invoke this
    617      * method.  However, this error may result in an {@code
    618      * IllegalStateException} only upon some subsequent operation on
    619      * this phaser, if ever.
    620      *
    621      * @return the arrival phase number, or a negative value if terminated
    622      * @throws IllegalStateException if not terminated and the number
    623      * of registered or unarrived parties would become negative
    624      */
    625     public int arriveAndDeregister() {
    626         return doArrive(ONE_DEREGISTER);
    627     }
    628 
    629     /**
    630      * Arrives at this phaser and awaits others. Equivalent in effect
    631      * to {@code awaitAdvance(arrive())}.  If you need to await with
    632      * interruption or timeout, you can arrange this with an analogous
    633      * construction using one of the other forms of the {@code
    634      * awaitAdvance} method.  If instead you need to deregister upon
    635      * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
    636      *
    637      * <p>It is a usage error for an unregistered party to invoke this
    638      * method.  However, this error may result in an {@code
    639      * IllegalStateException} only upon some subsequent operation on
    640      * this phaser, if ever.
    641      *
    642      * @return the arrival phase number, or the (negative)
    643      * {@linkplain #getPhase() current phase} if terminated
    644      * @throws IllegalStateException if not terminated and the number
    645      * of unarrived parties would become negative
    646      */
    647     public int arriveAndAwaitAdvance() {
    648         // Specialization of doArrive+awaitAdvance eliminating some reads/paths
    649         final Phaser root = this.root;
    650         for (;;) {
    651             long s = (root == this) ? state : reconcileState();
    652             int phase = (int)(s >>> PHASE_SHIFT);
    653             if (phase < 0)
    654                 return phase;
    655             int counts = (int)s;
    656             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    657             if (unarrived <= 0)
    658                 throw new IllegalStateException(badArrive(s));
    659             if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
    660                                           s -= ONE_ARRIVAL)) {
    661                 if (unarrived > 1)
    662                     return root.internalAwaitAdvance(phase, null);
    663                 if (root != this)
    664                     return parent.arriveAndAwaitAdvance();
    665                 long n = s & PARTIES_MASK;  // base of next state
    666                 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    667                 if (onAdvance(phase, nextUnarrived))
    668                     n |= TERMINATION_BIT;
    669                 else if (nextUnarrived == 0)
    670                     n |= EMPTY;
    671                 else
    672                     n |= nextUnarrived;
    673                 int nextPhase = (phase + 1) & MAX_PHASE;
    674                 n |= (long)nextPhase << PHASE_SHIFT;
    675                 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
    676                     return (int)(state >>> PHASE_SHIFT); // terminated
    677                 releaseWaiters(phase);
    678                 return nextPhase;
    679             }
    680         }
    681     }
    682 
    683     /**
    684      * Awaits the phase of this phaser to advance from the given phase
    685      * value, returning immediately if the current phase is not equal
    686      * to the given phase value or this phaser is terminated.
    687      *
    688      * @param phase an arrival phase number, or negative value if
    689      * terminated; this argument is normally the value returned by a
    690      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    691      * @return the next arrival phase number, or the argument if it is
    692      * negative, or the (negative) {@linkplain #getPhase() current phase}
    693      * if terminated
    694      */
    695     public int awaitAdvance(int phase) {
    696         final Phaser root = this.root;
    697         long s = (root == this) ? state : reconcileState();
    698         int p = (int)(s >>> PHASE_SHIFT);
    699         if (phase < 0)
    700             return phase;
    701         if (p == phase)
    702             return root.internalAwaitAdvance(phase, null);
    703         return p;
    704     }
    705 
    706     /**
    707      * Awaits the phase of this phaser to advance from the given phase
    708      * value, throwing {@code InterruptedException} if interrupted
    709      * while waiting, or returning immediately if the current phase is
    710      * not equal to the given phase value or this phaser is
    711      * terminated.
    712      *
    713      * @param phase an arrival phase number, or negative value if
    714      * terminated; this argument is normally the value returned by a
    715      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    716      * @return the next arrival phase number, or the argument if it is
    717      * negative, or the (negative) {@linkplain #getPhase() current phase}
    718      * if terminated
    719      * @throws InterruptedException if thread interrupted while waiting
    720      */
    721     public int awaitAdvanceInterruptibly(int phase)
    722         throws InterruptedException {
    723         final Phaser root = this.root;
    724         long s = (root == this) ? state : reconcileState();
    725         int p = (int)(s >>> PHASE_SHIFT);
    726         if (phase < 0)
    727             return phase;
    728         if (p == phase) {
    729             QNode node = new QNode(this, phase, true, false, 0L);
    730             p = root.internalAwaitAdvance(phase, node);
    731             if (node.wasInterrupted)
    732                 throw new InterruptedException();
    733         }
    734         return p;
    735     }
    736 
    737     /**
    738      * Awaits the phase of this phaser to advance from the given phase
    739      * value or the given timeout to elapse, throwing {@code
    740      * InterruptedException} if interrupted while waiting, or
    741      * returning immediately if the current phase is not equal to the
    742      * given phase value or this phaser is terminated.
    743      *
    744      * @param phase an arrival phase number, or negative value if
    745      * terminated; this argument is normally the value returned by a
    746      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    747      * @param timeout how long to wait before giving up, in units of
    748      *        {@code unit}
    749      * @param unit a {@code TimeUnit} determining how to interpret the
    750      *        {@code timeout} parameter
    751      * @return the next arrival phase number, or the argument if it is
    752      * negative, or the (negative) {@linkplain #getPhase() current phase}
    753      * if terminated
    754      * @throws InterruptedException if thread interrupted while waiting
    755      * @throws TimeoutException if timed out while waiting
    756      */
    757     public int awaitAdvanceInterruptibly(int phase,
    758                                          long timeout, TimeUnit unit)
    759         throws InterruptedException, TimeoutException {
    760         long nanos = unit.toNanos(timeout);
    761         final Phaser root = this.root;
    762         long s = (root == this) ? state : reconcileState();
    763         int p = (int)(s >>> PHASE_SHIFT);
    764         if (phase < 0)
    765             return phase;
    766         if (p == phase) {
    767             QNode node = new QNode(this, phase, true, true, nanos);
    768             p = root.internalAwaitAdvance(phase, node);
    769             if (node.wasInterrupted)
    770                 throw new InterruptedException();
    771             else if (p == phase)
    772                 throw new TimeoutException();
    773         }
    774         return p;
    775     }
    776 
    777     /**
    778      * Forces this phaser to enter termination state.  Counts of
    779      * registered parties are unaffected.  If this phaser is a member
    780      * of a tiered set of phasers, then all of the phasers in the set
    781      * are terminated.  If this phaser is already terminated, this
    782      * method has no effect.  This method may be useful for
    783      * coordinating recovery after one or more tasks encounter
    784      * unexpected exceptions.
    785      */
    786     public void forceTermination() {
    787         // Only need to change root state
    788         final Phaser root = this.root;
    789         long s;
    790         while ((s = root.state) >= 0) {
    791             if (UNSAFE.compareAndSwapLong(root, stateOffset,
    792                                           s, s | TERMINATION_BIT)) {
    793                 // signal all threads
    794                 releaseWaiters(0); // Waiters on evenQ
    795                 releaseWaiters(1); // Waiters on oddQ
    796                 return;
    797             }
    798         }
    799     }
    800 
    801     /**
    802      * Returns the current phase number. The maximum phase number is
    803      * {@code Integer.MAX_VALUE}, after which it restarts at
    804      * zero. Upon termination, the phase number is negative,
    805      * in which case the prevailing phase prior to termination
    806      * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
    807      *
    808      * @return the phase number, or a negative value if terminated
    809      */
    810     public final int getPhase() {
    811         return (int)(root.state >>> PHASE_SHIFT);
    812     }
    813 
    814     /**
    815      * Returns the number of parties registered at this phaser.
    816      *
    817      * @return the number of parties
    818      */
    819     public int getRegisteredParties() {
    820         return partiesOf(state);
    821     }
    822 
    823     /**
    824      * Returns the number of registered parties that have arrived at
    825      * the current phase of this phaser. If this phaser has terminated,
    826      * the returned value is meaningless and arbitrary.
    827      *
    828      * @return the number of arrived parties
    829      */
    830     public int getArrivedParties() {
    831         return arrivedOf(reconcileState());
    832     }
    833 
    834     /**
    835      * Returns the number of registered parties that have not yet
    836      * arrived at the current phase of this phaser. If this phaser has
    837      * terminated, the returned value is meaningless and arbitrary.
    838      *
    839      * @return the number of unarrived parties
    840      */
    841     public int getUnarrivedParties() {
    842         return unarrivedOf(reconcileState());
    843     }
    844 
    845     /**
    846      * Returns the parent of this phaser, or {@code null} if none.
    847      *
    848      * @return the parent of this phaser, or {@code null} if none
    849      */
    850     public Phaser getParent() {
    851         return parent;
    852     }
    853 
    854     /**
    855      * Returns the root ancestor of this phaser, which is the same as
    856      * this phaser if it has no parent.
    857      *
    858      * @return the root ancestor of this phaser
    859      */
    860     public Phaser getRoot() {
    861         return root;
    862     }
    863 
    864     /**
    865      * Returns {@code true} if this phaser has been terminated.
    866      *
    867      * @return {@code true} if this phaser has been terminated
    868      */
    869     public boolean isTerminated() {
    870         return root.state < 0L;
    871     }
    872 
    873     /**
    874      * Overridable method to perform an action upon impending phase
    875      * advance, and to control termination. This method is invoked
    876      * upon arrival of the party advancing this phaser (when all other
    877      * waiting parties are dormant).  If this method returns {@code
    878      * true}, this phaser will be set to a final termination state
    879      * upon advance, and subsequent calls to {@link #isTerminated}
    880      * will return true. Any (unchecked) Exception or Error thrown by
    881      * an invocation of this method is propagated to the party
    882      * attempting to advance this phaser, in which case no advance
    883      * occurs.
    884      *
    885      * <p>The arguments to this method provide the state of the phaser
    886      * prevailing for the current transition.  The effects of invoking
    887      * arrival, registration, and waiting methods on this phaser from
    888      * within {@code onAdvance} are unspecified and should not be
    889      * relied on.
    890      *
    891      * <p>If this phaser is a member of a tiered set of phasers, then
    892      * {@code onAdvance} is invoked only for its root phaser on each
    893      * advance.
    894      *
    895      * <p>To support the most common use cases, the default
    896      * implementation of this method returns {@code true} when the
    897      * number of registered parties has become zero as the result of a
    898      * party invoking {@code arriveAndDeregister}.  You can disable
    899      * this behavior, thus enabling continuation upon future
    900      * registrations, by overriding this method to always return
    901      * {@code false}:
    902      *
    903      * <pre> {@code
    904      * Phaser phaser = new Phaser() {
    905      *   protected boolean onAdvance(int phase, int parties) { return false; }
    906      * }}</pre>
    907      *
    908      * @param phase the current phase number on entry to this method,
    909      * before this phaser is advanced
    910      * @param registeredParties the current number of registered parties
    911      * @return {@code true} if this phaser should terminate
    912      */
    913     protected boolean onAdvance(int phase, int registeredParties) {
    914         return registeredParties == 0;
    915     }
    916 
    917     /**
    918      * Returns a string identifying this phaser, as well as its
    919      * state.  The state, in brackets, includes the String {@code
    920      * "phase = "} followed by the phase number, {@code "parties = "}
    921      * followed by the number of registered parties, and {@code
    922      * "arrived = "} followed by the number of arrived parties.
    923      *
    924      * @return a string identifying this phaser, as well as its state
    925      */
    926     public String toString() {
    927         return stateToString(reconcileState());
    928     }
    929 
    930     /**
    931      * Implementation of toString and string-based error messages
    932      */
    933     private String stateToString(long s) {
    934         return super.toString() +
    935             "[phase = " + phaseOf(s) +
    936             " parties = " + partiesOf(s) +
    937             " arrived = " + arrivedOf(s) + "]";
    938     }
    939 
    940     // Waiting mechanics
    941 
    942     /**
    943      * Removes and signals threads from queue for phase.
    944      */
    945     private void releaseWaiters(int phase) {
    946         QNode q;   // first element of queue
    947         Thread t;  // its thread
    948         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    949         while ((q = head.get()) != null &&
    950                q.phase != (int)(root.state >>> PHASE_SHIFT)) {
    951             if (head.compareAndSet(q, q.next) &&
    952                 (t = q.thread) != null) {
    953                 q.thread = null;
    954                 LockSupport.unpark(t);
    955             }
    956         }
    957     }
    958 
    959     /**
    960      * Variant of releaseWaiters that additionally tries to remove any
    961      * nodes no longer waiting for advance due to timeout or
    962      * interrupt. Currently, nodes are removed only if they are at
    963      * head of queue, which suffices to reduce memory footprint in
    964      * most usages.
    965      *
    966      * @return current phase on exit
    967      */
    968     private int abortWait(int phase) {
    969         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    970         for (;;) {
    971             Thread t;
    972             QNode q = head.get();
    973             int p = (int)(root.state >>> PHASE_SHIFT);
    974             if (q == null || ((t = q.thread) != null && q.phase == p))
    975                 return p;
    976             if (head.compareAndSet(q, q.next) && t != null) {
    977                 q.thread = null;
    978                 LockSupport.unpark(t);
    979             }
    980         }
    981     }
    982 
    983     /** The number of CPUs, for spin control */
    984     private static final int NCPU = Runtime.getRuntime().availableProcessors();
    985 
    986     /**
    987      * The number of times to spin before blocking while waiting for
    988      * advance, per arrival while waiting. On multiprocessors, fully
    989      * blocking and waking up a large number of threads all at once is
    990      * usually a very slow process, so we use rechargeable spins to
    991      * avoid it when threads regularly arrive: When a thread in
    992      * internalAwaitAdvance notices another arrival before blocking,
    993      * and there appear to be enough CPUs available, it spins
    994      * SPINS_PER_ARRIVAL more times before blocking. The value trades
    995      * off good-citizenship vs big unnecessary slowdowns.
    996      */
    997     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
    998 
    999     /**
   1000      * Possibly blocks and waits for phase to advance unless aborted.
   1001      * Call only on root phaser.
   1002      *
   1003      * @param phase current phase
   1004      * @param node if non-null, the wait node to track interrupt and timeout;
   1005      * if null, denotes noninterruptible wait
   1006      * @return current phase
   1007      */
   1008     private int internalAwaitAdvance(int phase, QNode node) {
   1009         // assert root == this;
   1010         releaseWaiters(phase-1);          // ensure old queue clean
   1011         boolean queued = false;           // true when node is enqueued
   1012         int lastUnarrived = 0;            // to increase spins upon change
   1013         int spins = SPINS_PER_ARRIVAL;
   1014         long s;
   1015         int p;
   1016         while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
   1017             if (node == null) {           // spinning in noninterruptible mode
   1018                 int unarrived = (int)s & UNARRIVED_MASK;
   1019                 if (unarrived != lastUnarrived &&
   1020                     (lastUnarrived = unarrived) < NCPU)
   1021                     spins += SPINS_PER_ARRIVAL;
   1022                 boolean interrupted = Thread.interrupted();
   1023                 if (interrupted || --spins < 0) { // need node to record intr
   1024                     node = new QNode(this, phase, false, false, 0L);
   1025                     node.wasInterrupted = interrupted;
   1026                 }
   1027             }
   1028             else if (node.isReleasable()) // done or aborted
   1029                 break;
   1030             else if (!queued) {           // push onto queue
   1031                 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
   1032                 QNode q = node.next = head.get();
   1033                 if ((q == null || q.phase == phase) &&
   1034                     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
   1035                     queued = head.compareAndSet(q, node);
   1036             }
   1037             else {
   1038                 try {
   1039                     ForkJoinPool.managedBlock(node);
   1040                 } catch (InterruptedException ie) {
   1041                     node.wasInterrupted = true;
   1042                 }
   1043             }
   1044         }
   1045 
   1046         if (node != null) {
   1047             if (node.thread != null)
   1048                 node.thread = null;       // avoid need for unpark()
   1049             if (node.wasInterrupted && !node.interruptible)
   1050                 Thread.currentThread().interrupt();
   1051             if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
   1052                 return abortWait(phase); // possibly clean up on abort
   1053         }
   1054         releaseWaiters(phase);
   1055         return p;
   1056     }
   1057 
   1058     /**
   1059      * Wait nodes for Treiber stack representing wait queue
   1060      */
   1061     static final class QNode implements ForkJoinPool.ManagedBlocker {
   1062         final Phaser phaser;
   1063         final int phase;
   1064         final boolean interruptible;
   1065         final boolean timed;
   1066         boolean wasInterrupted;
   1067         long nanos;
   1068         long lastTime;
   1069         volatile Thread thread; // nulled to cancel wait
   1070         QNode next;
   1071 
   1072         QNode(Phaser phaser, int phase, boolean interruptible,
   1073               boolean timed, long nanos) {
   1074             this.phaser = phaser;
   1075             this.phase = phase;
   1076             this.interruptible = interruptible;
   1077             this.nanos = nanos;
   1078             this.timed = timed;
   1079             this.lastTime = timed ? System.nanoTime() : 0L;
   1080             thread = Thread.currentThread();
   1081         }
   1082 
   1083         public boolean isReleasable() {
   1084             if (thread == null)
   1085                 return true;
   1086             if (phaser.getPhase() != phase) {
   1087                 thread = null;
   1088                 return true;
   1089             }
   1090             if (Thread.interrupted())
   1091                 wasInterrupted = true;
   1092             if (wasInterrupted && interruptible) {
   1093                 thread = null;
   1094                 return true;
   1095             }
   1096             if (timed) {
   1097                 if (nanos > 0L) {
   1098                     long now = System.nanoTime();
   1099                     nanos -= now - lastTime;
   1100                     lastTime = now;
   1101                 }
   1102                 if (nanos <= 0L) {
   1103                     thread = null;
   1104                     return true;
   1105                 }
   1106             }
   1107             return false;
   1108         }
   1109 
   1110         public boolean block() {
   1111             if (isReleasable())
   1112                 return true;
   1113             else if (!timed)
   1114                 LockSupport.park(this);
   1115             else if (nanos > 0)
   1116                 LockSupport.parkNanos(this, nanos);
   1117             return isReleasable();
   1118         }
   1119     }
   1120 
   1121     // Unsafe mechanics
   1122 
   1123     private static final sun.misc.Unsafe UNSAFE;
   1124     private static final long stateOffset;
   1125     static {
   1126         try {
   1127             UNSAFE = sun.misc.Unsafe.getUnsafe();
   1128             Class<?> k = Phaser.class;
   1129             stateOffset = UNSAFE.objectFieldOffset
   1130                 (k.getDeclaredField("state"));
   1131         } catch (Exception e) {
   1132             throw new Error(e);
   1133         }
   1134     }
   1135 }
   1136