1 /* 2 ******************************************************************************* 3 * 4 * Copyright (C) 2000-2012, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ******************************************************************************* 8 * 9 * File reslist.c 10 * 11 * Modification History: 12 * 13 * Date Name Description 14 * 02/21/00 weiv Creation. 15 ******************************************************************************* 16 */ 17 18 #include <assert.h> 19 #include <stdio.h> 20 #include "reslist.h" 21 #include "unewdata.h" 22 #include "unicode/ures.h" 23 #include "unicode/putil.h" 24 #include "errmsg.h" 25 26 #include "uarrsort.h" 27 #include "uelement.h" 28 #include "uinvchar.h" 29 #include "ustr_imp.h" 30 #include "unicode/utf16.h" 31 /* 32 * Align binary data at a 16-byte offset from the start of the resource bundle, 33 * to be safe for any data type it may contain. 34 */ 35 #define BIN_ALIGNMENT 16 36 37 static UBool gIncludeCopyright = FALSE; 38 static UBool gUsePoolBundle = FALSE; 39 static int32_t gFormatVersion = 2; 40 41 static UChar gEmptyString = 0; 42 43 /* How do we store string values? */ 44 enum { 45 STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */ 46 STRINGS_UTF16_V2 /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */ 47 }; 48 49 enum { 50 MAX_IMPLICIT_STRING_LENGTH = 40 /* do not store the length explicitly for such strings */ 51 }; 52 53 /* 54 * res_none() returns the address of kNoResource, 55 * for use in non-error cases when no resource is to be added to the bundle. 56 * (NULL is used in error cases.) 57 */ 58 static const struct SResource kNoResource = { URES_NONE }; 59 60 static UDataInfo dataInfo= { 61 sizeof(UDataInfo), 62 0, 63 64 U_IS_BIG_ENDIAN, 65 U_CHARSET_FAMILY, 66 sizeof(UChar), 67 0, 68 69 {0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */ 70 {1, 3, 0, 0}, /* formatVersion */ 71 {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/ 72 }; 73 74 static const UVersionInfo gFormatVersions[3] = { /* indexed by a major-formatVersion integer */ 75 { 0, 0, 0, 0 }, 76 { 1, 3, 0, 0 }, 77 { 2, 0, 0, 0 } 78 }; 79 80 static uint8_t calcPadding(uint32_t size) { 81 /* returns space we need to pad */ 82 return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0); 83 84 } 85 86 void setIncludeCopyright(UBool val){ 87 gIncludeCopyright=val; 88 } 89 90 UBool getIncludeCopyright(void){ 91 return gIncludeCopyright; 92 } 93 94 void setFormatVersion(int32_t formatVersion) { 95 gFormatVersion = formatVersion; 96 } 97 98 void setUsePoolBundle(UBool use) { 99 gUsePoolBundle = use; 100 } 101 102 static void 103 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status); 104 105 /* Writing Functions */ 106 107 /* 108 * type_write16() functions write resource values into f16BitUnits 109 * and determine the resource item word, if possible. 110 */ 111 static void 112 res_write16(struct SRBRoot *bundle, struct SResource *res, 113 UErrorCode *status); 114 115 /* 116 * type_preWrite() functions calculate ("preflight") and advance the *byteOffset 117 * by the size of their data in the binary file and 118 * determine the resource item word. 119 * Most type_preWrite() functions may add any number of bytes, but res_preWrite() 120 * will always pad it to a multiple of 4. 121 * The resource item type may be a related subtype of the fType. 122 * 123 * The type_preWrite() and type_write() functions start and end at the same 124 * byteOffset values. 125 * Prewriting allows bundle_write() to determine the root resource item word, 126 * before actually writing the bundle contents to the file, 127 * which is necessary because the root item is stored at the beginning. 128 */ 129 static void 130 res_preWrite(uint32_t *byteOffset, 131 struct SRBRoot *bundle, struct SResource *res, 132 UErrorCode *status); 133 134 /* 135 * type_write() functions write their data to mem and update the byteOffset 136 * in parallel. 137 * (A kingdom for C++ and polymorphism...) 138 */ 139 static void 140 res_write(UNewDataMemory *mem, uint32_t *byteOffset, 141 struct SRBRoot *bundle, struct SResource *res, 142 UErrorCode *status); 143 144 static uint16_t * 145 reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) { 146 if (U_FAILURE(*status)) { 147 return NULL; 148 } 149 if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) { 150 uint16_t *newUnits; 151 int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024; 152 capacity &= ~1; /* ensures padding fits if f16BitUnitsLength needs it */ 153 newUnits = (uint16_t *)uprv_malloc(capacity * 2); 154 if (newUnits == NULL) { 155 *status = U_MEMORY_ALLOCATION_ERROR; 156 return NULL; 157 } 158 if (bundle->f16BitUnitsLength > 0) { 159 uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2); 160 } else { 161 newUnits[0] = 0; 162 bundle->f16BitUnitsLength = 1; 163 } 164 uprv_free(bundle->f16BitUnits); 165 bundle->f16BitUnits = newUnits; 166 bundle->f16BitUnitsCapacity = capacity; 167 } 168 return bundle->f16BitUnits + bundle->f16BitUnitsLength; 169 } 170 171 static int32_t 172 makeRes16(uint32_t resWord) { 173 uint32_t type, offset; 174 if (resWord == 0) { 175 return 0; /* empty string */ 176 } 177 type = RES_GET_TYPE(resWord); 178 offset = RES_GET_OFFSET(resWord); 179 if (type == URES_STRING_V2 && offset <= 0xffff) { 180 return (int32_t)offset; 181 } 182 return -1; 183 } 184 185 static int32_t 186 mapKey(struct SRBRoot *bundle, int32_t oldpos) { 187 const KeyMapEntry *map = bundle->fKeyMap; 188 int32_t i, start, limit; 189 190 /* do a binary search for the old, pre-bundle_compactKeys() key offset */ 191 start = bundle->fPoolBundleKeysCount; 192 limit = start + bundle->fKeysCount; 193 while (start < limit - 1) { 194 i = (start + limit) / 2; 195 if (oldpos < map[i].oldpos) { 196 limit = i; 197 } else { 198 start = i; 199 } 200 } 201 assert(oldpos == map[start].oldpos); 202 return map[start].newpos; 203 } 204 205 static uint16_t 206 makeKey16(struct SRBRoot *bundle, int32_t key) { 207 if (key >= 0) { 208 return (uint16_t)key; 209 } else { 210 return (uint16_t)(key + bundle->fLocalKeyLimit); /* offset in the pool bundle */ 211 } 212 } 213 214 /* 215 * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings. 216 * For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS 217 * and exits early. 218 */ 219 static void 220 string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { 221 struct SResource *same; 222 if ((same = res->u.fString.fSame) != NULL) { 223 /* This is a duplicate. */ 224 if (same->fRes == RES_BOGUS) { 225 /* The original has not been visited yet. */ 226 string_write16(bundle, same, status); 227 } 228 res->fRes = same->fRes; 229 res->fWritten = same->fWritten; 230 } 231 } 232 233 static void 234 array_write16(struct SRBRoot *bundle, struct SResource *res, 235 UErrorCode *status) { 236 struct SResource *current; 237 int32_t res16 = 0; 238 239 if (U_FAILURE(*status)) { 240 return; 241 } 242 if (res->u.fArray.fCount == 0 && gFormatVersion > 1) { 243 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY); 244 res->fWritten = TRUE; 245 return; 246 } 247 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 248 res_write16(bundle, current, status); 249 res16 |= makeRes16(current->fRes); 250 } 251 if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) { 252 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status); 253 if (U_SUCCESS(*status)) { 254 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength); 255 *p16++ = (uint16_t)res->u.fArray.fCount; 256 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 257 *p16++ = (uint16_t)makeRes16(current->fRes); 258 } 259 bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount; 260 res->fWritten = TRUE; 261 } 262 } 263 } 264 265 static void 266 table_write16(struct SRBRoot *bundle, struct SResource *res, 267 UErrorCode *status) { 268 struct SResource *current; 269 int32_t maxKey = 0, maxPoolKey = 0x80000000; 270 int32_t res16 = 0; 271 UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE; 272 273 if (U_FAILURE(*status)) { 274 return; 275 } 276 if (res->u.fTable.fCount == 0 && gFormatVersion > 1) { 277 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE); 278 res->fWritten = TRUE; 279 return; 280 } 281 /* Find the smallest table type that fits the data. */ 282 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 283 int32_t key; 284 res_write16(bundle, current, status); 285 if (bundle->fKeyMap == NULL) { 286 key = current->fKey; 287 } else { 288 key = current->fKey = mapKey(bundle, current->fKey); 289 } 290 if (key >= 0) { 291 hasLocalKeys = TRUE; 292 if (key > maxKey) { 293 maxKey = key; 294 } 295 } else { 296 hasPoolKeys = TRUE; 297 if (key > maxPoolKey) { 298 maxPoolKey = key; 299 } 300 } 301 res16 |= makeRes16(current->fRes); 302 } 303 if (U_FAILURE(*status)) { 304 return; 305 } 306 if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) { 307 bundle->fMaxTableLength = res->u.fTable.fCount; 308 } 309 maxPoolKey &= 0x7fffffff; 310 if (res->u.fTable.fCount <= 0xffff && 311 (!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) && 312 (!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit)) 313 ) { 314 if (res16 >= 0 && gFormatVersion > 1) { 315 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status); 316 if (U_SUCCESS(*status)) { 317 /* 16-bit count, key offsets and values */ 318 res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength); 319 *p16++ = (uint16_t)res->u.fTable.fCount; 320 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 321 *p16++ = makeKey16(bundle, current->fKey); 322 } 323 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 324 *p16++ = (uint16_t)makeRes16(current->fRes); 325 } 326 bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2; 327 res->fWritten = TRUE; 328 } 329 } else { 330 /* 16-bit count, 16-bit key offsets, 32-bit values */ 331 res->u.fTable.fType = URES_TABLE; 332 } 333 } else { 334 /* 32-bit count, key offsets and values */ 335 res->u.fTable.fType = URES_TABLE32; 336 } 337 } 338 339 static void 340 res_write16(struct SRBRoot *bundle, struct SResource *res, 341 UErrorCode *status) { 342 if (U_FAILURE(*status) || res == NULL) { 343 return; 344 } 345 if (res->fRes != RES_BOGUS) { 346 /* 347 * The resource item word was already precomputed, which means 348 * no further data needs to be written. 349 * This might be an integer, or an empty or UTF-16 v2 string, 350 * an empty binary, etc. 351 */ 352 return; 353 } 354 switch (res->fType) { 355 case URES_STRING: 356 string_write16(bundle, res, status); 357 break; 358 case URES_ARRAY: 359 array_write16(bundle, res, status); 360 break; 361 case URES_TABLE: 362 table_write16(bundle, res, status); 363 break; 364 default: 365 /* Only a few resource types write 16-bit units. */ 366 break; 367 } 368 } 369 370 /* 371 * Only called for UTF-16 v1 strings. 372 * For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS 373 * and exits early. 374 */ 375 static void 376 string_preWrite(uint32_t *byteOffset, 377 struct SRBRoot *bundle, struct SResource *res, 378 UErrorCode *status) { 379 /* Write the UTF-16 v1 string. */ 380 res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2); 381 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; 382 } 383 384 static void 385 bin_preWrite(uint32_t *byteOffset, 386 struct SRBRoot *bundle, struct SResource *res, 387 UErrorCode *status) { 388 uint32_t pad = 0; 389 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); 390 391 if (dataStart % BIN_ALIGNMENT) { 392 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); 393 *byteOffset += pad; /* pad == 4 or 8 or 12 */ 394 } 395 res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2); 396 *byteOffset += 4 + res->u.fBinaryValue.fLength; 397 } 398 399 static void 400 array_preWrite(uint32_t *byteOffset, 401 struct SRBRoot *bundle, struct SResource *res, 402 UErrorCode *status) { 403 struct SResource *current; 404 405 if (U_FAILURE(*status)) { 406 return; 407 } 408 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 409 res_preWrite(byteOffset, bundle, current, status); 410 } 411 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2); 412 *byteOffset += (1 + res->u.fArray.fCount) * 4; 413 } 414 415 static void 416 table_preWrite(uint32_t *byteOffset, 417 struct SRBRoot *bundle, struct SResource *res, 418 UErrorCode *status) { 419 struct SResource *current; 420 421 if (U_FAILURE(*status)) { 422 return; 423 } 424 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 425 res_preWrite(byteOffset, bundle, current, status); 426 } 427 if (res->u.fTable.fType == URES_TABLE) { 428 /* 16-bit count, 16-bit key offsets, 32-bit values */ 429 res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2); 430 *byteOffset += 2 + res->u.fTable.fCount * 6; 431 } else { 432 /* 32-bit count, key offsets and values */ 433 res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2); 434 *byteOffset += 4 + res->u.fTable.fCount * 8; 435 } 436 } 437 438 static void 439 res_preWrite(uint32_t *byteOffset, 440 struct SRBRoot *bundle, struct SResource *res, 441 UErrorCode *status) { 442 if (U_FAILURE(*status) || res == NULL) { 443 return; 444 } 445 if (res->fRes != RES_BOGUS) { 446 /* 447 * The resource item word was already precomputed, which means 448 * no further data needs to be written. 449 * This might be an integer, or an empty or UTF-16 v2 string, 450 * an empty binary, etc. 451 */ 452 return; 453 } 454 switch (res->fType) { 455 case URES_STRING: 456 string_preWrite(byteOffset, bundle, res, status); 457 break; 458 case URES_ALIAS: 459 res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2); 460 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; 461 break; 462 case URES_INT_VECTOR: 463 if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) { 464 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR); 465 res->fWritten = TRUE; 466 } else { 467 res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2); 468 *byteOffset += (1 + res->u.fIntVector.fCount) * 4; 469 } 470 break; 471 case URES_BINARY: 472 bin_preWrite(byteOffset, bundle, res, status); 473 break; 474 case URES_INT: 475 break; 476 case URES_ARRAY: 477 array_preWrite(byteOffset, bundle, res, status); 478 break; 479 case URES_TABLE: 480 table_preWrite(byteOffset, bundle, res, status); 481 break; 482 default: 483 *status = U_INTERNAL_PROGRAM_ERROR; 484 break; 485 } 486 *byteOffset += calcPadding(*byteOffset); 487 } 488 489 /* 490 * Only called for UTF-16 v1 strings. For UTF-16 v2 strings, 491 * res_write() sees fWritten and exits early. 492 */ 493 static void string_write(UNewDataMemory *mem, uint32_t *byteOffset, 494 struct SRBRoot *bundle, struct SResource *res, 495 UErrorCode *status) { 496 /* Write the UTF-16 v1 string. */ 497 int32_t length = res->u.fString.fLength; 498 udata_write32(mem, length); 499 udata_writeUString(mem, res->u.fString.fChars, length + 1); 500 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; 501 res->fWritten = TRUE; 502 } 503 504 static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset, 505 struct SRBRoot *bundle, struct SResource *res, 506 UErrorCode *status) { 507 int32_t length = res->u.fString.fLength; 508 udata_write32(mem, length); 509 udata_writeUString(mem, res->u.fString.fChars, length + 1); 510 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; 511 } 512 513 static void array_write(UNewDataMemory *mem, uint32_t *byteOffset, 514 struct SRBRoot *bundle, struct SResource *res, 515 UErrorCode *status) { 516 uint32_t i; 517 518 struct SResource *current = NULL; 519 520 if (U_FAILURE(*status)) { 521 return; 522 } 523 for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) { 524 res_write(mem, byteOffset, bundle, current, status); 525 } 526 assert(i == res->u.fArray.fCount); 527 528 udata_write32(mem, res->u.fArray.fCount); 529 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 530 udata_write32(mem, current->fRes); 531 } 532 *byteOffset += (1 + res->u.fArray.fCount) * 4; 533 } 534 535 static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset, 536 struct SRBRoot *bundle, struct SResource *res, 537 UErrorCode *status) { 538 uint32_t i = 0; 539 udata_write32(mem, res->u.fIntVector.fCount); 540 for(i = 0; i<res->u.fIntVector.fCount; i++) { 541 udata_write32(mem, res->u.fIntVector.fArray[i]); 542 } 543 *byteOffset += (1 + res->u.fIntVector.fCount) * 4; 544 } 545 546 static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset, 547 struct SRBRoot *bundle, struct SResource *res, 548 UErrorCode *status) { 549 uint32_t pad = 0; 550 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); 551 552 if (dataStart % BIN_ALIGNMENT) { 553 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); 554 udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */ 555 *byteOffset += pad; 556 } 557 558 udata_write32(mem, res->u.fBinaryValue.fLength); 559 if (res->u.fBinaryValue.fLength > 0) { 560 udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength); 561 } 562 *byteOffset += 4 + res->u.fBinaryValue.fLength; 563 } 564 565 static void table_write(UNewDataMemory *mem, uint32_t *byteOffset, 566 struct SRBRoot *bundle, struct SResource *res, 567 UErrorCode *status) { 568 struct SResource *current; 569 uint32_t i; 570 571 if (U_FAILURE(*status)) { 572 return; 573 } 574 for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) { 575 assert(i < res->u.fTable.fCount); 576 res_write(mem, byteOffset, bundle, current, status); 577 } 578 assert(i == res->u.fTable.fCount); 579 580 if(res->u.fTable.fType == URES_TABLE) { 581 udata_write16(mem, (uint16_t)res->u.fTable.fCount); 582 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 583 udata_write16(mem, makeKey16(bundle, current->fKey)); 584 } 585 *byteOffset += (1 + res->u.fTable.fCount)* 2; 586 if ((res->u.fTable.fCount & 1) == 0) { 587 /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */ 588 udata_writePadding(mem, 2); 589 *byteOffset += 2; 590 } 591 } else /* URES_TABLE32 */ { 592 udata_write32(mem, res->u.fTable.fCount); 593 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 594 udata_write32(mem, (uint32_t)current->fKey); 595 } 596 *byteOffset += (1 + res->u.fTable.fCount)* 4; 597 } 598 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 599 udata_write32(mem, current->fRes); 600 } 601 *byteOffset += res->u.fTable.fCount * 4; 602 } 603 604 void res_write(UNewDataMemory *mem, uint32_t *byteOffset, 605 struct SRBRoot *bundle, struct SResource *res, 606 UErrorCode *status) { 607 uint8_t paddingSize; 608 609 if (U_FAILURE(*status) || res == NULL) { 610 return; 611 } 612 if (res->fWritten) { 613 assert(res->fRes != RES_BOGUS); 614 return; 615 } 616 switch (res->fType) { 617 case URES_STRING: 618 string_write (mem, byteOffset, bundle, res, status); 619 break; 620 case URES_ALIAS: 621 alias_write (mem, byteOffset, bundle, res, status); 622 break; 623 case URES_INT_VECTOR: 624 intvector_write (mem, byteOffset, bundle, res, status); 625 break; 626 case URES_BINARY: 627 bin_write (mem, byteOffset, bundle, res, status); 628 break; 629 case URES_INT: 630 break; /* fRes was set by int_open() */ 631 case URES_ARRAY: 632 array_write (mem, byteOffset, bundle, res, status); 633 break; 634 case URES_TABLE: 635 table_write (mem, byteOffset, bundle, res, status); 636 break; 637 default: 638 *status = U_INTERNAL_PROGRAM_ERROR; 639 break; 640 } 641 paddingSize = calcPadding(*byteOffset); 642 if (paddingSize > 0) { 643 udata_writePadding(mem, paddingSize); 644 *byteOffset += paddingSize; 645 } 646 res->fWritten = TRUE; 647 } 648 649 void bundle_write(struct SRBRoot *bundle, 650 const char *outputDir, const char *outputPkg, 651 char *writtenFilename, int writtenFilenameLen, 652 UErrorCode *status) { 653 UNewDataMemory *mem = NULL; 654 uint32_t byteOffset = 0; 655 uint32_t top, size; 656 char dataName[1024]; 657 int32_t indexes[URES_INDEX_TOP]; 658 659 bundle_compactKeys(bundle, status); 660 /* 661 * Add padding bytes to fKeys so that fKeysTop is 4-aligned. 662 * Safe because the capacity is a multiple of 4. 663 */ 664 while (bundle->fKeysTop & 3) { 665 bundle->fKeys[bundle->fKeysTop++] = (char)0xaa; 666 } 667 /* 668 * In URES_TABLE, use all local key offsets that fit into 16 bits, 669 * and use the remaining 16-bit offsets for pool key offsets 670 * if there are any. 671 * If there are no local keys, then use the whole 16-bit space 672 * for pool key offsets. 673 * Note: This cannot be changed without changing the major formatVersion. 674 */ 675 if (bundle->fKeysBottom < bundle->fKeysTop) { 676 if (bundle->fKeysTop <= 0x10000) { 677 bundle->fLocalKeyLimit = bundle->fKeysTop; 678 } else { 679 bundle->fLocalKeyLimit = 0x10000; 680 } 681 } else { 682 bundle->fLocalKeyLimit = 0; 683 } 684 685 bundle_compactStrings(bundle, status); 686 res_write16(bundle, bundle->fRoot, status); 687 if (bundle->f16BitUnitsLength & 1) { 688 bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa; /* pad to multiple of 4 bytes */ 689 } 690 /* all keys have been mapped */ 691 uprv_free(bundle->fKeyMap); 692 bundle->fKeyMap = NULL; 693 694 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; 695 res_preWrite(&byteOffset, bundle, bundle->fRoot, status); 696 697 /* total size including the root item */ 698 top = byteOffset; 699 700 if (U_FAILURE(*status)) { 701 return; 702 } 703 704 if (writtenFilename && writtenFilenameLen) { 705 *writtenFilename = 0; 706 } 707 708 if (writtenFilename) { 709 int32_t off = 0, len = 0; 710 if (outputDir) { 711 len = (int32_t)uprv_strlen(outputDir); 712 if (len > writtenFilenameLen) { 713 len = writtenFilenameLen; 714 } 715 uprv_strncpy(writtenFilename, outputDir, len); 716 } 717 if (writtenFilenameLen -= len) { 718 off += len; 719 writtenFilename[off] = U_FILE_SEP_CHAR; 720 if (--writtenFilenameLen) { 721 ++off; 722 if(outputPkg != NULL) 723 { 724 uprv_strcpy(writtenFilename+off, outputPkg); 725 off += (int32_t)uprv_strlen(outputPkg); 726 writtenFilename[off] = '_'; 727 ++off; 728 } 729 730 len = (int32_t)uprv_strlen(bundle->fLocale); 731 if (len > writtenFilenameLen) { 732 len = writtenFilenameLen; 733 } 734 uprv_strncpy(writtenFilename + off, bundle->fLocale, len); 735 if (writtenFilenameLen -= len) { 736 off += len; 737 len = 5; 738 if (len > writtenFilenameLen) { 739 len = writtenFilenameLen; 740 } 741 uprv_strncpy(writtenFilename + off, ".res", len); 742 } 743 } 744 } 745 } 746 747 if(outputPkg) 748 { 749 uprv_strcpy(dataName, outputPkg); 750 uprv_strcat(dataName, "_"); 751 uprv_strcat(dataName, bundle->fLocale); 752 } 753 else 754 { 755 uprv_strcpy(dataName, bundle->fLocale); 756 } 757 758 uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo)); 759 760 mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status); 761 if(U_FAILURE(*status)){ 762 return; 763 } 764 765 /* write the root item */ 766 udata_write32(mem, bundle->fRoot->fRes); 767 768 /* 769 * formatVersion 1.1 (ICU 2.8): 770 * write int32_t indexes[] after root and before the strings 771 * to make it easier to parse resource bundles in icuswap or from Java etc. 772 */ 773 uprv_memset(indexes, 0, sizeof(indexes)); 774 indexes[URES_INDEX_LENGTH]= bundle->fIndexLength; 775 indexes[URES_INDEX_KEYS_TOP]= bundle->fKeysTop>>2; 776 indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2); 777 indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP]; 778 indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength; 779 780 /* 781 * formatVersion 1.2 (ICU 3.6): 782 * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set 783 * the memset() above initialized all indexes[] to 0 784 */ 785 if (bundle->noFallback) { 786 indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK; 787 } 788 /* 789 * formatVersion 2.0 (ICU 4.4): 790 * more compact string value storage, optional pool bundle 791 */ 792 if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) { 793 indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1); 794 } 795 if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) { 796 if (bundle->fIsPoolBundle) { 797 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK; 798 indexes[URES_INDEX_POOL_CHECKSUM] = 799 (int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom), 800 (uint32_t)(bundle->fKeysTop - bundle->fKeysBottom), 801 0); 802 } else if (gUsePoolBundle) { 803 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE; 804 indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum; 805 } 806 } 807 808 /* write the indexes[] */ 809 udata_writeBlock(mem, indexes, bundle->fIndexLength*4); 810 811 /* write the table key strings */ 812 udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom, 813 bundle->fKeysTop-bundle->fKeysBottom); 814 815 /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */ 816 udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2); 817 818 /* write all of the bundle contents: the root item and its children */ 819 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; 820 res_write(mem, &byteOffset, bundle, bundle->fRoot, status); 821 assert(byteOffset == top); 822 823 size = udata_finish(mem, status); 824 if(top != size) { 825 fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n", 826 (int)size, (int)top); 827 *status = U_INTERNAL_PROGRAM_ERROR; 828 } 829 } 830 831 /* Opening Functions */ 832 833 /* gcc 4.2 complained "no previous prototype for res_open" without this prototype... */ 834 struct SResource* res_open(struct SRBRoot *bundle, const char *tag, 835 const struct UString* comment, UErrorCode* status); 836 837 struct SResource* res_open(struct SRBRoot *bundle, const char *tag, 838 const struct UString* comment, UErrorCode* status){ 839 struct SResource *res; 840 int32_t key = bundle_addtag(bundle, tag, status); 841 if (U_FAILURE(*status)) { 842 return NULL; 843 } 844 845 res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); 846 if (res == NULL) { 847 *status = U_MEMORY_ALLOCATION_ERROR; 848 return NULL; 849 } 850 uprv_memset(res, 0, sizeof(struct SResource)); 851 res->fKey = key; 852 res->fRes = RES_BOGUS; 853 854 ustr_init(&res->fComment); 855 if(comment != NULL){ 856 ustr_cpy(&res->fComment, comment, status); 857 if (U_FAILURE(*status)) { 858 res_close(res); 859 return NULL; 860 } 861 } 862 return res; 863 } 864 865 struct SResource* res_none() { 866 return (struct SResource*)&kNoResource; 867 } 868 869 struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { 870 struct SResource *res = res_open(bundle, tag, comment, status); 871 if (U_FAILURE(*status)) { 872 return NULL; 873 } 874 res->fType = URES_TABLE; 875 res->u.fTable.fRoot = bundle; 876 return res; 877 } 878 879 struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { 880 struct SResource *res = res_open(bundle, tag, comment, status); 881 if (U_FAILURE(*status)) { 882 return NULL; 883 } 884 res->fType = URES_ARRAY; 885 return res; 886 } 887 888 static int32_t U_CALLCONV 889 string_hash(const UElement key) { 890 const struct SResource *res = (struct SResource *)key.pointer; 891 return ustr_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength); 892 } 893 894 static UBool U_CALLCONV 895 string_comp(const UElement key1, const UElement key2) { 896 const struct SResource *res1 = (struct SResource *)key1.pointer; 897 const struct SResource *res2 = (struct SResource *)key2.pointer; 898 return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength, 899 res2->u.fString.fChars, res2->u.fString.fLength, 900 FALSE); 901 } 902 903 struct SResource *string_open(struct SRBRoot *bundle, const char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { 904 struct SResource *res = res_open(bundle, tag, comment, status); 905 if (U_FAILURE(*status)) { 906 return NULL; 907 } 908 res->fType = URES_STRING; 909 910 if (len == 0 && gFormatVersion > 1) { 911 res->u.fString.fChars = &gEmptyString; 912 res->fRes = 0; 913 res->fWritten = TRUE; 914 return res; 915 } 916 917 res->u.fString.fLength = len; 918 919 if (gFormatVersion > 1) { 920 /* check for duplicates */ 921 res->u.fString.fChars = (UChar *)value; 922 if (bundle->fStringSet == NULL) { 923 UErrorCode localStatus = U_ZERO_ERROR; /* if failure: just don't detect dups */ 924 bundle->fStringSet = uhash_open(string_hash, string_comp, string_comp, &localStatus); 925 } else { 926 res->u.fString.fSame = uhash_get(bundle->fStringSet, res); 927 } 928 } 929 if (res->u.fString.fSame == NULL) { 930 /* this is a new string */ 931 res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); 932 933 if (res->u.fString.fChars == NULL) { 934 *status = U_MEMORY_ALLOCATION_ERROR; 935 uprv_free(res); 936 return NULL; 937 } 938 939 uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len); 940 res->u.fString.fChars[len] = 0; 941 if (bundle->fStringSet != NULL) { 942 /* put it into the set for finding duplicates */ 943 uhash_put(bundle->fStringSet, res, res, status); 944 } 945 946 if (bundle->fStringsForm != STRINGS_UTF16_V1) { 947 if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(value[0]) && len == u_strlen(value)) { 948 /* 949 * This string will be stored without an explicit length. 950 * Runtime will detect !U16_IS_TRAIL(value[0]) and call u_strlen(). 951 */ 952 res->u.fString.fNumCharsForLength = 0; 953 } else if (len <= 0x3ee) { 954 res->u.fString.fNumCharsForLength = 1; 955 } else if (len <= 0xfffff) { 956 res->u.fString.fNumCharsForLength = 2; 957 } else { 958 res->u.fString.fNumCharsForLength = 3; 959 } 960 bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1; /* +1 for the NUL */ 961 } 962 } else { 963 /* this is a duplicate of fSame */ 964 struct SResource *same = res->u.fString.fSame; 965 res->u.fString.fChars = same->u.fString.fChars; 966 } 967 return res; 968 } 969 970 /* TODO: make alias_open and string_open use the same code */ 971 struct SResource *alias_open(struct SRBRoot *bundle, const char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { 972 struct SResource *res = res_open(bundle, tag, comment, status); 973 if (U_FAILURE(*status)) { 974 return NULL; 975 } 976 res->fType = URES_ALIAS; 977 if (len == 0 && gFormatVersion > 1) { 978 res->u.fString.fChars = &gEmptyString; 979 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ALIAS); 980 res->fWritten = TRUE; 981 return res; 982 } 983 984 res->u.fString.fLength = len; 985 res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); 986 if (res->u.fString.fChars == NULL) { 987 *status = U_MEMORY_ALLOCATION_ERROR; 988 uprv_free(res); 989 return NULL; 990 } 991 uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1)); 992 return res; 993 } 994 995 996 struct SResource* intvector_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { 997 struct SResource *res = res_open(bundle, tag, comment, status); 998 if (U_FAILURE(*status)) { 999 return NULL; 1000 } 1001 res->fType = URES_INT_VECTOR; 1002 1003 res->u.fIntVector.fCount = 0; 1004 res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR); 1005 if (res->u.fIntVector.fArray == NULL) { 1006 *status = U_MEMORY_ALLOCATION_ERROR; 1007 uprv_free(res); 1008 return NULL; 1009 } 1010 return res; 1011 } 1012 1013 struct SResource *int_open(struct SRBRoot *bundle, const char *tag, int32_t value, const struct UString* comment, UErrorCode *status) { 1014 struct SResource *res = res_open(bundle, tag, comment, status); 1015 if (U_FAILURE(*status)) { 1016 return NULL; 1017 } 1018 res->fType = URES_INT; 1019 res->u.fIntValue.fValue = value; 1020 res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF); 1021 res->fWritten = TRUE; 1022 return res; 1023 } 1024 1025 struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) { 1026 struct SResource *res = res_open(bundle, tag, comment, status); 1027 if (U_FAILURE(*status)) { 1028 return NULL; 1029 } 1030 res->fType = URES_BINARY; 1031 1032 res->u.fBinaryValue.fLength = length; 1033 res->u.fBinaryValue.fFileName = NULL; 1034 if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){ 1035 res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1)); 1036 uprv_strcpy(res->u.fBinaryValue.fFileName,fileName); 1037 } 1038 if (length > 0) { 1039 res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length); 1040 1041 if (res->u.fBinaryValue.fData == NULL) { 1042 *status = U_MEMORY_ALLOCATION_ERROR; 1043 uprv_free(res); 1044 return NULL; 1045 } 1046 1047 uprv_memcpy(res->u.fBinaryValue.fData, data, length); 1048 } 1049 else { 1050 res->u.fBinaryValue.fData = NULL; 1051 if (gFormatVersion > 1) { 1052 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY); 1053 res->fWritten = TRUE; 1054 } 1055 } 1056 1057 return res; 1058 } 1059 1060 struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) { 1061 struct SRBRoot *bundle; 1062 1063 if (U_FAILURE(*status)) { 1064 return NULL; 1065 } 1066 1067 bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot)); 1068 if (bundle == NULL) { 1069 *status = U_MEMORY_ALLOCATION_ERROR; 1070 return 0; 1071 } 1072 uprv_memset(bundle, 0, sizeof(struct SRBRoot)); 1073 1074 bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE); 1075 bundle->fRoot = table_open(bundle, NULL, comment, status); 1076 if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) { 1077 if (U_SUCCESS(*status)) { 1078 *status = U_MEMORY_ALLOCATION_ERROR; 1079 } 1080 bundle_close(bundle, status); 1081 return NULL; 1082 } 1083 1084 bundle->fLocale = NULL; 1085 bundle->fKeysCapacity = KEY_SPACE_SIZE; 1086 /* formatVersion 1.1: start fKeysTop after the root item and indexes[] */ 1087 bundle->fIsPoolBundle = isPoolBundle; 1088 if (gUsePoolBundle || isPoolBundle) { 1089 bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1; 1090 } else if (gFormatVersion >= 2) { 1091 bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1; 1092 } else /* formatVersion 1 */ { 1093 bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1; 1094 } 1095 bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4; 1096 uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom); 1097 bundle->fKeysTop = bundle->fKeysBottom; 1098 1099 if (gFormatVersion == 1) { 1100 bundle->fStringsForm = STRINGS_UTF16_V1; 1101 } else { 1102 bundle->fStringsForm = STRINGS_UTF16_V2; 1103 } 1104 1105 return bundle; 1106 } 1107 1108 /* Closing Functions */ 1109 static void table_close(struct SResource *table) { 1110 struct SResource *current = NULL; 1111 struct SResource *prev = NULL; 1112 1113 current = table->u.fTable.fFirst; 1114 1115 while (current != NULL) { 1116 prev = current; 1117 current = current->fNext; 1118 1119 res_close(prev); 1120 } 1121 1122 table->u.fTable.fFirst = NULL; 1123 } 1124 1125 static void array_close(struct SResource *array) { 1126 struct SResource *current = NULL; 1127 struct SResource *prev = NULL; 1128 1129 if(array==NULL){ 1130 return; 1131 } 1132 current = array->u.fArray.fFirst; 1133 1134 while (current != NULL) { 1135 prev = current; 1136 current = current->fNext; 1137 1138 res_close(prev); 1139 } 1140 array->u.fArray.fFirst = NULL; 1141 } 1142 1143 static void string_close(struct SResource *string) { 1144 if (string->u.fString.fChars != NULL && 1145 string->u.fString.fChars != &gEmptyString && 1146 string->u.fString.fSame == NULL 1147 ) { 1148 uprv_free(string->u.fString.fChars); 1149 string->u.fString.fChars =NULL; 1150 } 1151 } 1152 1153 static void alias_close(struct SResource *alias) { 1154 if (alias->u.fString.fChars != NULL) { 1155 uprv_free(alias->u.fString.fChars); 1156 alias->u.fString.fChars =NULL; 1157 } 1158 } 1159 1160 static void intvector_close(struct SResource *intvector) { 1161 if (intvector->u.fIntVector.fArray != NULL) { 1162 uprv_free(intvector->u.fIntVector.fArray); 1163 intvector->u.fIntVector.fArray =NULL; 1164 } 1165 } 1166 1167 static void int_close(struct SResource *intres) { 1168 /* Intentionally left blank */ 1169 } 1170 1171 static void bin_close(struct SResource *binres) { 1172 if (binres->u.fBinaryValue.fData != NULL) { 1173 uprv_free(binres->u.fBinaryValue.fData); 1174 binres->u.fBinaryValue.fData = NULL; 1175 } 1176 if (binres->u.fBinaryValue.fFileName != NULL) { 1177 uprv_free(binres->u.fBinaryValue.fFileName); 1178 binres->u.fBinaryValue.fFileName = NULL; 1179 } 1180 } 1181 1182 void res_close(struct SResource *res) { 1183 if (res != NULL) { 1184 switch(res->fType) { 1185 case URES_STRING: 1186 string_close(res); 1187 break; 1188 case URES_ALIAS: 1189 alias_close(res); 1190 break; 1191 case URES_INT_VECTOR: 1192 intvector_close(res); 1193 break; 1194 case URES_BINARY: 1195 bin_close(res); 1196 break; 1197 case URES_INT: 1198 int_close(res); 1199 break; 1200 case URES_ARRAY: 1201 array_close(res); 1202 break; 1203 case URES_TABLE: 1204 table_close(res); 1205 break; 1206 default: 1207 /* Shouldn't happen */ 1208 break; 1209 } 1210 1211 ustr_deinit(&res->fComment); 1212 uprv_free(res); 1213 } 1214 } 1215 1216 void bundle_close(struct SRBRoot *bundle, UErrorCode *status) { 1217 res_close(bundle->fRoot); 1218 uprv_free(bundle->fLocale); 1219 uprv_free(bundle->fKeys); 1220 uprv_free(bundle->fKeyMap); 1221 uhash_close(bundle->fStringSet); 1222 uprv_free(bundle->f16BitUnits); 1223 uprv_free(bundle); 1224 } 1225 1226 void bundle_closeString(struct SRBRoot *bundle, struct SResource *string) { 1227 if (bundle->fStringSet != NULL) { 1228 uhash_remove(bundle->fStringSet, string); 1229 } 1230 string_close(string); 1231 } 1232 1233 /* Adding Functions */ 1234 void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) { 1235 struct SResource *current = NULL; 1236 struct SResource *prev = NULL; 1237 struct SResTable *list; 1238 const char *resKeyString; 1239 1240 if (U_FAILURE(*status)) { 1241 return; 1242 } 1243 if (res == &kNoResource) { 1244 return; 1245 } 1246 1247 /* remember this linenumber to report to the user if there is a duplicate key */ 1248 res->line = linenumber; 1249 1250 /* here we need to traverse the list */ 1251 list = &(table->u.fTable); 1252 ++(list->fCount); 1253 1254 /* is list still empty? */ 1255 if (list->fFirst == NULL) { 1256 list->fFirst = res; 1257 res->fNext = NULL; 1258 return; 1259 } 1260 1261 resKeyString = list->fRoot->fKeys + res->fKey; 1262 1263 current = list->fFirst; 1264 1265 while (current != NULL) { 1266 const char *currentKeyString = list->fRoot->fKeys + current->fKey; 1267 int diff; 1268 /* 1269 * formatVersion 1: compare key strings in native-charset order 1270 * formatVersion 2 and up: compare key strings in ASCII order 1271 */ 1272 if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) { 1273 diff = uprv_strcmp(currentKeyString, resKeyString); 1274 } else { 1275 diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString); 1276 } 1277 if (diff < 0) { 1278 prev = current; 1279 current = current->fNext; 1280 } else if (diff > 0) { 1281 /* we're either in front of list, or in middle */ 1282 if (prev == NULL) { 1283 /* front of the list */ 1284 list->fFirst = res; 1285 } else { 1286 /* middle of the list */ 1287 prev->fNext = res; 1288 } 1289 1290 res->fNext = current; 1291 return; 1292 } else { 1293 /* Key already exists! ERROR! */ 1294 error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line); 1295 *status = U_UNSUPPORTED_ERROR; 1296 return; 1297 } 1298 } 1299 1300 /* end of list */ 1301 prev->fNext = res; 1302 res->fNext = NULL; 1303 } 1304 1305 void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) { 1306 if (U_FAILURE(*status)) { 1307 return; 1308 } 1309 1310 if (array->u.fArray.fFirst == NULL) { 1311 array->u.fArray.fFirst = res; 1312 array->u.fArray.fLast = res; 1313 } else { 1314 array->u.fArray.fLast->fNext = res; 1315 array->u.fArray.fLast = res; 1316 } 1317 1318 (array->u.fArray.fCount)++; 1319 } 1320 1321 void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) { 1322 if (U_FAILURE(*status)) { 1323 return; 1324 } 1325 1326 *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value; 1327 intvector->u.fIntVector.fCount++; 1328 } 1329 1330 /* Misc Functions */ 1331 1332 void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) { 1333 1334 if(U_FAILURE(*status)) { 1335 return; 1336 } 1337 1338 if (bundle->fLocale!=NULL) { 1339 uprv_free(bundle->fLocale); 1340 } 1341 1342 bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1)); 1343 1344 if(bundle->fLocale == NULL) { 1345 *status = U_MEMORY_ALLOCATION_ERROR; 1346 return; 1347 } 1348 1349 /*u_strcpy(bundle->fLocale, locale);*/ 1350 u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1); 1351 1352 } 1353 1354 static const char * 1355 getKeyString(const struct SRBRoot *bundle, int32_t key) { 1356 if (key < 0) { 1357 return bundle->fPoolBundleKeys + (key & 0x7fffffff); 1358 } else { 1359 return bundle->fKeys + key; 1360 } 1361 } 1362 1363 const char * 1364 res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) { 1365 if (res->fKey == -1) { 1366 return NULL; 1367 } 1368 return getKeyString(bundle, res->fKey); 1369 } 1370 1371 const char * 1372 bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) { 1373 *pLength = bundle->fKeysTop - bundle->fKeysBottom; 1374 return bundle->fKeys + bundle->fKeysBottom; 1375 } 1376 1377 int32_t 1378 bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) { 1379 int32_t keypos; 1380 1381 if (U_FAILURE(*status)) { 1382 return -1; 1383 } 1384 if (length < 0 || (keyBytes == NULL && length != 0)) { 1385 *status = U_ILLEGAL_ARGUMENT_ERROR; 1386 return -1; 1387 } 1388 if (length == 0) { 1389 return bundle->fKeysTop; 1390 } 1391 1392 keypos = bundle->fKeysTop; 1393 bundle->fKeysTop += length; 1394 if (bundle->fKeysTop >= bundle->fKeysCapacity) { 1395 /* overflow - resize the keys buffer */ 1396 bundle->fKeysCapacity += KEY_SPACE_SIZE; 1397 bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity); 1398 if(bundle->fKeys == NULL) { 1399 *status = U_MEMORY_ALLOCATION_ERROR; 1400 return -1; 1401 } 1402 } 1403 1404 uprv_memcpy(bundle->fKeys + keypos, keyBytes, length); 1405 1406 return keypos; 1407 } 1408 1409 int32_t 1410 bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) { 1411 int32_t keypos; 1412 1413 if (U_FAILURE(*status)) { 1414 return -1; 1415 } 1416 1417 if (tag == NULL) { 1418 /* no error: the root table and array items have no keys */ 1419 return -1; 1420 } 1421 1422 keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status); 1423 if (U_SUCCESS(*status)) { 1424 ++bundle->fKeysCount; 1425 } 1426 return keypos; 1427 } 1428 1429 static int32_t 1430 compareInt32(int32_t lPos, int32_t rPos) { 1431 /* 1432 * Compare possibly-negative key offsets. Don't just return lPos - rPos 1433 * because that is prone to negative-integer underflows. 1434 */ 1435 if (lPos < rPos) { 1436 return -1; 1437 } else if (lPos > rPos) { 1438 return 1; 1439 } else { 1440 return 0; 1441 } 1442 } 1443 1444 static int32_t U_CALLCONV 1445 compareKeySuffixes(const void *context, const void *l, const void *r) { 1446 const struct SRBRoot *bundle=(const struct SRBRoot *)context; 1447 int32_t lPos = ((const KeyMapEntry *)l)->oldpos; 1448 int32_t rPos = ((const KeyMapEntry *)r)->oldpos; 1449 const char *lStart = getKeyString(bundle, lPos); 1450 const char *lLimit = lStart; 1451 const char *rStart = getKeyString(bundle, rPos); 1452 const char *rLimit = rStart; 1453 int32_t diff; 1454 while (*lLimit != 0) { ++lLimit; } 1455 while (*rLimit != 0) { ++rLimit; } 1456 /* compare keys in reverse character order */ 1457 while (lStart < lLimit && rStart < rLimit) { 1458 diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit; 1459 if (diff != 0) { 1460 return diff; 1461 } 1462 } 1463 /* sort equal suffixes by descending key length */ 1464 diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart); 1465 if (diff != 0) { 1466 return diff; 1467 } 1468 /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */ 1469 return compareInt32(lPos, rPos); 1470 } 1471 1472 static int32_t U_CALLCONV 1473 compareKeyNewpos(const void *context, const void *l, const void *r) { 1474 return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos); 1475 } 1476 1477 static int32_t U_CALLCONV 1478 compareKeyOldpos(const void *context, const void *l, const void *r) { 1479 return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos); 1480 } 1481 1482 void 1483 bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) { 1484 KeyMapEntry *map; 1485 char *keys; 1486 int32_t i; 1487 int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount; 1488 if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) { 1489 return; 1490 } 1491 map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry)); 1492 if (map == NULL) { 1493 *status = U_MEMORY_ALLOCATION_ERROR; 1494 return; 1495 } 1496 keys = (char *)bundle->fPoolBundleKeys; 1497 for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) { 1498 map[i].oldpos = 1499 (int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000; /* negative oldpos */ 1500 map[i].newpos = 0; 1501 while (*keys != 0) { ++keys; } /* skip the key */ 1502 ++keys; /* skip the NUL */ 1503 } 1504 keys = bundle->fKeys + bundle->fKeysBottom; 1505 for (; i < keysCount; ++i) { 1506 map[i].oldpos = (int32_t)(keys - bundle->fKeys); 1507 map[i].newpos = 0; 1508 while (*keys != 0) { ++keys; } /* skip the key */ 1509 ++keys; /* skip the NUL */ 1510 } 1511 /* Sort the keys so that each one is immediately followed by all of its suffixes. */ 1512 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1513 compareKeySuffixes, bundle, FALSE, status); 1514 /* 1515 * Make suffixes point into earlier, longer strings that contain them 1516 * and mark the old, now unused suffix bytes as deleted. 1517 */ 1518 if (U_SUCCESS(*status)) { 1519 keys = bundle->fKeys; 1520 for (i = 0; i < keysCount;) { 1521 /* 1522 * This key is not a suffix of the previous one; 1523 * keep this one and delete the following ones that are 1524 * suffixes of this one. 1525 */ 1526 const char *key; 1527 const char *keyLimit; 1528 int32_t j = i + 1; 1529 map[i].newpos = map[i].oldpos; 1530 if (j < keysCount && map[j].oldpos < 0) { 1531 /* Key string from the pool bundle, do not delete. */ 1532 i = j; 1533 continue; 1534 } 1535 key = getKeyString(bundle, map[i].oldpos); 1536 for (keyLimit = key; *keyLimit != 0; ++keyLimit) {} 1537 for (; j < keysCount && map[j].oldpos >= 0; ++j) { 1538 const char *k; 1539 char *suffix; 1540 const char *suffixLimit; 1541 int32_t offset; 1542 suffix = keys + map[j].oldpos; 1543 for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {} 1544 offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix); 1545 if (offset < 0) { 1546 break; /* suffix cannot be longer than the original */ 1547 } 1548 /* Is it a suffix of the earlier, longer key? */ 1549 for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {} 1550 if (suffix == suffixLimit && *k == *suffixLimit) { 1551 map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */ 1552 /* mark the suffix as deleted */ 1553 while (*suffix != 0) { *suffix++ = 1; } 1554 *suffix = 1; 1555 } else { 1556 break; /* not a suffix, restart from here */ 1557 } 1558 } 1559 i = j; 1560 } 1561 /* 1562 * Re-sort by newpos, then modify the key characters array in-place 1563 * to squeeze out unused bytes, and readjust the newpos offsets. 1564 */ 1565 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1566 compareKeyNewpos, NULL, FALSE, status); 1567 if (U_SUCCESS(*status)) { 1568 int32_t oldpos, newpos, limit; 1569 oldpos = newpos = bundle->fKeysBottom; 1570 limit = bundle->fKeysTop; 1571 /* skip key offsets that point into the pool bundle rather than this new bundle */ 1572 for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {} 1573 if (i < keysCount) { 1574 while (oldpos < limit) { 1575 if (keys[oldpos] == 1) { 1576 ++oldpos; /* skip unused bytes */ 1577 } else { 1578 /* adjust the new offsets for keys starting here */ 1579 while (i < keysCount && map[i].newpos == oldpos) { 1580 map[i++].newpos = newpos; 1581 } 1582 /* move the key characters to their new position */ 1583 keys[newpos++] = keys[oldpos++]; 1584 } 1585 } 1586 assert(i == keysCount); 1587 } 1588 bundle->fKeysTop = newpos; 1589 /* Re-sort once more, by old offsets for binary searching. */ 1590 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1591 compareKeyOldpos, NULL, FALSE, status); 1592 if (U_SUCCESS(*status)) { 1593 /* key size reduction by limit - newpos */ 1594 bundle->fKeyMap = map; 1595 map = NULL; 1596 } 1597 } 1598 } 1599 uprv_free(map); 1600 } 1601 1602 static int32_t U_CALLCONV 1603 compareStringSuffixes(const void *context, const void *l, const void *r) { 1604 struct SResource *left = *((struct SResource **)l); 1605 struct SResource *right = *((struct SResource **)r); 1606 const UChar *lStart = left->u.fString.fChars; 1607 const UChar *lLimit = lStart + left->u.fString.fLength; 1608 const UChar *rStart = right->u.fString.fChars; 1609 const UChar *rLimit = rStart + right->u.fString.fLength; 1610 int32_t diff; 1611 /* compare keys in reverse character order */ 1612 while (lStart < lLimit && rStart < rLimit) { 1613 diff = (int32_t)*--lLimit - (int32_t)*--rLimit; 1614 if (diff != 0) { 1615 return diff; 1616 } 1617 } 1618 /* sort equal suffixes by descending string length */ 1619 return right->u.fString.fLength - left->u.fString.fLength; 1620 } 1621 1622 static int32_t U_CALLCONV 1623 compareStringLengths(const void *context, const void *l, const void *r) { 1624 struct SResource *left = *((struct SResource **)l); 1625 struct SResource *right = *((struct SResource **)r); 1626 int32_t diff; 1627 /* Make "is suffix of another string" compare greater than a non-suffix. */ 1628 diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL); 1629 if (diff != 0) { 1630 return diff; 1631 } 1632 /* sort by ascending string length */ 1633 return left->u.fString.fLength - right->u.fString.fLength; 1634 } 1635 1636 static int32_t 1637 string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) { 1638 int32_t length = res->u.fString.fLength; 1639 res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length); 1640 res->fWritten = TRUE; 1641 switch(res->u.fString.fNumCharsForLength) { 1642 case 0: 1643 break; 1644 case 1: 1645 bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length); 1646 break; 1647 case 2: 1648 bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16)); 1649 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length; 1650 utf16Length += 2; 1651 break; 1652 case 3: 1653 bundle->f16BitUnits[utf16Length] = 0xdfff; 1654 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16); 1655 bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length; 1656 utf16Length += 3; 1657 break; 1658 default: 1659 break; /* will not occur */ 1660 } 1661 u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1); 1662 return utf16Length + length + 1; 1663 } 1664 1665 static void 1666 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) { 1667 if (U_FAILURE(*status)) { 1668 return; 1669 } 1670 switch(bundle->fStringsForm) { 1671 case STRINGS_UTF16_V2: 1672 if (bundle->f16BitUnitsLength > 0) { 1673 struct SResource **array; 1674 int32_t count = uhash_count(bundle->fStringSet); 1675 int32_t i, pos; 1676 /* 1677 * Allocate enough space for the initial NUL and the UTF-16 v2 strings, 1678 * and some extra for URES_TABLE16 and URES_ARRAY16 values. 1679 * Round down to an even number. 1680 */ 1681 int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1; 1682 bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR); 1683 array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **)); 1684 if (bundle->f16BitUnits == NULL || array == NULL) { 1685 uprv_free(bundle->f16BitUnits); 1686 bundle->f16BitUnits = NULL; 1687 uprv_free(array); 1688 *status = U_MEMORY_ALLOCATION_ERROR; 1689 return; 1690 } 1691 bundle->f16BitUnitsCapacity = utf16Length; 1692 /* insert the initial NUL */ 1693 bundle->f16BitUnits[0] = 0; 1694 utf16Length = 1; 1695 ++bundle->f16BitUnitsLength; 1696 for (pos = -1, i = 0; i < count; ++i) { 1697 array[i] = (struct SResource *)uhash_nextElement(bundle->fStringSet, &pos)->key.pointer; 1698 } 1699 /* Sort the strings so that each one is immediately followed by all of its suffixes. */ 1700 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), 1701 compareStringSuffixes, NULL, FALSE, status); 1702 /* 1703 * Make suffixes point into earlier, longer strings that contain them. 1704 * Temporarily use fSame and fSuffixOffset for suffix strings to 1705 * refer to the remaining ones. 1706 */ 1707 if (U_SUCCESS(*status)) { 1708 for (i = 0; i < count;) { 1709 /* 1710 * This string is not a suffix of the previous one; 1711 * write this one and subsume the following ones that are 1712 * suffixes of this one. 1713 */ 1714 struct SResource *res = array[i]; 1715 const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength; 1716 int32_t j; 1717 for (j = i + 1; j < count; ++j) { 1718 struct SResource *suffixRes = array[j]; 1719 const UChar *s; 1720 const UChar *suffix = suffixRes->u.fString.fChars; 1721 const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength; 1722 int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength; 1723 if (offset < 0) { 1724 break; /* suffix cannot be longer than the original */ 1725 } 1726 /* Is it a suffix of the earlier, longer key? */ 1727 for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {} 1728 if (suffix == suffixLimit && *s == *suffixLimit) { 1729 if (suffixRes->u.fString.fNumCharsForLength == 0) { 1730 /* yes, point to the earlier string */ 1731 suffixRes->u.fString.fSame = res; 1732 suffixRes->u.fString.fSuffixOffset = offset; 1733 } else { 1734 /* write the suffix by itself if we need explicit length */ 1735 } 1736 } else { 1737 break; /* not a suffix, restart from here */ 1738 } 1739 } 1740 i = j; 1741 } 1742 } 1743 /* 1744 * Re-sort the strings by ascending length (except suffixes last) 1745 * to optimize for URES_TABLE16 and URES_ARRAY16: 1746 * Keep as many as possible within reach of 16-bit offsets. 1747 */ 1748 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), 1749 compareStringLengths, NULL, FALSE, status); 1750 if (U_SUCCESS(*status)) { 1751 /* Write the non-suffix strings. */ 1752 for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) { 1753 utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length); 1754 } 1755 /* Write the suffix strings. Make each point to the real string. */ 1756 for (; i < count; ++i) { 1757 struct SResource *res = array[i]; 1758 struct SResource *same = res->u.fString.fSame; 1759 res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset; 1760 res->u.fString.fSame = NULL; 1761 res->fWritten = TRUE; 1762 } 1763 } 1764 assert(utf16Length <= bundle->f16BitUnitsLength); 1765 bundle->f16BitUnitsLength = utf16Length; 1766 uprv_free(array); 1767 } 1768 break; 1769 default: 1770 break; 1771 } 1772 } 1773