1 /* Generate the LR(0) parser states for Bison. 2 3 Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2007, 2009-2012 Free 4 Software Foundation, Inc. 5 6 This file is part of Bison, the GNU Compiler Compiler. 7 8 This program is free software: you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation, either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 22 /* See comments in state.h for the data structures that represent it. 23 The entry point is generate_states. */ 24 25 #include <config.h> 26 #include "system.h" 27 28 #include <bitset.h> 29 30 #include "LR0.h" 31 #include "closure.h" 32 #include "complain.h" 33 #include "getargs.h" 34 #include "gram.h" 35 #include "gram.h" 36 #include "lalr.h" 37 #include "reader.h" 38 #include "reduce.h" 39 #include "state.h" 40 #include "symtab.h" 41 42 typedef struct state_list 43 { 44 struct state_list *next; 45 state *state; 46 } state_list; 47 48 static state_list *first_state = NULL; 49 static state_list *last_state = NULL; 50 51 52 /*------------------------------------------------------------------. 53 | A state was just discovered from another state. Queue it for | 54 | later examination, in order to find its transitions. Return it. | 55 `------------------------------------------------------------------*/ 56 57 static state * 58 state_list_append (symbol_number sym, size_t core_size, item_number *core) 59 { 60 state_list *node = xmalloc (sizeof *node); 61 state *s = state_new (sym, core_size, core); 62 63 if (trace_flag & trace_automaton) 64 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n", 65 nstates, sym, symbols[sym]->tag); 66 67 node->next = NULL; 68 node->state = s; 69 70 if (!first_state) 71 first_state = node; 72 if (last_state) 73 last_state->next = node; 74 last_state = node; 75 76 return s; 77 } 78 79 static int nshifts; 80 static symbol_number *shift_symbol; 81 82 static rule **redset; 83 static state **shiftset; 84 85 static item_number **kernel_base; 86 static int *kernel_size; 87 static item_number *kernel_items; 88 89 90 static void 92 allocate_itemsets (void) 93 { 94 symbol_number i; 95 rule_number r; 96 item_number *rhsp; 97 98 /* Count the number of occurrences of all the symbols in RITEMS. 99 Note that useless productions (hence useless nonterminals) are 100 browsed too, hence we need to allocate room for _all_ the 101 symbols. */ 102 size_t count = 0; 103 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals, 104 sizeof *symbol_count); 105 106 for (r = 0; r < nrules; ++r) 107 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) 108 { 109 count++; 110 symbol_count[*rhsp]++; 111 } 112 113 /* See comments before new_itemsets. All the vectors of items 114 live inside KERNEL_ITEMS. The number of active items after 115 some symbol S cannot be more than the number of times that S 116 appears as an item, which is SYMBOL_COUNT[S]. 117 We allocate that much space for each symbol. */ 118 119 kernel_base = xnmalloc (nsyms, sizeof *kernel_base); 120 kernel_items = xnmalloc (count, sizeof *kernel_items); 121 122 count = 0; 123 for (i = 0; i < nsyms; i++) 124 { 125 kernel_base[i] = kernel_items + count; 126 count += symbol_count[i]; 127 } 128 129 free (symbol_count); 130 kernel_size = xnmalloc (nsyms, sizeof *kernel_size); 131 } 132 133 134 static void 135 allocate_storage (void) 136 { 137 allocate_itemsets (); 138 139 shiftset = xnmalloc (nsyms, sizeof *shiftset); 140 redset = xnmalloc (nrules, sizeof *redset); 141 state_hash_new (); 142 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol); 143 } 144 145 146 static void 147 free_storage (void) 148 { 149 free (shift_symbol); 150 free (redset); 151 free (shiftset); 152 free (kernel_base); 153 free (kernel_size); 154 free (kernel_items); 155 state_hash_free (); 156 } 157 158 159 160 161 /*---------------------------------------------------------------. 162 | Find which symbols can be shifted in S, and for each one | 163 | record which items would be active after that shift. Uses the | 164 | contents of itemset. | 165 | | 166 | shift_symbol is set to a vector of the symbols that can be | 167 | shifted. For each symbol in the grammar, kernel_base[symbol] | 168 | points to a vector of item numbers activated if that symbol is | 169 | shifted, and kernel_size[symbol] is their numbers. | 170 | | 171 | itemset is sorted on item index in ritem, which is sorted on | 172 | rule number. Compute each kernel_base[symbol] with the same | 173 | sort. | 174 `---------------------------------------------------------------*/ 175 176 static void 177 new_itemsets (state *s) 178 { 179 size_t i; 180 181 if (trace_flag & trace_automaton) 182 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number); 183 184 memset (kernel_size, 0, nsyms * sizeof *kernel_size); 185 186 nshifts = 0; 187 188 for (i = 0; i < nitemset; ++i) 189 if (item_number_is_symbol_number (ritem[itemset[i]])) 190 { 191 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]); 192 if (!kernel_size[sym]) 193 { 194 shift_symbol[nshifts] = sym; 195 nshifts++; 196 } 197 198 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1; 199 kernel_size[sym]++; 200 } 201 } 202 203 204 205 /*--------------------------------------------------------------. 206 | Find the state we would get to (from the current state) by | 207 | shifting SYM. Create a new state if no equivalent one exists | 208 | already. Used by append_states. | 209 `--------------------------------------------------------------*/ 210 211 static state * 212 get_state (symbol_number sym, size_t core_size, item_number *core) 213 { 214 state *s; 215 216 if (trace_flag & trace_automaton) 217 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", 218 sym, symbols[sym]->tag); 219 220 s = state_hash_lookup (core_size, core); 221 if (!s) 222 s = state_list_append (sym, core_size, core); 223 224 if (trace_flag & trace_automaton) 225 fprintf (stderr, "Exiting get_state => %d\n", s->number); 226 227 return s; 228 } 229 230 /*---------------------------------------------------------------. 231 | Use the information computed by new_itemsets to find the state | 232 | numbers reached by each shift transition from S. | 233 | | 234 | SHIFTSET is set up as a vector of those states. | 235 `---------------------------------------------------------------*/ 236 237 static void 238 append_states (state *s) 239 { 240 int i; 241 242 if (trace_flag & trace_automaton) 243 fprintf (stderr, "Entering append_states, state = %d\n", s->number); 244 245 /* First sort shift_symbol into increasing order. */ 246 247 for (i = 1; i < nshifts; i++) 248 { 249 symbol_number sym = shift_symbol[i]; 250 int j; 251 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--) 252 shift_symbol[j] = shift_symbol[j - 1]; 253 shift_symbol[j] = sym; 254 } 255 256 for (i = 0; i < nshifts; i++) 257 { 258 symbol_number sym = shift_symbol[i]; 259 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]); 260 } 261 } 262 263 264 /*----------------------------------------------------------------. 265 | Find which rules can be used for reduction transitions from the | 266 | current state and make a reductions structure for the state to | 267 | record their rule numbers. | 268 `----------------------------------------------------------------*/ 269 270 static void 271 save_reductions (state *s) 272 { 273 int count = 0; 274 size_t i; 275 276 /* Find and count the active items that represent ends of rules. */ 277 for (i = 0; i < nitemset; ++i) 278 { 279 item_number item = ritem[itemset[i]]; 280 if (item_number_is_rule_number (item)) 281 { 282 rule_number r = item_number_as_rule_number (item); 283 redset[count++] = &rules[r]; 284 if (r == 0) 285 { 286 /* This is "reduce 0", i.e., accept. */ 287 aver (!final_state); 288 final_state = s; 289 } 290 } 291 } 292 293 /* Make a reductions structure and copy the data into it. */ 294 state_reductions_set (s, count, redset); 295 } 296 297 298 /*---------------. 300 | Build STATES. | 301 `---------------*/ 302 303 static void 304 set_states (void) 305 { 306 states = xcalloc (nstates, sizeof *states); 307 308 while (first_state) 309 { 310 state_list *this = first_state; 311 312 /* Pessimization, but simplification of the code: make sure all 313 the states have valid transitions and reductions members, 314 even if reduced to 0. It is too soon for errs, which are 315 computed later, but set_conflicts. */ 316 state *s = this->state; 317 if (!s->transitions) 318 state_transitions_set (s, 0, 0); 319 if (!s->reductions) 320 state_reductions_set (s, 0, 0); 321 322 states[s->number] = s; 323 324 first_state = this->next; 325 free (this); 326 } 327 first_state = NULL; 328 last_state = NULL; 329 } 330 331 332 /*-------------------------------------------------------------------. 333 | Compute the LR(0) parser states (see state.h for details) from the | 334 | grammar. | 335 `-------------------------------------------------------------------*/ 336 337 void 338 generate_states (void) 339 { 340 item_number initial_core = 0; 341 state_list *list = NULL; 342 allocate_storage (); 343 new_closure (nritems); 344 345 /* Create the initial state. The 0 at the lhs is the index of the 346 item of this initial rule. */ 347 state_list_append (0, 1, &initial_core); 348 349 /* States are queued when they are created; process them all. */ 350 for (list = first_state; list; list = list->next) 351 { 352 state *s = list->state; 353 if (trace_flag & trace_automaton) 354 fprintf (stderr, "Processing state %d (reached by %s)\n", 355 s->number, 356 symbols[s->accessing_symbol]->tag); 357 /* Set up itemset for the transitions out of this state. itemset gets a 358 vector of all the items that could be accepted next. */ 359 closure (s->items, s->nitems); 360 /* Record the reductions allowed out of this state. */ 361 save_reductions (s); 362 /* Find the itemsets of the states that shifts can reach. */ 363 new_itemsets (s); 364 /* Find or create the core structures for those states. */ 365 append_states (s); 366 367 /* Create the shifts structures for the shifts to those states, 368 now that the state numbers transitioning to are known. */ 369 state_transitions_set (s, nshifts, shiftset); 370 } 371 372 /* discard various storage */ 373 free_closure (); 374 free_storage (); 375 376 /* Set up STATES. */ 377 set_states (); 378 } 379