OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:sparse
(Results
101 - 125
of
507
) sorted by null
1
2
3
4
5
6
7
8
9
10
11
>>
/external/jmonkeyengine/engine/src/core-effects/com/jme3/post/filters/
DepthOfFieldFilter.java
133
* down. A value of 1 (the default) performs a
sparse
5x5 evenly
138
* The
sparse
convolution is as follows:
/external/regex-re2/util/
sparse_array.h
39
// Representation for
Sparse
Sets, ACM Letters on Programming Languages
49
// Briggs & Torczon describe a
sparse
set implementation. I have
50
// trivially generalized it to create a
sparse
array (actually the original
56
// size max_size_. At any point, the number of elements in the
sparse
array is
59
// The vector dense_ contains the size_ elements in the
sparse
array (with
86
// To make the
sparse
array as efficient as possible for non-primitive types,
87
// elements may or may not be destroyed when they are deleted from the
sparse
154
// Can sort the
sparse
array so that future iterations
sparse_set.h
38
// Representation for
Sparse
Sets, ACM Letters on Programming Languages
41
// For a generalization to
sparse
array, see sparse_array.h.
162
// Can sort the
sparse
array so that future iterations
/external/smali/baksmali/src/main/java/org/jf/baksmali/Adaptors/Format/
SparseSwitchMethodItem.java
81
writer.write(".
sparse
-switch\n");
90
writer.write(".end
sparse
-switch");
/system/core/toolbox/
dd.h
66
uint64_t
sparse
; /* # of
sparse
output blocks */
member in struct:__anon44024
/external/ceres-solver/internal/ceres/
sparse_normal_cholesky_solver.cc
91
LOG(FATAL) << "Unknown
sparse
linear algebra library : "
95
LOG(FATAL) << "Unknown
sparse
linear algebra library : "
121
// Wrap the augmented Jacobian in a compressed
sparse
column matrix.
125
// using a
sparse
Cholesky factorization. Notice that when compared
evaluator.h
98
// Build and return a
sparse
matrix for storing and working with the Jacobian
101
//
sparse
. Since the sparsity pattern of the Jacobian remains constant over
108
// of their client's requirements for the kind of
sparse
matrix storage and
matrix.proto
63
// A block
sparse
matrix, either in column major or row major format.
104
// A
sparse
matrix. It is a union; only one field is permitted. If new
sparse
schur_complement_solver.h
90
// complement matrix is large and
sparse
. It requires that
92
//
sparse
Cholesky factorization of the Schur complement. This solver
154
//
Sparse
Cholesky factorization based solver.
triplet_sparse_matrix.h
45
// manipulate
sparse
matrices in triplet (i,j,s) form. This object is
110
// Build a
sparse
diagonal matrix of size num_rows x num_rows from
112
//
sparse
matrix.
program_evaluator.h
38
// jacobian blocks in the passed
sparse
matrix.
41
// supporting writing to multiple
sparse
matrix formats. For example, when the
42
// ProgramEvaluator is parameterized for writing to block
sparse
matrices, the
44
// block
sparse
matrix by the user's CostFunction; there is no copying.
69
// // larger
sparse
jacobian.
/external/e2fsprogs/util/
Makefile.in
44
copy-
sparse
/external/eigen/Eigen/src/SparseCore/
AmbiVector.h
18
* Hybrid
sparse
/dense vector class designed for intensive read-write operations.
68
// that we can handle dense vector even in
sparse
mode.
236
eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in
sparse
mode");
360
Index m_currentEl; // the current element in
sparse
/linked-list mode
CoreIterators.h
20
* \brief An InnerIterator allows to loop over the element of a
sparse
(or dense) matrix or expression
/external/webkit/Source/WebCore/manual-tests/
array-out-of-memory.html
13
// In order to force arr[target] to be stored in the vector, rather than the
sparse
map, we need ensure the vector is sufficiently densely populated.
/sdk/eclipse/plugins/com.android.ide.eclipse.gldebugger/src/com/android/ide/eclipse/gltrace/state/transforms/
SparseArrayElementAddTransform.java
24
* element to a
sparse
array, if there is no item with the same key already.
/system/core/libsparse/
Android.mk
8
sparse
.c \
/external/ceres-solver/docs/
solving.tex
237
\subsection{\texttt{DENSE\_NORMAL\_CHOLESKY} \& \texttt{
SPARSE
\_NORMAL\_CHOLESKY}}
238
Large non-linear least square problems are usually
sparse
. In such cases, using a dense QR factorization is inefficient. Let $H = R^\top R$ be the Cholesky factorization of the normal equations, where $R$ is an upper triangular matrix, then the solution to ~\eqref{eq:normal} is given by
245
implies that $J^\top J = R^\top Q^\top Q R = R^\top R$. There are two variants of Cholesky factorization --
sparse
and
252
\texttt{
SPARSE
\_NORMAL\_CHOLESKY}, as the name implies performs a
253
sparse
Cholesky factorization of the normal equations. This leads to
254
substantial savings in time and memory for large
sparse
255
problems. Ceres uses the
sparse
Cholesky factorization routines in Professor Tim Davis' \texttt{SuiteSparse} or
258
\subsection{\texttt{DENSE\_SCHUR} \& \texttt{
SPARSE
\_SCHUR}}
259
While it is possible to use \texttt{
SPARSE
\_NORMAL\_CHOLESKY} to solve bundle adjustment problems, bundle adjustment problem have a special structure, and a more efficient scheme for solving~\eqref{eq:normal} can be constructed.
271
where, $B \in \reals^{pc\times pc}$ is a block
sparse
matrix with $p$ blocks of size $c\times c$ and $C \in \reals^{qs\times qs}$ is a block diagonal m (…)
[
all
...]
introduction.tex
4
Ceres Solver\footnote{For brevity, in the rest of this document we will just use the term Ceres.} is a non-linear least squares solver developed at Google. It is designed to solve small and large
sparse
problems accurately and efficiently~\footnote{For a gentle but brief introduction to non-liner least squares problems, please start by reading the~\hyperref[part:tutorial]{Tutorial}}. Amongst its various features is a simple but expressive API with support for automatic differentiation, robust norms, local parameterizations, automatic gradient checking, multithreading and automatic problem structure detection.
6
The key computational cost when solving a non-linear least squares problem is the solution of a linear least squares problem in each iteration. To this end Ceres supports a number of different linear solvers suited for different needs. This includes dense QR factorization (using \eigen) for small scale problems,
sparse
Cholesky factorization (using \texttt{SuiteSparse}) for general
sparse
problems and specialized Schur complement based solvers for problems that arise in multi-view geometry~\cite{hartley-zisserman-book-2004}.
/external/eigen/test/
CMakeLists.txt
21
set(EIGEN_TEST_MATRIX_DIR "" CACHE STRING "Enable testing of realword
sparse
matrices contained in the specified path")
24
message(STATUS "Test realworld
sparse
matrices: ${EIGEN_TEST_MATRIX_DIR}")
238
ei_add_property(EIGEN_TESTING_SUMMARY "
Sparse
lib flags: ${SPARSE_LIBS}\n")
/external/eigen/test/eigen2/
eigen2_sparse_product.cpp
10
#include "
sparse
.h"
40
//
sparse
* dense
46
// dense *
sparse
/external/eigen/unsupported/test/
kronecker_product.cpp
12
#include "
sparse
.h"
87
// DM = dense matrix; SM =
sparse
matrix
152
// test kroneckerProduct(SM,SM,SM) with
sparse
pattern
/external/openfst/src/include/fst/
sparse-power-weight.h
0
//
sparse
-power-weight.h
28
#include <fst/
sparse
-tuple-weight.h>
70
//
Sparse
cartesian power semiring: W ^ n
/external/smali/dexlib/src/main/java/org/jf/dexlib/Code/Format/
SparseSwitchDataPseudoInstruction.java
58
throw new RuntimeException("The
sparse
-switch data must contain at least 1 key/target");
62
throw new RuntimeException("The
sparse
-switch data contains too many elements. " +
118
"
sparse
-switch-data instruction");
/external/v8/test/mjsunit/
sparse-array-reverse.js
39
// Simple test of reverse on
sparse
array.
59
// CONG pseudo random number generator. Used for fuzzing the
sparse
array
70
// Fuzzing test of reverse on
sparse
array.
Completed in 1246 milliseconds
1
2
3
4
5
6
7
8
9
10
11
>>