Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "sparse.h"
     11 
     12 template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
     13 {
     14   const int rows = ref.rows();
     15   const int cols = ref.cols();
     16   typedef typename SparseMatrixType::Scalar Scalar;
     17   enum { Flags = SparseMatrixType::Flags };
     18 
     19   double density = std::max(8./(rows*cols), 0.01);
     20   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
     21   typedef Matrix<Scalar,Dynamic,1> DenseVector;
     22 
     23   // test matrix-matrix product
     24   {
     25     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
     26     DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
     27     DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
     28     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
     29     SparseMatrixType m2(rows, rows);
     30     SparseMatrixType m3(rows, rows);
     31     SparseMatrixType m4(rows, rows);
     32     initSparse<Scalar>(density, refMat2, m2);
     33     initSparse<Scalar>(density, refMat3, m3);
     34     initSparse<Scalar>(density, refMat4, m4);
     35     VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
     36     VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
     37     VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
     38     VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
     39 
     40     // sparse * dense
     41     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
     42     VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
     43     VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
     44     VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
     45 
     46     // dense * sparse
     47     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
     48     VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
     49     VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
     50     VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
     51 
     52     VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
     53   }
     54 
     55   // test matrix - diagonal product
     56   if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch....
     57   {
     58     DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
     59     DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
     60     DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows));
     61     SparseMatrixType m2(rows, rows);
     62     SparseMatrixType m3(rows, rows);
     63     initSparse<Scalar>(density, refM2, m2);
     64     initSparse<Scalar>(density, refM3, m3);
     65     VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
     66     VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
     67     VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
     68     VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
     69   }
     70 
     71   // test self adjoint products
     72   {
     73     DenseMatrix b = DenseMatrix::Random(rows, rows);
     74     DenseMatrix x = DenseMatrix::Random(rows, rows);
     75     DenseMatrix refX = DenseMatrix::Random(rows, rows);
     76     DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
     77     DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
     78     DenseMatrix refS = DenseMatrix::Zero(rows, rows);
     79     SparseMatrixType mUp(rows, rows);
     80     SparseMatrixType mLo(rows, rows);
     81     SparseMatrixType mS(rows, rows);
     82     do {
     83       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
     84     } while (refUp.isZero());
     85     refLo = refUp.transpose().conjugate();
     86     mLo = mUp.transpose().conjugate();
     87     refS = refUp + refLo;
     88     refS.diagonal() *= 0.5;
     89     mS = mUp + mLo;
     90     for (int k=0; k<mS.outerSize(); ++k)
     91       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
     92         if (it.index() == k)
     93           it.valueRef() *= 0.5;
     94 
     95     VERIFY_IS_APPROX(refS.adjoint(), refS);
     96     VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
     97     VERIFY_IS_APPROX(mS, refS);
     98     VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
     99     VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
    100     VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
    101     VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
    102   }
    103 
    104 }
    105 
    106 void test_eigen2_sparse_product()
    107 {
    108   for(int i = 0; i < g_repeat; i++) {
    109     CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) );
    110     CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) );
    111     CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) );
    112 
    113     CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) );
    114   }
    115 }
    116