Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Builtin calls as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenModule.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Decl.h"
     20 #include "clang/Basic/TargetBuiltins.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 
     25 using namespace clang;
     26 using namespace CodeGen;
     27 using namespace llvm;
     28 
     29 /// getBuiltinLibFunction - Given a builtin id for a function like
     30 /// "__builtin_fabsf", return a Function* for "fabsf".
     31 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
     32                                                   unsigned BuiltinID) {
     33   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
     34 
     35   // Get the name, skip over the __builtin_ prefix (if necessary).
     36   StringRef Name;
     37   GlobalDecl D(FD);
     38 
     39   // If the builtin has been declared explicitly with an assembler label,
     40   // use the mangled name. This differs from the plain label on platforms
     41   // that prefix labels.
     42   if (FD->hasAttr<AsmLabelAttr>())
     43     Name = getMangledName(D);
     44   else
     45     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
     46 
     47   llvm::FunctionType *Ty =
     48     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
     49 
     50   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
     51 }
     52 
     53 /// Emit the conversions required to turn the given value into an
     54 /// integer of the given size.
     55 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
     56                         QualType T, llvm::IntegerType *IntType) {
     57   V = CGF.EmitToMemory(V, T);
     58 
     59   if (V->getType()->isPointerTy())
     60     return CGF.Builder.CreatePtrToInt(V, IntType);
     61 
     62   assert(V->getType() == IntType);
     63   return V;
     64 }
     65 
     66 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
     67                           QualType T, llvm::Type *ResultType) {
     68   V = CGF.EmitFromMemory(V, T);
     69 
     70   if (ResultType->isPointerTy())
     71     return CGF.Builder.CreateIntToPtr(V, ResultType);
     72 
     73   assert(V->getType() == ResultType);
     74   return V;
     75 }
     76 
     77 /// Utility to insert an atomic instruction based on Instrinsic::ID
     78 /// and the expression node.
     79 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
     80                                llvm::AtomicRMWInst::BinOp Kind,
     81                                const CallExpr *E) {
     82   QualType T = E->getType();
     83   assert(E->getArg(0)->getType()->isPointerType());
     84   assert(CGF.getContext().hasSameUnqualifiedType(T,
     85                                   E->getArg(0)->getType()->getPointeeType()));
     86   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
     87 
     88   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
     89   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
     90 
     91   llvm::IntegerType *IntType =
     92     llvm::IntegerType::get(CGF.getLLVMContext(),
     93                            CGF.getContext().getTypeSize(T));
     94   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
     95 
     96   llvm::Value *Args[2];
     97   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
     98   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
     99   llvm::Type *ValueType = Args[1]->getType();
    100   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
    101 
    102   llvm::Value *Result =
    103       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
    104                                   llvm::SequentiallyConsistent);
    105   Result = EmitFromInt(CGF, Result, T, ValueType);
    106   return RValue::get(Result);
    107 }
    108 
    109 /// Utility to insert an atomic instruction based Instrinsic::ID and
    110 /// the expression node, where the return value is the result of the
    111 /// operation.
    112 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
    113                                    llvm::AtomicRMWInst::BinOp Kind,
    114                                    const CallExpr *E,
    115                                    Instruction::BinaryOps Op) {
    116   QualType T = E->getType();
    117   assert(E->getArg(0)->getType()->isPointerType());
    118   assert(CGF.getContext().hasSameUnqualifiedType(T,
    119                                   E->getArg(0)->getType()->getPointeeType()));
    120   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
    121 
    122   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
    123   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
    124 
    125   llvm::IntegerType *IntType =
    126     llvm::IntegerType::get(CGF.getLLVMContext(),
    127                            CGF.getContext().getTypeSize(T));
    128   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    129 
    130   llvm::Value *Args[2];
    131   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
    132   llvm::Type *ValueType = Args[1]->getType();
    133   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
    134   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
    135 
    136   llvm::Value *Result =
    137       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
    138                                   llvm::SequentiallyConsistent);
    139   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
    140   Result = EmitFromInt(CGF, Result, T, ValueType);
    141   return RValue::get(Result);
    142 }
    143 
    144 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
    145 /// which must be a scalar floating point type.
    146 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
    147   const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
    148   assert(ValTyP && "isn't scalar fp type!");
    149 
    150   StringRef FnName;
    151   switch (ValTyP->getKind()) {
    152   default: llvm_unreachable("Isn't a scalar fp type!");
    153   case BuiltinType::Float:      FnName = "fabsf"; break;
    154   case BuiltinType::Double:     FnName = "fabs"; break;
    155   case BuiltinType::LongDouble: FnName = "fabsl"; break;
    156   }
    157 
    158   // The prototype is something that takes and returns whatever V's type is.
    159   llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
    160                                                    false);
    161   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
    162 
    163   return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
    164 }
    165 
    166 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
    167                               const CallExpr *E, llvm::Value *calleeValue) {
    168   return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
    169                       ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
    170 }
    171 
    172 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
    173 /// depending on IntrinsicID.
    174 ///
    175 /// \arg CGF The current codegen function.
    176 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
    177 /// \arg X The first argument to the llvm.*.with.overflow.*.
    178 /// \arg Y The second argument to the llvm.*.with.overflow.*.
    179 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
    180 /// \returns The result (i.e. sum/product) returned by the intrinsic.
    181 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
    182                                           const llvm::Intrinsic::ID IntrinsicID,
    183                                           llvm::Value *X, llvm::Value *Y,
    184                                           llvm::Value *&Carry) {
    185   // Make sure we have integers of the same width.
    186   assert(X->getType() == Y->getType() &&
    187          "Arguments must be the same type. (Did you forget to make sure both "
    188          "arguments have the same integer width?)");
    189 
    190   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
    191   llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
    192   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
    193   return CGF.Builder.CreateExtractValue(Tmp, 0);
    194 }
    195 
    196 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
    197                                         unsigned BuiltinID, const CallExpr *E) {
    198   // See if we can constant fold this builtin.  If so, don't emit it at all.
    199   Expr::EvalResult Result;
    200   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
    201       !Result.hasSideEffects()) {
    202     if (Result.Val.isInt())
    203       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
    204                                                 Result.Val.getInt()));
    205     if (Result.Val.isFloat())
    206       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
    207                                                Result.Val.getFloat()));
    208   }
    209 
    210   switch (BuiltinID) {
    211   default: break;  // Handle intrinsics and libm functions below.
    212   case Builtin::BI__builtin___CFStringMakeConstantString:
    213   case Builtin::BI__builtin___NSStringMakeConstantString:
    214     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
    215   case Builtin::BI__builtin_stdarg_start:
    216   case Builtin::BI__builtin_va_start:
    217   case Builtin::BI__builtin_va_end: {
    218     Value *ArgValue = EmitVAListRef(E->getArg(0));
    219     llvm::Type *DestType = Int8PtrTy;
    220     if (ArgValue->getType() != DestType)
    221       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
    222                                        ArgValue->getName().data());
    223 
    224     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
    225       Intrinsic::vaend : Intrinsic::vastart;
    226     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
    227   }
    228   case Builtin::BI__builtin_va_copy: {
    229     Value *DstPtr = EmitVAListRef(E->getArg(0));
    230     Value *SrcPtr = EmitVAListRef(E->getArg(1));
    231 
    232     llvm::Type *Type = Int8PtrTy;
    233 
    234     DstPtr = Builder.CreateBitCast(DstPtr, Type);
    235     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
    236     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
    237                                            DstPtr, SrcPtr));
    238   }
    239   case Builtin::BI__builtin_abs:
    240   case Builtin::BI__builtin_labs:
    241   case Builtin::BI__builtin_llabs: {
    242     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    243 
    244     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
    245     Value *CmpResult =
    246     Builder.CreateICmpSGE(ArgValue,
    247                           llvm::Constant::getNullValue(ArgValue->getType()),
    248                                                             "abscond");
    249     Value *Result =
    250       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
    251 
    252     return RValue::get(Result);
    253   }
    254 
    255   case Builtin::BI__builtin_conj:
    256   case Builtin::BI__builtin_conjf:
    257   case Builtin::BI__builtin_conjl: {
    258     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    259     Value *Real = ComplexVal.first;
    260     Value *Imag = ComplexVal.second;
    261     Value *Zero =
    262       Imag->getType()->isFPOrFPVectorTy()
    263         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
    264         : llvm::Constant::getNullValue(Imag->getType());
    265 
    266     Imag = Builder.CreateFSub(Zero, Imag, "sub");
    267     return RValue::getComplex(std::make_pair(Real, Imag));
    268   }
    269   case Builtin::BI__builtin_creal:
    270   case Builtin::BI__builtin_crealf:
    271   case Builtin::BI__builtin_creall:
    272   case Builtin::BIcreal:
    273   case Builtin::BIcrealf:
    274   case Builtin::BIcreall: {
    275     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    276     return RValue::get(ComplexVal.first);
    277   }
    278 
    279   case Builtin::BI__builtin_cimag:
    280   case Builtin::BI__builtin_cimagf:
    281   case Builtin::BI__builtin_cimagl:
    282   case Builtin::BIcimag:
    283   case Builtin::BIcimagf:
    284   case Builtin::BIcimagl: {
    285     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
    286     return RValue::get(ComplexVal.second);
    287   }
    288 
    289   case Builtin::BI__builtin_ctzs:
    290   case Builtin::BI__builtin_ctz:
    291   case Builtin::BI__builtin_ctzl:
    292   case Builtin::BI__builtin_ctzll: {
    293     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    294 
    295     llvm::Type *ArgType = ArgValue->getType();
    296     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
    297 
    298     llvm::Type *ResultType = ConvertType(E->getType());
    299     Value *ZeroUndef = Builder.getInt1(Target.isCLZForZeroUndef());
    300     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
    301     if (Result->getType() != ResultType)
    302       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    303                                      "cast");
    304     return RValue::get(Result);
    305   }
    306   case Builtin::BI__builtin_clzs:
    307   case Builtin::BI__builtin_clz:
    308   case Builtin::BI__builtin_clzl:
    309   case Builtin::BI__builtin_clzll: {
    310     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    311 
    312     llvm::Type *ArgType = ArgValue->getType();
    313     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
    314 
    315     llvm::Type *ResultType = ConvertType(E->getType());
    316     Value *ZeroUndef = Builder.getInt1(Target.isCLZForZeroUndef());
    317     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
    318     if (Result->getType() != ResultType)
    319       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    320                                      "cast");
    321     return RValue::get(Result);
    322   }
    323   case Builtin::BI__builtin_ffs:
    324   case Builtin::BI__builtin_ffsl:
    325   case Builtin::BI__builtin_ffsll: {
    326     // ffs(x) -> x ? cttz(x) + 1 : 0
    327     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    328 
    329     llvm::Type *ArgType = ArgValue->getType();
    330     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
    331 
    332     llvm::Type *ResultType = ConvertType(E->getType());
    333     Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
    334                                                        Builder.getTrue()),
    335                                    llvm::ConstantInt::get(ArgType, 1));
    336     Value *Zero = llvm::Constant::getNullValue(ArgType);
    337     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
    338     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
    339     if (Result->getType() != ResultType)
    340       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    341                                      "cast");
    342     return RValue::get(Result);
    343   }
    344   case Builtin::BI__builtin_parity:
    345   case Builtin::BI__builtin_parityl:
    346   case Builtin::BI__builtin_parityll: {
    347     // parity(x) -> ctpop(x) & 1
    348     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    349 
    350     llvm::Type *ArgType = ArgValue->getType();
    351     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
    352 
    353     llvm::Type *ResultType = ConvertType(E->getType());
    354     Value *Tmp = Builder.CreateCall(F, ArgValue);
    355     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
    356     if (Result->getType() != ResultType)
    357       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    358                                      "cast");
    359     return RValue::get(Result);
    360   }
    361   case Builtin::BI__builtin_popcount:
    362   case Builtin::BI__builtin_popcountl:
    363   case Builtin::BI__builtin_popcountll: {
    364     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    365 
    366     llvm::Type *ArgType = ArgValue->getType();
    367     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
    368 
    369     llvm::Type *ResultType = ConvertType(E->getType());
    370     Value *Result = Builder.CreateCall(F, ArgValue);
    371     if (Result->getType() != ResultType)
    372       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
    373                                      "cast");
    374     return RValue::get(Result);
    375   }
    376   case Builtin::BI__builtin_expect: {
    377     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    378     llvm::Type *ArgType = ArgValue->getType();
    379 
    380     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
    381     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
    382 
    383     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
    384                                         "expval");
    385     return RValue::get(Result);
    386   }
    387   case Builtin::BI__builtin_bswap16:
    388   case Builtin::BI__builtin_bswap32:
    389   case Builtin::BI__builtin_bswap64: {
    390     Value *ArgValue = EmitScalarExpr(E->getArg(0));
    391     llvm::Type *ArgType = ArgValue->getType();
    392     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
    393     return RValue::get(Builder.CreateCall(F, ArgValue));
    394   }
    395   case Builtin::BI__builtin_object_size: {
    396     // We rely on constant folding to deal with expressions with side effects.
    397     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
    398            "should have been constant folded");
    399 
    400     // We pass this builtin onto the optimizer so that it can
    401     // figure out the object size in more complex cases.
    402     llvm::Type *ResType = ConvertType(E->getType());
    403 
    404     // LLVM only supports 0 and 2, make sure that we pass along that
    405     // as a boolean.
    406     Value *Ty = EmitScalarExpr(E->getArg(1));
    407     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
    408     assert(CI);
    409     uint64_t val = CI->getZExtValue();
    410     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
    411 
    412     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
    413     return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
    414   }
    415   case Builtin::BI__builtin_prefetch: {
    416     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
    417     // FIXME: Technically these constants should of type 'int', yes?
    418     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
    419       llvm::ConstantInt::get(Int32Ty, 0);
    420     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
    421       llvm::ConstantInt::get(Int32Ty, 3);
    422     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
    423     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
    424     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
    425   }
    426   case Builtin::BI__builtin_readcyclecounter: {
    427     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
    428     return RValue::get(Builder.CreateCall(F));
    429   }
    430   case Builtin::BI__builtin_trap: {
    431     Value *F = CGM.getIntrinsic(Intrinsic::trap);
    432     return RValue::get(Builder.CreateCall(F));
    433   }
    434   case Builtin::BI__debugbreak: {
    435     Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
    436     return RValue::get(Builder.CreateCall(F));
    437   }
    438   case Builtin::BI__builtin_unreachable: {
    439     if (SanOpts->Unreachable)
    440       EmitCheck(Builder.getFalse(), "builtin_unreachable",
    441                 EmitCheckSourceLocation(E->getExprLoc()),
    442                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
    443     else
    444       Builder.CreateUnreachable();
    445 
    446     // We do need to preserve an insertion point.
    447     EmitBlock(createBasicBlock("unreachable.cont"));
    448 
    449     return RValue::get(0);
    450   }
    451 
    452   case Builtin::BI__builtin_powi:
    453   case Builtin::BI__builtin_powif:
    454   case Builtin::BI__builtin_powil: {
    455     Value *Base = EmitScalarExpr(E->getArg(0));
    456     Value *Exponent = EmitScalarExpr(E->getArg(1));
    457     llvm::Type *ArgType = Base->getType();
    458     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
    459     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
    460   }
    461 
    462   case Builtin::BI__builtin_isgreater:
    463   case Builtin::BI__builtin_isgreaterequal:
    464   case Builtin::BI__builtin_isless:
    465   case Builtin::BI__builtin_islessequal:
    466   case Builtin::BI__builtin_islessgreater:
    467   case Builtin::BI__builtin_isunordered: {
    468     // Ordered comparisons: we know the arguments to these are matching scalar
    469     // floating point values.
    470     Value *LHS = EmitScalarExpr(E->getArg(0));
    471     Value *RHS = EmitScalarExpr(E->getArg(1));
    472 
    473     switch (BuiltinID) {
    474     default: llvm_unreachable("Unknown ordered comparison");
    475     case Builtin::BI__builtin_isgreater:
    476       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
    477       break;
    478     case Builtin::BI__builtin_isgreaterequal:
    479       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
    480       break;
    481     case Builtin::BI__builtin_isless:
    482       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
    483       break;
    484     case Builtin::BI__builtin_islessequal:
    485       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
    486       break;
    487     case Builtin::BI__builtin_islessgreater:
    488       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
    489       break;
    490     case Builtin::BI__builtin_isunordered:
    491       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
    492       break;
    493     }
    494     // ZExt bool to int type.
    495     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
    496   }
    497   case Builtin::BI__builtin_isnan: {
    498     Value *V = EmitScalarExpr(E->getArg(0));
    499     V = Builder.CreateFCmpUNO(V, V, "cmp");
    500     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    501   }
    502 
    503   case Builtin::BI__builtin_isinf: {
    504     // isinf(x) --> fabs(x) == infinity
    505     Value *V = EmitScalarExpr(E->getArg(0));
    506     V = EmitFAbs(*this, V, E->getArg(0)->getType());
    507 
    508     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
    509     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    510   }
    511 
    512   // TODO: BI__builtin_isinf_sign
    513   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
    514 
    515   case Builtin::BI__builtin_isnormal: {
    516     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
    517     Value *V = EmitScalarExpr(E->getArg(0));
    518     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
    519 
    520     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
    521     Value *IsLessThanInf =
    522       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
    523     APFloat Smallest = APFloat::getSmallestNormalized(
    524                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
    525     Value *IsNormal =
    526       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
    527                             "isnormal");
    528     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
    529     V = Builder.CreateAnd(V, IsNormal, "and");
    530     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    531   }
    532 
    533   case Builtin::BI__builtin_isfinite: {
    534     // isfinite(x) --> x == x && fabs(x) != infinity;
    535     Value *V = EmitScalarExpr(E->getArg(0));
    536     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
    537 
    538     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
    539     Value *IsNotInf =
    540       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
    541 
    542     V = Builder.CreateAnd(Eq, IsNotInf, "and");
    543     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
    544   }
    545 
    546   case Builtin::BI__builtin_fpclassify: {
    547     Value *V = EmitScalarExpr(E->getArg(5));
    548     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
    549 
    550     // Create Result
    551     BasicBlock *Begin = Builder.GetInsertBlock();
    552     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
    553     Builder.SetInsertPoint(End);
    554     PHINode *Result =
    555       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
    556                         "fpclassify_result");
    557 
    558     // if (V==0) return FP_ZERO
    559     Builder.SetInsertPoint(Begin);
    560     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
    561                                           "iszero");
    562     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
    563     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
    564     Builder.CreateCondBr(IsZero, End, NotZero);
    565     Result->addIncoming(ZeroLiteral, Begin);
    566 
    567     // if (V != V) return FP_NAN
    568     Builder.SetInsertPoint(NotZero);
    569     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
    570     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
    571     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
    572     Builder.CreateCondBr(IsNan, End, NotNan);
    573     Result->addIncoming(NanLiteral, NotZero);
    574 
    575     // if (fabs(V) == infinity) return FP_INFINITY
    576     Builder.SetInsertPoint(NotNan);
    577     Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
    578     Value *IsInf =
    579       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
    580                             "isinf");
    581     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
    582     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
    583     Builder.CreateCondBr(IsInf, End, NotInf);
    584     Result->addIncoming(InfLiteral, NotNan);
    585 
    586     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
    587     Builder.SetInsertPoint(NotInf);
    588     APFloat Smallest = APFloat::getSmallestNormalized(
    589         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
    590     Value *IsNormal =
    591       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
    592                             "isnormal");
    593     Value *NormalResult =
    594       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
    595                            EmitScalarExpr(E->getArg(3)));
    596     Builder.CreateBr(End);
    597     Result->addIncoming(NormalResult, NotInf);
    598 
    599     // return Result
    600     Builder.SetInsertPoint(End);
    601     return RValue::get(Result);
    602   }
    603 
    604   case Builtin::BIalloca:
    605   case Builtin::BI__builtin_alloca: {
    606     Value *Size = EmitScalarExpr(E->getArg(0));
    607     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
    608   }
    609   case Builtin::BIbzero:
    610   case Builtin::BI__builtin_bzero: {
    611     std::pair<llvm::Value*, unsigned> Dest =
    612         EmitPointerWithAlignment(E->getArg(0));
    613     Value *SizeVal = EmitScalarExpr(E->getArg(1));
    614     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
    615                          Dest.second, false);
    616     return RValue::get(Dest.first);
    617   }
    618   case Builtin::BImemcpy:
    619   case Builtin::BI__builtin_memcpy: {
    620     std::pair<llvm::Value*, unsigned> Dest =
    621         EmitPointerWithAlignment(E->getArg(0));
    622     std::pair<llvm::Value*, unsigned> Src =
    623         EmitPointerWithAlignment(E->getArg(1));
    624     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    625     unsigned Align = std::min(Dest.second, Src.second);
    626     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
    627     return RValue::get(Dest.first);
    628   }
    629 
    630   case Builtin::BI__builtin___memcpy_chk: {
    631     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
    632     llvm::APSInt Size, DstSize;
    633     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    634         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    635       break;
    636     if (Size.ugt(DstSize))
    637       break;
    638     std::pair<llvm::Value*, unsigned> Dest =
    639         EmitPointerWithAlignment(E->getArg(0));
    640     std::pair<llvm::Value*, unsigned> Src =
    641         EmitPointerWithAlignment(E->getArg(1));
    642     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    643     unsigned Align = std::min(Dest.second, Src.second);
    644     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
    645     return RValue::get(Dest.first);
    646   }
    647 
    648   case Builtin::BI__builtin_objc_memmove_collectable: {
    649     Value *Address = EmitScalarExpr(E->getArg(0));
    650     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
    651     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    652     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
    653                                                   Address, SrcAddr, SizeVal);
    654     return RValue::get(Address);
    655   }
    656 
    657   case Builtin::BI__builtin___memmove_chk: {
    658     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
    659     llvm::APSInt Size, DstSize;
    660     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    661         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    662       break;
    663     if (Size.ugt(DstSize))
    664       break;
    665     std::pair<llvm::Value*, unsigned> Dest =
    666         EmitPointerWithAlignment(E->getArg(0));
    667     std::pair<llvm::Value*, unsigned> Src =
    668         EmitPointerWithAlignment(E->getArg(1));
    669     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    670     unsigned Align = std::min(Dest.second, Src.second);
    671     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
    672     return RValue::get(Dest.first);
    673   }
    674 
    675   case Builtin::BImemmove:
    676   case Builtin::BI__builtin_memmove: {
    677     std::pair<llvm::Value*, unsigned> Dest =
    678         EmitPointerWithAlignment(E->getArg(0));
    679     std::pair<llvm::Value*, unsigned> Src =
    680         EmitPointerWithAlignment(E->getArg(1));
    681     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    682     unsigned Align = std::min(Dest.second, Src.second);
    683     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
    684     return RValue::get(Dest.first);
    685   }
    686   case Builtin::BImemset:
    687   case Builtin::BI__builtin_memset: {
    688     std::pair<llvm::Value*, unsigned> Dest =
    689         EmitPointerWithAlignment(E->getArg(0));
    690     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
    691                                          Builder.getInt8Ty());
    692     Value *SizeVal = EmitScalarExpr(E->getArg(2));
    693     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
    694     return RValue::get(Dest.first);
    695   }
    696   case Builtin::BI__builtin___memset_chk: {
    697     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
    698     llvm::APSInt Size, DstSize;
    699     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
    700         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
    701       break;
    702     if (Size.ugt(DstSize))
    703       break;
    704     std::pair<llvm::Value*, unsigned> Dest =
    705         EmitPointerWithAlignment(E->getArg(0));
    706     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
    707                                          Builder.getInt8Ty());
    708     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
    709     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
    710     return RValue::get(Dest.first);
    711   }
    712   case Builtin::BI__builtin_dwarf_cfa: {
    713     // The offset in bytes from the first argument to the CFA.
    714     //
    715     // Why on earth is this in the frontend?  Is there any reason at
    716     // all that the backend can't reasonably determine this while
    717     // lowering llvm.eh.dwarf.cfa()?
    718     //
    719     // TODO: If there's a satisfactory reason, add a target hook for
    720     // this instead of hard-coding 0, which is correct for most targets.
    721     int32_t Offset = 0;
    722 
    723     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
    724     return RValue::get(Builder.CreateCall(F,
    725                                       llvm::ConstantInt::get(Int32Ty, Offset)));
    726   }
    727   case Builtin::BI__builtin_return_address: {
    728     Value *Depth = EmitScalarExpr(E->getArg(0));
    729     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
    730     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
    731     return RValue::get(Builder.CreateCall(F, Depth));
    732   }
    733   case Builtin::BI__builtin_frame_address: {
    734     Value *Depth = EmitScalarExpr(E->getArg(0));
    735     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
    736     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
    737     return RValue::get(Builder.CreateCall(F, Depth));
    738   }
    739   case Builtin::BI__builtin_extract_return_addr: {
    740     Value *Address = EmitScalarExpr(E->getArg(0));
    741     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
    742     return RValue::get(Result);
    743   }
    744   case Builtin::BI__builtin_frob_return_addr: {
    745     Value *Address = EmitScalarExpr(E->getArg(0));
    746     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
    747     return RValue::get(Result);
    748   }
    749   case Builtin::BI__builtin_dwarf_sp_column: {
    750     llvm::IntegerType *Ty
    751       = cast<llvm::IntegerType>(ConvertType(E->getType()));
    752     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
    753     if (Column == -1) {
    754       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
    755       return RValue::get(llvm::UndefValue::get(Ty));
    756     }
    757     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
    758   }
    759   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
    760     Value *Address = EmitScalarExpr(E->getArg(0));
    761     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
    762       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
    763     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
    764   }
    765   case Builtin::BI__builtin_eh_return: {
    766     Value *Int = EmitScalarExpr(E->getArg(0));
    767     Value *Ptr = EmitScalarExpr(E->getArg(1));
    768 
    769     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
    770     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
    771            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
    772     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
    773                                   ? Intrinsic::eh_return_i32
    774                                   : Intrinsic::eh_return_i64);
    775     Builder.CreateCall2(F, Int, Ptr);
    776     Builder.CreateUnreachable();
    777 
    778     // We do need to preserve an insertion point.
    779     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
    780 
    781     return RValue::get(0);
    782   }
    783   case Builtin::BI__builtin_unwind_init: {
    784     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
    785     return RValue::get(Builder.CreateCall(F));
    786   }
    787   case Builtin::BI__builtin_extend_pointer: {
    788     // Extends a pointer to the size of an _Unwind_Word, which is
    789     // uint64_t on all platforms.  Generally this gets poked into a
    790     // register and eventually used as an address, so if the
    791     // addressing registers are wider than pointers and the platform
    792     // doesn't implicitly ignore high-order bits when doing
    793     // addressing, we need to make sure we zext / sext based on
    794     // the platform's expectations.
    795     //
    796     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
    797 
    798     // Cast the pointer to intptr_t.
    799     Value *Ptr = EmitScalarExpr(E->getArg(0));
    800     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
    801 
    802     // If that's 64 bits, we're done.
    803     if (IntPtrTy->getBitWidth() == 64)
    804       return RValue::get(Result);
    805 
    806     // Otherwise, ask the codegen data what to do.
    807     if (getTargetHooks().extendPointerWithSExt())
    808       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
    809     else
    810       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
    811   }
    812   case Builtin::BI__builtin_setjmp: {
    813     // Buffer is a void**.
    814     Value *Buf = EmitScalarExpr(E->getArg(0));
    815 
    816     // Store the frame pointer to the setjmp buffer.
    817     Value *FrameAddr =
    818       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
    819                          ConstantInt::get(Int32Ty, 0));
    820     Builder.CreateStore(FrameAddr, Buf);
    821 
    822     // Store the stack pointer to the setjmp buffer.
    823     Value *StackAddr =
    824       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
    825     Value *StackSaveSlot =
    826       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
    827     Builder.CreateStore(StackAddr, StackSaveSlot);
    828 
    829     // Call LLVM's EH setjmp, which is lightweight.
    830     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
    831     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
    832     return RValue::get(Builder.CreateCall(F, Buf));
    833   }
    834   case Builtin::BI__builtin_longjmp: {
    835     Value *Buf = EmitScalarExpr(E->getArg(0));
    836     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
    837 
    838     // Call LLVM's EH longjmp, which is lightweight.
    839     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
    840 
    841     // longjmp doesn't return; mark this as unreachable.
    842     Builder.CreateUnreachable();
    843 
    844     // We do need to preserve an insertion point.
    845     EmitBlock(createBasicBlock("longjmp.cont"));
    846 
    847     return RValue::get(0);
    848   }
    849   case Builtin::BI__sync_fetch_and_add:
    850   case Builtin::BI__sync_fetch_and_sub:
    851   case Builtin::BI__sync_fetch_and_or:
    852   case Builtin::BI__sync_fetch_and_and:
    853   case Builtin::BI__sync_fetch_and_xor:
    854   case Builtin::BI__sync_add_and_fetch:
    855   case Builtin::BI__sync_sub_and_fetch:
    856   case Builtin::BI__sync_and_and_fetch:
    857   case Builtin::BI__sync_or_and_fetch:
    858   case Builtin::BI__sync_xor_and_fetch:
    859   case Builtin::BI__sync_val_compare_and_swap:
    860   case Builtin::BI__sync_bool_compare_and_swap:
    861   case Builtin::BI__sync_lock_test_and_set:
    862   case Builtin::BI__sync_lock_release:
    863   case Builtin::BI__sync_swap:
    864     llvm_unreachable("Shouldn't make it through sema");
    865   case Builtin::BI__sync_fetch_and_add_1:
    866   case Builtin::BI__sync_fetch_and_add_2:
    867   case Builtin::BI__sync_fetch_and_add_4:
    868   case Builtin::BI__sync_fetch_and_add_8:
    869   case Builtin::BI__sync_fetch_and_add_16:
    870     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
    871   case Builtin::BI__sync_fetch_and_sub_1:
    872   case Builtin::BI__sync_fetch_and_sub_2:
    873   case Builtin::BI__sync_fetch_and_sub_4:
    874   case Builtin::BI__sync_fetch_and_sub_8:
    875   case Builtin::BI__sync_fetch_and_sub_16:
    876     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
    877   case Builtin::BI__sync_fetch_and_or_1:
    878   case Builtin::BI__sync_fetch_and_or_2:
    879   case Builtin::BI__sync_fetch_and_or_4:
    880   case Builtin::BI__sync_fetch_and_or_8:
    881   case Builtin::BI__sync_fetch_and_or_16:
    882     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
    883   case Builtin::BI__sync_fetch_and_and_1:
    884   case Builtin::BI__sync_fetch_and_and_2:
    885   case Builtin::BI__sync_fetch_and_and_4:
    886   case Builtin::BI__sync_fetch_and_and_8:
    887   case Builtin::BI__sync_fetch_and_and_16:
    888     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
    889   case Builtin::BI__sync_fetch_and_xor_1:
    890   case Builtin::BI__sync_fetch_and_xor_2:
    891   case Builtin::BI__sync_fetch_and_xor_4:
    892   case Builtin::BI__sync_fetch_and_xor_8:
    893   case Builtin::BI__sync_fetch_and_xor_16:
    894     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
    895 
    896   // Clang extensions: not overloaded yet.
    897   case Builtin::BI__sync_fetch_and_min:
    898     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
    899   case Builtin::BI__sync_fetch_and_max:
    900     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
    901   case Builtin::BI__sync_fetch_and_umin:
    902     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
    903   case Builtin::BI__sync_fetch_and_umax:
    904     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
    905 
    906   case Builtin::BI__sync_add_and_fetch_1:
    907   case Builtin::BI__sync_add_and_fetch_2:
    908   case Builtin::BI__sync_add_and_fetch_4:
    909   case Builtin::BI__sync_add_and_fetch_8:
    910   case Builtin::BI__sync_add_and_fetch_16:
    911     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
    912                                 llvm::Instruction::Add);
    913   case Builtin::BI__sync_sub_and_fetch_1:
    914   case Builtin::BI__sync_sub_and_fetch_2:
    915   case Builtin::BI__sync_sub_and_fetch_4:
    916   case Builtin::BI__sync_sub_and_fetch_8:
    917   case Builtin::BI__sync_sub_and_fetch_16:
    918     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
    919                                 llvm::Instruction::Sub);
    920   case Builtin::BI__sync_and_and_fetch_1:
    921   case Builtin::BI__sync_and_and_fetch_2:
    922   case Builtin::BI__sync_and_and_fetch_4:
    923   case Builtin::BI__sync_and_and_fetch_8:
    924   case Builtin::BI__sync_and_and_fetch_16:
    925     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
    926                                 llvm::Instruction::And);
    927   case Builtin::BI__sync_or_and_fetch_1:
    928   case Builtin::BI__sync_or_and_fetch_2:
    929   case Builtin::BI__sync_or_and_fetch_4:
    930   case Builtin::BI__sync_or_and_fetch_8:
    931   case Builtin::BI__sync_or_and_fetch_16:
    932     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
    933                                 llvm::Instruction::Or);
    934   case Builtin::BI__sync_xor_and_fetch_1:
    935   case Builtin::BI__sync_xor_and_fetch_2:
    936   case Builtin::BI__sync_xor_and_fetch_4:
    937   case Builtin::BI__sync_xor_and_fetch_8:
    938   case Builtin::BI__sync_xor_and_fetch_16:
    939     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
    940                                 llvm::Instruction::Xor);
    941 
    942   case Builtin::BI__sync_val_compare_and_swap_1:
    943   case Builtin::BI__sync_val_compare_and_swap_2:
    944   case Builtin::BI__sync_val_compare_and_swap_4:
    945   case Builtin::BI__sync_val_compare_and_swap_8:
    946   case Builtin::BI__sync_val_compare_and_swap_16: {
    947     QualType T = E->getType();
    948     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
    949     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
    950 
    951     llvm::IntegerType *IntType =
    952       llvm::IntegerType::get(getLLVMContext(),
    953                              getContext().getTypeSize(T));
    954     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    955 
    956     Value *Args[3];
    957     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
    958     Args[1] = EmitScalarExpr(E->getArg(1));
    959     llvm::Type *ValueType = Args[1]->getType();
    960     Args[1] = EmitToInt(*this, Args[1], T, IntType);
    961     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
    962 
    963     Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
    964                                                 llvm::SequentiallyConsistent);
    965     Result = EmitFromInt(*this, Result, T, ValueType);
    966     return RValue::get(Result);
    967   }
    968 
    969   case Builtin::BI__sync_bool_compare_and_swap_1:
    970   case Builtin::BI__sync_bool_compare_and_swap_2:
    971   case Builtin::BI__sync_bool_compare_and_swap_4:
    972   case Builtin::BI__sync_bool_compare_and_swap_8:
    973   case Builtin::BI__sync_bool_compare_and_swap_16: {
    974     QualType T = E->getArg(1)->getType();
    975     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
    976     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
    977 
    978     llvm::IntegerType *IntType =
    979       llvm::IntegerType::get(getLLVMContext(),
    980                              getContext().getTypeSize(T));
    981     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
    982 
    983     Value *Args[3];
    984     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
    985     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
    986     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
    987 
    988     Value *OldVal = Args[1];
    989     Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
    990                                                  llvm::SequentiallyConsistent);
    991     Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
    992     // zext bool to int.
    993     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
    994     return RValue::get(Result);
    995   }
    996 
    997   case Builtin::BI__sync_swap_1:
    998   case Builtin::BI__sync_swap_2:
    999   case Builtin::BI__sync_swap_4:
   1000   case Builtin::BI__sync_swap_8:
   1001   case Builtin::BI__sync_swap_16:
   1002     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
   1003 
   1004   case Builtin::BI__sync_lock_test_and_set_1:
   1005   case Builtin::BI__sync_lock_test_and_set_2:
   1006   case Builtin::BI__sync_lock_test_and_set_4:
   1007   case Builtin::BI__sync_lock_test_and_set_8:
   1008   case Builtin::BI__sync_lock_test_and_set_16:
   1009     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
   1010 
   1011   case Builtin::BI__sync_lock_release_1:
   1012   case Builtin::BI__sync_lock_release_2:
   1013   case Builtin::BI__sync_lock_release_4:
   1014   case Builtin::BI__sync_lock_release_8:
   1015   case Builtin::BI__sync_lock_release_16: {
   1016     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1017     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
   1018     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
   1019     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
   1020                                              StoreSize.getQuantity() * 8);
   1021     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
   1022     llvm::StoreInst *Store =
   1023       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
   1024     Store->setAlignment(StoreSize.getQuantity());
   1025     Store->setAtomic(llvm::Release);
   1026     return RValue::get(0);
   1027   }
   1028 
   1029   case Builtin::BI__sync_synchronize: {
   1030     // We assume this is supposed to correspond to a C++0x-style
   1031     // sequentially-consistent fence (i.e. this is only usable for
   1032     // synchonization, not device I/O or anything like that). This intrinsic
   1033     // is really badly designed in the sense that in theory, there isn't
   1034     // any way to safely use it... but in practice, it mostly works
   1035     // to use it with non-atomic loads and stores to get acquire/release
   1036     // semantics.
   1037     Builder.CreateFence(llvm::SequentiallyConsistent);
   1038     return RValue::get(0);
   1039   }
   1040 
   1041   case Builtin::BI__c11_atomic_is_lock_free:
   1042   case Builtin::BI__atomic_is_lock_free: {
   1043     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
   1044     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
   1045     // _Atomic(T) is always properly-aligned.
   1046     const char *LibCallName = "__atomic_is_lock_free";
   1047     CallArgList Args;
   1048     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
   1049              getContext().getSizeType());
   1050     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
   1051       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
   1052                getContext().VoidPtrTy);
   1053     else
   1054       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
   1055                getContext().VoidPtrTy);
   1056     const CGFunctionInfo &FuncInfo =
   1057         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
   1058                                                FunctionType::ExtInfo(),
   1059                                                RequiredArgs::All);
   1060     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
   1061     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
   1062     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
   1063   }
   1064 
   1065   case Builtin::BI__atomic_test_and_set: {
   1066     // Look at the argument type to determine whether this is a volatile
   1067     // operation. The parameter type is always volatile.
   1068     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
   1069     bool Volatile =
   1070         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
   1071 
   1072     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1073     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
   1074     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
   1075     Value *NewVal = Builder.getInt8(1);
   1076     Value *Order = EmitScalarExpr(E->getArg(1));
   1077     if (isa<llvm::ConstantInt>(Order)) {
   1078       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1079       AtomicRMWInst *Result = 0;
   1080       switch (ord) {
   1081       case 0:  // memory_order_relaxed
   1082       default: // invalid order
   1083         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1084                                          Ptr, NewVal,
   1085                                          llvm::Monotonic);
   1086         break;
   1087       case 1:  // memory_order_consume
   1088       case 2:  // memory_order_acquire
   1089         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1090                                          Ptr, NewVal,
   1091                                          llvm::Acquire);
   1092         break;
   1093       case 3:  // memory_order_release
   1094         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1095                                          Ptr, NewVal,
   1096                                          llvm::Release);
   1097         break;
   1098       case 4:  // memory_order_acq_rel
   1099         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1100                                          Ptr, NewVal,
   1101                                          llvm::AcquireRelease);
   1102         break;
   1103       case 5:  // memory_order_seq_cst
   1104         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1105                                          Ptr, NewVal,
   1106                                          llvm::SequentiallyConsistent);
   1107         break;
   1108       }
   1109       Result->setVolatile(Volatile);
   1110       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
   1111     }
   1112 
   1113     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1114 
   1115     llvm::BasicBlock *BBs[5] = {
   1116       createBasicBlock("monotonic", CurFn),
   1117       createBasicBlock("acquire", CurFn),
   1118       createBasicBlock("release", CurFn),
   1119       createBasicBlock("acqrel", CurFn),
   1120       createBasicBlock("seqcst", CurFn)
   1121     };
   1122     llvm::AtomicOrdering Orders[5] = {
   1123       llvm::Monotonic, llvm::Acquire, llvm::Release,
   1124       llvm::AcquireRelease, llvm::SequentiallyConsistent
   1125     };
   1126 
   1127     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1128     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
   1129 
   1130     Builder.SetInsertPoint(ContBB);
   1131     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
   1132 
   1133     for (unsigned i = 0; i < 5; ++i) {
   1134       Builder.SetInsertPoint(BBs[i]);
   1135       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1136                                                    Ptr, NewVal, Orders[i]);
   1137       RMW->setVolatile(Volatile);
   1138       Result->addIncoming(RMW, BBs[i]);
   1139       Builder.CreateBr(ContBB);
   1140     }
   1141 
   1142     SI->addCase(Builder.getInt32(0), BBs[0]);
   1143     SI->addCase(Builder.getInt32(1), BBs[1]);
   1144     SI->addCase(Builder.getInt32(2), BBs[1]);
   1145     SI->addCase(Builder.getInt32(3), BBs[2]);
   1146     SI->addCase(Builder.getInt32(4), BBs[3]);
   1147     SI->addCase(Builder.getInt32(5), BBs[4]);
   1148 
   1149     Builder.SetInsertPoint(ContBB);
   1150     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
   1151   }
   1152 
   1153   case Builtin::BI__atomic_clear: {
   1154     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
   1155     bool Volatile =
   1156         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
   1157 
   1158     Value *Ptr = EmitScalarExpr(E->getArg(0));
   1159     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
   1160     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
   1161     Value *NewVal = Builder.getInt8(0);
   1162     Value *Order = EmitScalarExpr(E->getArg(1));
   1163     if (isa<llvm::ConstantInt>(Order)) {
   1164       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1165       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
   1166       Store->setAlignment(1);
   1167       switch (ord) {
   1168       case 0:  // memory_order_relaxed
   1169       default: // invalid order
   1170         Store->setOrdering(llvm::Monotonic);
   1171         break;
   1172       case 3:  // memory_order_release
   1173         Store->setOrdering(llvm::Release);
   1174         break;
   1175       case 5:  // memory_order_seq_cst
   1176         Store->setOrdering(llvm::SequentiallyConsistent);
   1177         break;
   1178       }
   1179       return RValue::get(0);
   1180     }
   1181 
   1182     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1183 
   1184     llvm::BasicBlock *BBs[3] = {
   1185       createBasicBlock("monotonic", CurFn),
   1186       createBasicBlock("release", CurFn),
   1187       createBasicBlock("seqcst", CurFn)
   1188     };
   1189     llvm::AtomicOrdering Orders[3] = {
   1190       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
   1191     };
   1192 
   1193     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1194     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
   1195 
   1196     for (unsigned i = 0; i < 3; ++i) {
   1197       Builder.SetInsertPoint(BBs[i]);
   1198       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
   1199       Store->setAlignment(1);
   1200       Store->setOrdering(Orders[i]);
   1201       Builder.CreateBr(ContBB);
   1202     }
   1203 
   1204     SI->addCase(Builder.getInt32(0), BBs[0]);
   1205     SI->addCase(Builder.getInt32(3), BBs[1]);
   1206     SI->addCase(Builder.getInt32(5), BBs[2]);
   1207 
   1208     Builder.SetInsertPoint(ContBB);
   1209     return RValue::get(0);
   1210   }
   1211 
   1212   case Builtin::BI__atomic_thread_fence:
   1213   case Builtin::BI__atomic_signal_fence:
   1214   case Builtin::BI__c11_atomic_thread_fence:
   1215   case Builtin::BI__c11_atomic_signal_fence: {
   1216     llvm::SynchronizationScope Scope;
   1217     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
   1218         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
   1219       Scope = llvm::SingleThread;
   1220     else
   1221       Scope = llvm::CrossThread;
   1222     Value *Order = EmitScalarExpr(E->getArg(0));
   1223     if (isa<llvm::ConstantInt>(Order)) {
   1224       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
   1225       switch (ord) {
   1226       case 0:  // memory_order_relaxed
   1227       default: // invalid order
   1228         break;
   1229       case 1:  // memory_order_consume
   1230       case 2:  // memory_order_acquire
   1231         Builder.CreateFence(llvm::Acquire, Scope);
   1232         break;
   1233       case 3:  // memory_order_release
   1234         Builder.CreateFence(llvm::Release, Scope);
   1235         break;
   1236       case 4:  // memory_order_acq_rel
   1237         Builder.CreateFence(llvm::AcquireRelease, Scope);
   1238         break;
   1239       case 5:  // memory_order_seq_cst
   1240         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
   1241         break;
   1242       }
   1243       return RValue::get(0);
   1244     }
   1245 
   1246     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
   1247     AcquireBB = createBasicBlock("acquire", CurFn);
   1248     ReleaseBB = createBasicBlock("release", CurFn);
   1249     AcqRelBB = createBasicBlock("acqrel", CurFn);
   1250     SeqCstBB = createBasicBlock("seqcst", CurFn);
   1251     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
   1252 
   1253     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
   1254     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
   1255 
   1256     Builder.SetInsertPoint(AcquireBB);
   1257     Builder.CreateFence(llvm::Acquire, Scope);
   1258     Builder.CreateBr(ContBB);
   1259     SI->addCase(Builder.getInt32(1), AcquireBB);
   1260     SI->addCase(Builder.getInt32(2), AcquireBB);
   1261 
   1262     Builder.SetInsertPoint(ReleaseBB);
   1263     Builder.CreateFence(llvm::Release, Scope);
   1264     Builder.CreateBr(ContBB);
   1265     SI->addCase(Builder.getInt32(3), ReleaseBB);
   1266 
   1267     Builder.SetInsertPoint(AcqRelBB);
   1268     Builder.CreateFence(llvm::AcquireRelease, Scope);
   1269     Builder.CreateBr(ContBB);
   1270     SI->addCase(Builder.getInt32(4), AcqRelBB);
   1271 
   1272     Builder.SetInsertPoint(SeqCstBB);
   1273     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
   1274     Builder.CreateBr(ContBB);
   1275     SI->addCase(Builder.getInt32(5), SeqCstBB);
   1276 
   1277     Builder.SetInsertPoint(ContBB);
   1278     return RValue::get(0);
   1279   }
   1280 
   1281     // Library functions with special handling.
   1282   case Builtin::BIsqrt:
   1283   case Builtin::BIsqrtf:
   1284   case Builtin::BIsqrtl: {
   1285     // TODO: there is currently no set of optimizer flags
   1286     // sufficient for us to rewrite sqrt to @llvm.sqrt.
   1287     // -fmath-errno=0 is not good enough; we need finiteness.
   1288     // We could probably precondition the call with an ult
   1289     // against 0, but is that worth the complexity?
   1290     break;
   1291   }
   1292 
   1293   case Builtin::BIpow:
   1294   case Builtin::BIpowf:
   1295   case Builtin::BIpowl: {
   1296     // Rewrite sqrt to intrinsic if allowed.
   1297     if (!FD->hasAttr<ConstAttr>())
   1298       break;
   1299     Value *Base = EmitScalarExpr(E->getArg(0));
   1300     Value *Exponent = EmitScalarExpr(E->getArg(1));
   1301     llvm::Type *ArgType = Base->getType();
   1302     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
   1303     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
   1304   }
   1305 
   1306   case Builtin::BIfma:
   1307   case Builtin::BIfmaf:
   1308   case Builtin::BIfmal:
   1309   case Builtin::BI__builtin_fma:
   1310   case Builtin::BI__builtin_fmaf:
   1311   case Builtin::BI__builtin_fmal: {
   1312     // Rewrite fma to intrinsic.
   1313     Value *FirstArg = EmitScalarExpr(E->getArg(0));
   1314     llvm::Type *ArgType = FirstArg->getType();
   1315     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
   1316     return RValue::get(Builder.CreateCall3(F, FirstArg,
   1317                                               EmitScalarExpr(E->getArg(1)),
   1318                                               EmitScalarExpr(E->getArg(2))));
   1319   }
   1320 
   1321   case Builtin::BI__builtin_signbit:
   1322   case Builtin::BI__builtin_signbitf:
   1323   case Builtin::BI__builtin_signbitl: {
   1324     LLVMContext &C = CGM.getLLVMContext();
   1325 
   1326     Value *Arg = EmitScalarExpr(E->getArg(0));
   1327     llvm::Type *ArgTy = Arg->getType();
   1328     if (ArgTy->isPPC_FP128Ty())
   1329       break; // FIXME: I'm not sure what the right implementation is here.
   1330     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
   1331     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
   1332     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
   1333     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
   1334     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
   1335     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
   1336   }
   1337   case Builtin::BI__builtin_annotation: {
   1338     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
   1339     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
   1340                                       AnnVal->getType());
   1341 
   1342     // Get the annotation string, go through casts. Sema requires this to be a
   1343     // non-wide string literal, potentially casted, so the cast<> is safe.
   1344     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
   1345     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
   1346     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
   1347   }
   1348   case Builtin::BI__builtin_addcs:
   1349   case Builtin::BI__builtin_addc:
   1350   case Builtin::BI__builtin_addcl:
   1351   case Builtin::BI__builtin_addcll:
   1352   case Builtin::BI__builtin_subcs:
   1353   case Builtin::BI__builtin_subc:
   1354   case Builtin::BI__builtin_subcl:
   1355   case Builtin::BI__builtin_subcll: {
   1356 
   1357     // We translate all of these builtins from expressions of the form:
   1358     //   int x = ..., y = ..., carryin = ..., carryout, result;
   1359     //   result = __builtin_addc(x, y, carryin, &carryout);
   1360     //
   1361     // to LLVM IR of the form:
   1362     //
   1363     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
   1364     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
   1365     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
   1366     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
   1367     //                                                       i32 %carryin)
   1368     //   %result = extractvalue {i32, i1} %tmp2, 0
   1369     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
   1370     //   %tmp3 = or i1 %carry1, %carry2
   1371     //   %tmp4 = zext i1 %tmp3 to i32
   1372     //   store i32 %tmp4, i32* %carryout
   1373 
   1374     // Scalarize our inputs.
   1375     llvm::Value *X = EmitScalarExpr(E->getArg(0));
   1376     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
   1377     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
   1378     std::pair<llvm::Value*, unsigned> CarryOutPtr =
   1379       EmitPointerWithAlignment(E->getArg(3));
   1380 
   1381     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
   1382     llvm::Intrinsic::ID IntrinsicId;
   1383     switch (BuiltinID) {
   1384     default: llvm_unreachable("Unknown multiprecision builtin id.");
   1385     case Builtin::BI__builtin_addcs:
   1386     case Builtin::BI__builtin_addc:
   1387     case Builtin::BI__builtin_addcl:
   1388     case Builtin::BI__builtin_addcll:
   1389       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
   1390       break;
   1391     case Builtin::BI__builtin_subcs:
   1392     case Builtin::BI__builtin_subc:
   1393     case Builtin::BI__builtin_subcl:
   1394     case Builtin::BI__builtin_subcll:
   1395       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
   1396       break;
   1397     }
   1398 
   1399     // Construct our resulting LLVM IR expression.
   1400     llvm::Value *Carry1;
   1401     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
   1402                                               X, Y, Carry1);
   1403     llvm::Value *Carry2;
   1404     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
   1405                                               Sum1, Carryin, Carry2);
   1406     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
   1407                                                X->getType());
   1408     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
   1409                                                          CarryOutPtr.first);
   1410     CarryOutStore->setAlignment(CarryOutPtr.second);
   1411     return RValue::get(Sum2);
   1412   }
   1413   case Builtin::BI__noop:
   1414     return RValue::get(0);
   1415   }
   1416 
   1417   // If this is an alias for a lib function (e.g. __builtin_sin), emit
   1418   // the call using the normal call path, but using the unmangled
   1419   // version of the function name.
   1420   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
   1421     return emitLibraryCall(*this, FD, E,
   1422                            CGM.getBuiltinLibFunction(FD, BuiltinID));
   1423 
   1424   // If this is a predefined lib function (e.g. malloc), emit the call
   1425   // using exactly the normal call path.
   1426   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   1427     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
   1428 
   1429   // See if we have a target specific intrinsic.
   1430   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
   1431   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
   1432   if (const char *Prefix =
   1433       llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
   1434     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
   1435 
   1436   if (IntrinsicID != Intrinsic::not_intrinsic) {
   1437     SmallVector<Value*, 16> Args;
   1438 
   1439     // Find out if any arguments are required to be integer constant
   1440     // expressions.
   1441     unsigned ICEArguments = 0;
   1442     ASTContext::GetBuiltinTypeError Error;
   1443     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   1444     assert(Error == ASTContext::GE_None && "Should not codegen an error");
   1445 
   1446     Function *F = CGM.getIntrinsic(IntrinsicID);
   1447     llvm::FunctionType *FTy = F->getFunctionType();
   1448 
   1449     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   1450       Value *ArgValue;
   1451       // If this is a normal argument, just emit it as a scalar.
   1452       if ((ICEArguments & (1 << i)) == 0) {
   1453         ArgValue = EmitScalarExpr(E->getArg(i));
   1454       } else {
   1455         // If this is required to be a constant, constant fold it so that we
   1456         // know that the generated intrinsic gets a ConstantInt.
   1457         llvm::APSInt Result;
   1458         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
   1459         assert(IsConst && "Constant arg isn't actually constant?");
   1460         (void)IsConst;
   1461         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
   1462       }
   1463 
   1464       // If the intrinsic arg type is different from the builtin arg type
   1465       // we need to do a bit cast.
   1466       llvm::Type *PTy = FTy->getParamType(i);
   1467       if (PTy != ArgValue->getType()) {
   1468         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
   1469                "Must be able to losslessly bit cast to param");
   1470         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
   1471       }
   1472 
   1473       Args.push_back(ArgValue);
   1474     }
   1475 
   1476     Value *V = Builder.CreateCall(F, Args);
   1477     QualType BuiltinRetType = E->getType();
   1478 
   1479     llvm::Type *RetTy = VoidTy;
   1480     if (!BuiltinRetType->isVoidType())
   1481       RetTy = ConvertType(BuiltinRetType);
   1482 
   1483     if (RetTy != V->getType()) {
   1484       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
   1485              "Must be able to losslessly bit cast result type");
   1486       V = Builder.CreateBitCast(V, RetTy);
   1487     }
   1488 
   1489     return RValue::get(V);
   1490   }
   1491 
   1492   // See if we have a target specific builtin that needs to be lowered.
   1493   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
   1494     return RValue::get(V);
   1495 
   1496   ErrorUnsupported(E, "builtin function");
   1497 
   1498   // Unknown builtin, for now just dump it out and return undef.
   1499   return GetUndefRValue(E->getType());
   1500 }
   1501 
   1502 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
   1503                                               const CallExpr *E) {
   1504   switch (Target.getTriple().getArch()) {
   1505   case llvm::Triple::arm:
   1506   case llvm::Triple::thumb:
   1507     return EmitARMBuiltinExpr(BuiltinID, E);
   1508   case llvm::Triple::x86:
   1509   case llvm::Triple::x86_64:
   1510     return EmitX86BuiltinExpr(BuiltinID, E);
   1511   case llvm::Triple::ppc:
   1512   case llvm::Triple::ppc64:
   1513     return EmitPPCBuiltinExpr(BuiltinID, E);
   1514   default:
   1515     return 0;
   1516   }
   1517 }
   1518 
   1519 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
   1520                                      NeonTypeFlags TypeFlags) {
   1521   int IsQuad = TypeFlags.isQuad();
   1522   switch (TypeFlags.getEltType()) {
   1523   case NeonTypeFlags::Int8:
   1524   case NeonTypeFlags::Poly8:
   1525     return llvm::VectorType::get(CGF->Int8Ty, 8 << IsQuad);
   1526   case NeonTypeFlags::Int16:
   1527   case NeonTypeFlags::Poly16:
   1528   case NeonTypeFlags::Float16:
   1529     return llvm::VectorType::get(CGF->Int16Ty, 4 << IsQuad);
   1530   case NeonTypeFlags::Int32:
   1531     return llvm::VectorType::get(CGF->Int32Ty, 2 << IsQuad);
   1532   case NeonTypeFlags::Int64:
   1533     return llvm::VectorType::get(CGF->Int64Ty, 1 << IsQuad);
   1534   case NeonTypeFlags::Float32:
   1535     return llvm::VectorType::get(CGF->FloatTy, 2 << IsQuad);
   1536   }
   1537   llvm_unreachable("Invalid NeonTypeFlags element type!");
   1538 }
   1539 
   1540 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
   1541   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
   1542   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
   1543   return Builder.CreateShuffleVector(V, V, SV, "lane");
   1544 }
   1545 
   1546 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
   1547                                      const char *name,
   1548                                      unsigned shift, bool rightshift) {
   1549   unsigned j = 0;
   1550   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
   1551        ai != ae; ++ai, ++j)
   1552     if (shift > 0 && shift == j)
   1553       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
   1554     else
   1555       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
   1556 
   1557   return Builder.CreateCall(F, Ops, name);
   1558 }
   1559 
   1560 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
   1561                                             bool neg) {
   1562   int SV = cast<ConstantInt>(V)->getSExtValue();
   1563 
   1564   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
   1565   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
   1566   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
   1567 }
   1568 
   1569 /// GetPointeeAlignment - Given an expression with a pointer type, find the
   1570 /// alignment of the type referenced by the pointer.  Skip over implicit
   1571 /// casts.
   1572 std::pair<llvm::Value*, unsigned>
   1573 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
   1574   assert(Addr->getType()->isPointerType());
   1575   Addr = Addr->IgnoreParens();
   1576   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
   1577     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
   1578         ICE->getSubExpr()->getType()->isPointerType()) {
   1579       std::pair<llvm::Value*, unsigned> Ptr =
   1580           EmitPointerWithAlignment(ICE->getSubExpr());
   1581       Ptr.first = Builder.CreateBitCast(Ptr.first,
   1582                                         ConvertType(Addr->getType()));
   1583       return Ptr;
   1584     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
   1585       LValue LV = EmitLValue(ICE->getSubExpr());
   1586       unsigned Align = LV.getAlignment().getQuantity();
   1587       if (!Align) {
   1588         // FIXME: Once LValues are fixed to always set alignment,
   1589         // zap this code.
   1590         QualType PtTy = ICE->getSubExpr()->getType();
   1591         if (!PtTy->isIncompleteType())
   1592           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
   1593         else
   1594           Align = 1;
   1595       }
   1596       return std::make_pair(LV.getAddress(), Align);
   1597     }
   1598   }
   1599   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
   1600     if (UO->getOpcode() == UO_AddrOf) {
   1601       LValue LV = EmitLValue(UO->getSubExpr());
   1602       unsigned Align = LV.getAlignment().getQuantity();
   1603       if (!Align) {
   1604         // FIXME: Once LValues are fixed to always set alignment,
   1605         // zap this code.
   1606         QualType PtTy = UO->getSubExpr()->getType();
   1607         if (!PtTy->isIncompleteType())
   1608           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
   1609         else
   1610           Align = 1;
   1611       }
   1612       return std::make_pair(LV.getAddress(), Align);
   1613     }
   1614   }
   1615 
   1616   unsigned Align = 1;
   1617   QualType PtTy = Addr->getType()->getPointeeType();
   1618   if (!PtTy->isIncompleteType())
   1619     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
   1620 
   1621   return std::make_pair(EmitScalarExpr(Addr), Align);
   1622 }
   1623 
   1624 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
   1625                                            const CallExpr *E) {
   1626   if (BuiltinID == ARM::BI__clear_cache) {
   1627     const FunctionDecl *FD = E->getDirectCallee();
   1628     // Oddly people write this call without args on occasion and gcc accepts
   1629     // it - it's also marked as varargs in the description file.
   1630     SmallVector<Value*, 2> Ops;
   1631     for (unsigned i = 0; i < E->getNumArgs(); i++)
   1632       Ops.push_back(EmitScalarExpr(E->getArg(i)));
   1633     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
   1634     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
   1635     StringRef Name = FD->getName();
   1636     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
   1637   }
   1638 
   1639   if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
   1640     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
   1641 
   1642     Value *LdPtr = EmitScalarExpr(E->getArg(0));
   1643     Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
   1644 
   1645     Value *Val0 = Builder.CreateExtractValue(Val, 1);
   1646     Value *Val1 = Builder.CreateExtractValue(Val, 0);
   1647     Val0 = Builder.CreateZExt(Val0, Int64Ty);
   1648     Val1 = Builder.CreateZExt(Val1, Int64Ty);
   1649 
   1650     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
   1651     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
   1652     return Builder.CreateOr(Val, Val1);
   1653   }
   1654 
   1655   if (BuiltinID == ARM::BI__builtin_arm_strexd) {
   1656     Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
   1657     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
   1658 
   1659     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
   1660     Value *Tmp = Builder.CreateAlloca(Int64Ty, One);
   1661     Value *Val = EmitScalarExpr(E->getArg(0));
   1662     Builder.CreateStore(Val, Tmp);
   1663 
   1664     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
   1665     Val = Builder.CreateLoad(LdPtr);
   1666 
   1667     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
   1668     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
   1669     Value *StPtr = EmitScalarExpr(E->getArg(1));
   1670     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
   1671   }
   1672 
   1673   SmallVector<Value*, 4> Ops;
   1674   llvm::Value *Align = 0;
   1675   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
   1676     if (i == 0) {
   1677       switch (BuiltinID) {
   1678       case ARM::BI__builtin_neon_vld1_v:
   1679       case ARM::BI__builtin_neon_vld1q_v:
   1680       case ARM::BI__builtin_neon_vld1q_lane_v:
   1681       case ARM::BI__builtin_neon_vld1_lane_v:
   1682       case ARM::BI__builtin_neon_vld1_dup_v:
   1683       case ARM::BI__builtin_neon_vld1q_dup_v:
   1684       case ARM::BI__builtin_neon_vst1_v:
   1685       case ARM::BI__builtin_neon_vst1q_v:
   1686       case ARM::BI__builtin_neon_vst1q_lane_v:
   1687       case ARM::BI__builtin_neon_vst1_lane_v:
   1688       case ARM::BI__builtin_neon_vst2_v:
   1689       case ARM::BI__builtin_neon_vst2q_v:
   1690       case ARM::BI__builtin_neon_vst2_lane_v:
   1691       case ARM::BI__builtin_neon_vst2q_lane_v:
   1692       case ARM::BI__builtin_neon_vst3_v:
   1693       case ARM::BI__builtin_neon_vst3q_v:
   1694       case ARM::BI__builtin_neon_vst3_lane_v:
   1695       case ARM::BI__builtin_neon_vst3q_lane_v:
   1696       case ARM::BI__builtin_neon_vst4_v:
   1697       case ARM::BI__builtin_neon_vst4q_v:
   1698       case ARM::BI__builtin_neon_vst4_lane_v:
   1699       case ARM::BI__builtin_neon_vst4q_lane_v:
   1700         // Get the alignment for the argument in addition to the value;
   1701         // we'll use it later.
   1702         std::pair<llvm::Value*, unsigned> Src =
   1703             EmitPointerWithAlignment(E->getArg(0));
   1704         Ops.push_back(Src.first);
   1705         Align = Builder.getInt32(Src.second);
   1706         continue;
   1707       }
   1708     }
   1709     if (i == 1) {
   1710       switch (BuiltinID) {
   1711       case ARM::BI__builtin_neon_vld2_v:
   1712       case ARM::BI__builtin_neon_vld2q_v:
   1713       case ARM::BI__builtin_neon_vld3_v:
   1714       case ARM::BI__builtin_neon_vld3q_v:
   1715       case ARM::BI__builtin_neon_vld4_v:
   1716       case ARM::BI__builtin_neon_vld4q_v:
   1717       case ARM::BI__builtin_neon_vld2_lane_v:
   1718       case ARM::BI__builtin_neon_vld2q_lane_v:
   1719       case ARM::BI__builtin_neon_vld3_lane_v:
   1720       case ARM::BI__builtin_neon_vld3q_lane_v:
   1721       case ARM::BI__builtin_neon_vld4_lane_v:
   1722       case ARM::BI__builtin_neon_vld4q_lane_v:
   1723       case ARM::BI__builtin_neon_vld2_dup_v:
   1724       case ARM::BI__builtin_neon_vld3_dup_v:
   1725       case ARM::BI__builtin_neon_vld4_dup_v:
   1726         // Get the alignment for the argument in addition to the value;
   1727         // we'll use it later.
   1728         std::pair<llvm::Value*, unsigned> Src =
   1729             EmitPointerWithAlignment(E->getArg(1));
   1730         Ops.push_back(Src.first);
   1731         Align = Builder.getInt32(Src.second);
   1732         continue;
   1733       }
   1734     }
   1735     Ops.push_back(EmitScalarExpr(E->getArg(i)));
   1736   }
   1737 
   1738   // vget_lane and vset_lane are not overloaded and do not have an extra
   1739   // argument that specifies the vector type.
   1740   switch (BuiltinID) {
   1741   default: break;
   1742   case ARM::BI__builtin_neon_vget_lane_i8:
   1743   case ARM::BI__builtin_neon_vget_lane_i16:
   1744   case ARM::BI__builtin_neon_vget_lane_i32:
   1745   case ARM::BI__builtin_neon_vget_lane_i64:
   1746   case ARM::BI__builtin_neon_vget_lane_f32:
   1747   case ARM::BI__builtin_neon_vgetq_lane_i8:
   1748   case ARM::BI__builtin_neon_vgetq_lane_i16:
   1749   case ARM::BI__builtin_neon_vgetq_lane_i32:
   1750   case ARM::BI__builtin_neon_vgetq_lane_i64:
   1751   case ARM::BI__builtin_neon_vgetq_lane_f32:
   1752     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
   1753                                         "vget_lane");
   1754   case ARM::BI__builtin_neon_vset_lane_i8:
   1755   case ARM::BI__builtin_neon_vset_lane_i16:
   1756   case ARM::BI__builtin_neon_vset_lane_i32:
   1757   case ARM::BI__builtin_neon_vset_lane_i64:
   1758   case ARM::BI__builtin_neon_vset_lane_f32:
   1759   case ARM::BI__builtin_neon_vsetq_lane_i8:
   1760   case ARM::BI__builtin_neon_vsetq_lane_i16:
   1761   case ARM::BI__builtin_neon_vsetq_lane_i32:
   1762   case ARM::BI__builtin_neon_vsetq_lane_i64:
   1763   case ARM::BI__builtin_neon_vsetq_lane_f32:
   1764     Ops.push_back(EmitScalarExpr(E->getArg(2)));
   1765     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
   1766   }
   1767 
   1768   // Get the last argument, which specifies the vector type.
   1769   llvm::APSInt Result;
   1770   const Expr *Arg = E->getArg(E->getNumArgs()-1);
   1771   if (!Arg->isIntegerConstantExpr(Result, getContext()))
   1772     return 0;
   1773 
   1774   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
   1775       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
   1776     // Determine the overloaded type of this builtin.
   1777     llvm::Type *Ty;
   1778     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
   1779       Ty = FloatTy;
   1780     else
   1781       Ty = DoubleTy;
   1782 
   1783     // Determine whether this is an unsigned conversion or not.
   1784     bool usgn = Result.getZExtValue() == 1;
   1785     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
   1786 
   1787     // Call the appropriate intrinsic.
   1788     Function *F = CGM.getIntrinsic(Int, Ty);
   1789     return Builder.CreateCall(F, Ops, "vcvtr");
   1790   }
   1791 
   1792   // Determine the type of this overloaded NEON intrinsic.
   1793   NeonTypeFlags Type(Result.getZExtValue());
   1794   bool usgn = Type.isUnsigned();
   1795   bool quad = Type.isQuad();
   1796   bool rightShift = false;
   1797 
   1798   llvm::VectorType *VTy = GetNeonType(this, Type);
   1799   llvm::Type *Ty = VTy;
   1800   if (!Ty)
   1801     return 0;
   1802 
   1803   unsigned Int;
   1804   switch (BuiltinID) {
   1805   default: return 0;
   1806   case ARM::BI__builtin_neon_vbsl_v:
   1807   case ARM::BI__builtin_neon_vbslq_v:
   1808     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
   1809                         Ops, "vbsl");
   1810   case ARM::BI__builtin_neon_vabd_v:
   1811   case ARM::BI__builtin_neon_vabdq_v:
   1812     Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
   1813     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
   1814   case ARM::BI__builtin_neon_vabs_v:
   1815   case ARM::BI__builtin_neon_vabsq_v:
   1816     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
   1817                         Ops, "vabs");
   1818   case ARM::BI__builtin_neon_vaddhn_v:
   1819     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
   1820                         Ops, "vaddhn");
   1821   case ARM::BI__builtin_neon_vcale_v:
   1822     std::swap(Ops[0], Ops[1]);
   1823   case ARM::BI__builtin_neon_vcage_v: {
   1824     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
   1825     return EmitNeonCall(F, Ops, "vcage");
   1826   }
   1827   case ARM::BI__builtin_neon_vcaleq_v:
   1828     std::swap(Ops[0], Ops[1]);
   1829   case ARM::BI__builtin_neon_vcageq_v: {
   1830     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
   1831     return EmitNeonCall(F, Ops, "vcage");
   1832   }
   1833   case ARM::BI__builtin_neon_vcalt_v:
   1834     std::swap(Ops[0], Ops[1]);
   1835   case ARM::BI__builtin_neon_vcagt_v: {
   1836     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
   1837     return EmitNeonCall(F, Ops, "vcagt");
   1838   }
   1839   case ARM::BI__builtin_neon_vcaltq_v:
   1840     std::swap(Ops[0], Ops[1]);
   1841   case ARM::BI__builtin_neon_vcagtq_v: {
   1842     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
   1843     return EmitNeonCall(F, Ops, "vcagt");
   1844   }
   1845   case ARM::BI__builtin_neon_vcls_v:
   1846   case ARM::BI__builtin_neon_vclsq_v: {
   1847     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
   1848     return EmitNeonCall(F, Ops, "vcls");
   1849   }
   1850   case ARM::BI__builtin_neon_vclz_v:
   1851   case ARM::BI__builtin_neon_vclzq_v: {
   1852     // Generate target-independent intrinsic; also need to add second argument
   1853     // for whether or not clz of zero is undefined; on ARM it isn't.
   1854     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
   1855     Ops.push_back(Builder.getInt1(Target.isCLZForZeroUndef()));
   1856     return EmitNeonCall(F, Ops, "vclz");
   1857   }
   1858   case ARM::BI__builtin_neon_vcnt_v:
   1859   case ARM::BI__builtin_neon_vcntq_v: {
   1860     // generate target-independent intrinsic
   1861     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
   1862     return EmitNeonCall(F, Ops, "vctpop");
   1863   }
   1864   case ARM::BI__builtin_neon_vcvt_f16_v: {
   1865     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
   1866            "unexpected vcvt_f16_v builtin");
   1867     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
   1868     return EmitNeonCall(F, Ops, "vcvt");
   1869   }
   1870   case ARM::BI__builtin_neon_vcvt_f32_f16: {
   1871     assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
   1872            "unexpected vcvt_f32_f16 builtin");
   1873     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
   1874     return EmitNeonCall(F, Ops, "vcvt");
   1875   }
   1876   case ARM::BI__builtin_neon_vcvt_f32_v:
   1877   case ARM::BI__builtin_neon_vcvtq_f32_v:
   1878     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1879     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
   1880     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
   1881                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
   1882   case ARM::BI__builtin_neon_vcvt_s32_v:
   1883   case ARM::BI__builtin_neon_vcvt_u32_v:
   1884   case ARM::BI__builtin_neon_vcvtq_s32_v:
   1885   case ARM::BI__builtin_neon_vcvtq_u32_v: {
   1886     llvm::Type *FloatTy =
   1887       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
   1888     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
   1889     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
   1890                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
   1891   }
   1892   case ARM::BI__builtin_neon_vcvt_n_f32_v:
   1893   case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
   1894     llvm::Type *FloatTy =
   1895       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
   1896     llvm::Type *Tys[2] = { FloatTy, Ty };
   1897     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
   1898                : Intrinsic::arm_neon_vcvtfxs2fp;
   1899     Function *F = CGM.getIntrinsic(Int, Tys);
   1900     return EmitNeonCall(F, Ops, "vcvt_n");
   1901   }
   1902   case ARM::BI__builtin_neon_vcvt_n_s32_v:
   1903   case ARM::BI__builtin_neon_vcvt_n_u32_v:
   1904   case ARM::BI__builtin_neon_vcvtq_n_s32_v:
   1905   case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
   1906     llvm::Type *FloatTy =
   1907       GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
   1908     llvm::Type *Tys[2] = { Ty, FloatTy };
   1909     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
   1910                : Intrinsic::arm_neon_vcvtfp2fxs;
   1911     Function *F = CGM.getIntrinsic(Int, Tys);
   1912     return EmitNeonCall(F, Ops, "vcvt_n");
   1913   }
   1914   case ARM::BI__builtin_neon_vext_v:
   1915   case ARM::BI__builtin_neon_vextq_v: {
   1916     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
   1917     SmallVector<Constant*, 16> Indices;
   1918     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
   1919       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
   1920 
   1921     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1922     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   1923     Value *SV = llvm::ConstantVector::get(Indices);
   1924     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
   1925   }
   1926   case ARM::BI__builtin_neon_vhadd_v:
   1927   case ARM::BI__builtin_neon_vhaddq_v:
   1928     Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
   1929     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
   1930   case ARM::BI__builtin_neon_vhsub_v:
   1931   case ARM::BI__builtin_neon_vhsubq_v:
   1932     Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
   1933     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
   1934   case ARM::BI__builtin_neon_vld1_v:
   1935   case ARM::BI__builtin_neon_vld1q_v:
   1936     Ops.push_back(Align);
   1937     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
   1938                         Ops, "vld1");
   1939   case ARM::BI__builtin_neon_vld1q_lane_v:
   1940     // Handle 64-bit integer elements as a special case.  Use shuffles of
   1941     // one-element vectors to avoid poor code for i64 in the backend.
   1942     if (VTy->getElementType()->isIntegerTy(64)) {
   1943       // Extract the other lane.
   1944       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   1945       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
   1946       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
   1947       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
   1948       // Load the value as a one-element vector.
   1949       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
   1950       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
   1951       Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
   1952       // Combine them.
   1953       SmallVector<Constant*, 2> Indices;
   1954       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
   1955       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
   1956       SV = llvm::ConstantVector::get(Indices);
   1957       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
   1958     }
   1959     // fall through
   1960   case ARM::BI__builtin_neon_vld1_lane_v: {
   1961     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   1962     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
   1963     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1964     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
   1965     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
   1966     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
   1967   }
   1968   case ARM::BI__builtin_neon_vld1_dup_v:
   1969   case ARM::BI__builtin_neon_vld1q_dup_v: {
   1970     Value *V = UndefValue::get(Ty);
   1971     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
   1972     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1973     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
   1974     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
   1975     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
   1976     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
   1977     return EmitNeonSplat(Ops[0], CI);
   1978   }
   1979   case ARM::BI__builtin_neon_vld2_v:
   1980   case ARM::BI__builtin_neon_vld2q_v: {
   1981     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
   1982     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
   1983     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   1984     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1985     return Builder.CreateStore(Ops[1], Ops[0]);
   1986   }
   1987   case ARM::BI__builtin_neon_vld3_v:
   1988   case ARM::BI__builtin_neon_vld3q_v: {
   1989     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
   1990     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
   1991     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   1992     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   1993     return Builder.CreateStore(Ops[1], Ops[0]);
   1994   }
   1995   case ARM::BI__builtin_neon_vld4_v:
   1996   case ARM::BI__builtin_neon_vld4q_v: {
   1997     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
   1998     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
   1999     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2000     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2001     return Builder.CreateStore(Ops[1], Ops[0]);
   2002   }
   2003   case ARM::BI__builtin_neon_vld2_lane_v:
   2004   case ARM::BI__builtin_neon_vld2q_lane_v: {
   2005     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
   2006     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2007     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
   2008     Ops.push_back(Align);
   2009     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
   2010     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2011     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2012     return Builder.CreateStore(Ops[1], Ops[0]);
   2013   }
   2014   case ARM::BI__builtin_neon_vld3_lane_v:
   2015   case ARM::BI__builtin_neon_vld3q_lane_v: {
   2016     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
   2017     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2018     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
   2019     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
   2020     Ops.push_back(Align);
   2021     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
   2022     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2023     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2024     return Builder.CreateStore(Ops[1], Ops[0]);
   2025   }
   2026   case ARM::BI__builtin_neon_vld4_lane_v:
   2027   case ARM::BI__builtin_neon_vld4q_lane_v: {
   2028     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
   2029     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2030     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
   2031     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
   2032     Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
   2033     Ops.push_back(Align);
   2034     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
   2035     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2036     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2037     return Builder.CreateStore(Ops[1], Ops[0]);
   2038   }
   2039   case ARM::BI__builtin_neon_vld2_dup_v:
   2040   case ARM::BI__builtin_neon_vld3_dup_v:
   2041   case ARM::BI__builtin_neon_vld4_dup_v: {
   2042     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
   2043     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
   2044       switch (BuiltinID) {
   2045       case ARM::BI__builtin_neon_vld2_dup_v:
   2046         Int = Intrinsic::arm_neon_vld2;
   2047         break;
   2048       case ARM::BI__builtin_neon_vld3_dup_v:
   2049         Int = Intrinsic::arm_neon_vld3;
   2050         break;
   2051       case ARM::BI__builtin_neon_vld4_dup_v:
   2052         Int = Intrinsic::arm_neon_vld4;
   2053         break;
   2054       default: llvm_unreachable("unknown vld_dup intrinsic?");
   2055       }
   2056       Function *F = CGM.getIntrinsic(Int, Ty);
   2057       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
   2058       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2059       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2060       return Builder.CreateStore(Ops[1], Ops[0]);
   2061     }
   2062     switch (BuiltinID) {
   2063     case ARM::BI__builtin_neon_vld2_dup_v:
   2064       Int = Intrinsic::arm_neon_vld2lane;
   2065       break;
   2066     case ARM::BI__builtin_neon_vld3_dup_v:
   2067       Int = Intrinsic::arm_neon_vld3lane;
   2068       break;
   2069     case ARM::BI__builtin_neon_vld4_dup_v:
   2070       Int = Intrinsic::arm_neon_vld4lane;
   2071       break;
   2072     default: llvm_unreachable("unknown vld_dup intrinsic?");
   2073     }
   2074     Function *F = CGM.getIntrinsic(Int, Ty);
   2075     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
   2076 
   2077     SmallVector<Value*, 6> Args;
   2078     Args.push_back(Ops[1]);
   2079     Args.append(STy->getNumElements(), UndefValue::get(Ty));
   2080 
   2081     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
   2082     Args.push_back(CI);
   2083     Args.push_back(Align);
   2084 
   2085     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
   2086     // splat lane 0 to all elts in each vector of the result.
   2087     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2088       Value *Val = Builder.CreateExtractValue(Ops[1], i);
   2089       Value *Elt = Builder.CreateBitCast(Val, Ty);
   2090       Elt = EmitNeonSplat(Elt, CI);
   2091       Elt = Builder.CreateBitCast(Elt, Val->getType());
   2092       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
   2093     }
   2094     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2095     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2096     return Builder.CreateStore(Ops[1], Ops[0]);
   2097   }
   2098   case ARM::BI__builtin_neon_vmax_v:
   2099   case ARM::BI__builtin_neon_vmaxq_v:
   2100     Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
   2101     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
   2102   case ARM::BI__builtin_neon_vmin_v:
   2103   case ARM::BI__builtin_neon_vminq_v:
   2104     Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
   2105     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
   2106   case ARM::BI__builtin_neon_vmovl_v: {
   2107     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
   2108     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
   2109     if (usgn)
   2110       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
   2111     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
   2112   }
   2113   case ARM::BI__builtin_neon_vmovn_v: {
   2114     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
   2115     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
   2116     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
   2117   }
   2118   case ARM::BI__builtin_neon_vmul_v:
   2119   case ARM::BI__builtin_neon_vmulq_v:
   2120     assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
   2121     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
   2122                         Ops, "vmul");
   2123   case ARM::BI__builtin_neon_vmull_v:
   2124     Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
   2125     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
   2126     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
   2127   case ARM::BI__builtin_neon_vfma_v:
   2128   case ARM::BI__builtin_neon_vfmaq_v: {
   2129     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
   2130     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2131     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2132     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2133 
   2134     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
   2135     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
   2136   }
   2137   case ARM::BI__builtin_neon_vpadal_v:
   2138   case ARM::BI__builtin_neon_vpadalq_v: {
   2139     Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
   2140     // The source operand type has twice as many elements of half the size.
   2141     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
   2142     llvm::Type *EltTy =
   2143       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
   2144     llvm::Type *NarrowTy =
   2145       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
   2146     llvm::Type *Tys[2] = { Ty, NarrowTy };
   2147     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
   2148   }
   2149   case ARM::BI__builtin_neon_vpadd_v:
   2150     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
   2151                         Ops, "vpadd");
   2152   case ARM::BI__builtin_neon_vpaddl_v:
   2153   case ARM::BI__builtin_neon_vpaddlq_v: {
   2154     Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
   2155     // The source operand type has twice as many elements of half the size.
   2156     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
   2157     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
   2158     llvm::Type *NarrowTy =
   2159       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
   2160     llvm::Type *Tys[2] = { Ty, NarrowTy };
   2161     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
   2162   }
   2163   case ARM::BI__builtin_neon_vpmax_v:
   2164     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
   2165     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
   2166   case ARM::BI__builtin_neon_vpmin_v:
   2167     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
   2168     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
   2169   case ARM::BI__builtin_neon_vqabs_v:
   2170   case ARM::BI__builtin_neon_vqabsq_v:
   2171     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
   2172                         Ops, "vqabs");
   2173   case ARM::BI__builtin_neon_vqadd_v:
   2174   case ARM::BI__builtin_neon_vqaddq_v:
   2175     Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
   2176     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
   2177   case ARM::BI__builtin_neon_vqdmlal_v:
   2178     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
   2179                         Ops, "vqdmlal");
   2180   case ARM::BI__builtin_neon_vqdmlsl_v:
   2181     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
   2182                         Ops, "vqdmlsl");
   2183   case ARM::BI__builtin_neon_vqdmulh_v:
   2184   case ARM::BI__builtin_neon_vqdmulhq_v:
   2185     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
   2186                         Ops, "vqdmulh");
   2187   case ARM::BI__builtin_neon_vqdmull_v:
   2188     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
   2189                         Ops, "vqdmull");
   2190   case ARM::BI__builtin_neon_vqmovn_v:
   2191     Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
   2192     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
   2193   case ARM::BI__builtin_neon_vqmovun_v:
   2194     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
   2195                         Ops, "vqdmull");
   2196   case ARM::BI__builtin_neon_vqneg_v:
   2197   case ARM::BI__builtin_neon_vqnegq_v:
   2198     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
   2199                         Ops, "vqneg");
   2200   case ARM::BI__builtin_neon_vqrdmulh_v:
   2201   case ARM::BI__builtin_neon_vqrdmulhq_v:
   2202     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
   2203                         Ops, "vqrdmulh");
   2204   case ARM::BI__builtin_neon_vqrshl_v:
   2205   case ARM::BI__builtin_neon_vqrshlq_v:
   2206     Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
   2207     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
   2208   case ARM::BI__builtin_neon_vqrshrn_n_v:
   2209     Int =
   2210       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
   2211     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
   2212                         1, true);
   2213   case ARM::BI__builtin_neon_vqrshrun_n_v:
   2214     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
   2215                         Ops, "vqrshrun_n", 1, true);
   2216   case ARM::BI__builtin_neon_vqshl_v:
   2217   case ARM::BI__builtin_neon_vqshlq_v:
   2218     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
   2219     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
   2220   case ARM::BI__builtin_neon_vqshl_n_v:
   2221   case ARM::BI__builtin_neon_vqshlq_n_v:
   2222     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
   2223     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
   2224                         1, false);
   2225   case ARM::BI__builtin_neon_vqshlu_n_v:
   2226   case ARM::BI__builtin_neon_vqshluq_n_v:
   2227     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
   2228                         Ops, "vqshlu", 1, false);
   2229   case ARM::BI__builtin_neon_vqshrn_n_v:
   2230     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
   2231     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
   2232                         1, true);
   2233   case ARM::BI__builtin_neon_vqshrun_n_v:
   2234     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
   2235                         Ops, "vqshrun_n", 1, true);
   2236   case ARM::BI__builtin_neon_vqsub_v:
   2237   case ARM::BI__builtin_neon_vqsubq_v:
   2238     Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
   2239     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
   2240   case ARM::BI__builtin_neon_vraddhn_v:
   2241     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
   2242                         Ops, "vraddhn");
   2243   case ARM::BI__builtin_neon_vrecpe_v:
   2244   case ARM::BI__builtin_neon_vrecpeq_v:
   2245     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
   2246                         Ops, "vrecpe");
   2247   case ARM::BI__builtin_neon_vrecps_v:
   2248   case ARM::BI__builtin_neon_vrecpsq_v:
   2249     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
   2250                         Ops, "vrecps");
   2251   case ARM::BI__builtin_neon_vrhadd_v:
   2252   case ARM::BI__builtin_neon_vrhaddq_v:
   2253     Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
   2254     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
   2255   case ARM::BI__builtin_neon_vrshl_v:
   2256   case ARM::BI__builtin_neon_vrshlq_v:
   2257     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
   2258     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
   2259   case ARM::BI__builtin_neon_vrshrn_n_v:
   2260     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
   2261                         Ops, "vrshrn_n", 1, true);
   2262   case ARM::BI__builtin_neon_vrshr_n_v:
   2263   case ARM::BI__builtin_neon_vrshrq_n_v:
   2264     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
   2265     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
   2266   case ARM::BI__builtin_neon_vrsqrte_v:
   2267   case ARM::BI__builtin_neon_vrsqrteq_v:
   2268     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
   2269                         Ops, "vrsqrte");
   2270   case ARM::BI__builtin_neon_vrsqrts_v:
   2271   case ARM::BI__builtin_neon_vrsqrtsq_v:
   2272     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
   2273                         Ops, "vrsqrts");
   2274   case ARM::BI__builtin_neon_vrsra_n_v:
   2275   case ARM::BI__builtin_neon_vrsraq_n_v:
   2276     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2277     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2278     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
   2279     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
   2280     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
   2281     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
   2282   case ARM::BI__builtin_neon_vrsubhn_v:
   2283     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
   2284                         Ops, "vrsubhn");
   2285   case ARM::BI__builtin_neon_vshl_v:
   2286   case ARM::BI__builtin_neon_vshlq_v:
   2287     Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
   2288     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
   2289   case ARM::BI__builtin_neon_vshll_n_v:
   2290     Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
   2291     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
   2292   case ARM::BI__builtin_neon_vshl_n_v:
   2293   case ARM::BI__builtin_neon_vshlq_n_v:
   2294     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
   2295     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
   2296                              "vshl_n");
   2297   case ARM::BI__builtin_neon_vshrn_n_v:
   2298     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
   2299                         Ops, "vshrn_n", 1, true);
   2300   case ARM::BI__builtin_neon_vshr_n_v:
   2301   case ARM::BI__builtin_neon_vshrq_n_v:
   2302     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2303     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
   2304     if (usgn)
   2305       return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
   2306     else
   2307       return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
   2308   case ARM::BI__builtin_neon_vsri_n_v:
   2309   case ARM::BI__builtin_neon_vsriq_n_v:
   2310     rightShift = true;
   2311   case ARM::BI__builtin_neon_vsli_n_v:
   2312   case ARM::BI__builtin_neon_vsliq_n_v:
   2313     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
   2314     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
   2315                         Ops, "vsli_n");
   2316   case ARM::BI__builtin_neon_vsra_n_v:
   2317   case ARM::BI__builtin_neon_vsraq_n_v:
   2318     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2319     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2320     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
   2321     if (usgn)
   2322       Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
   2323     else
   2324       Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
   2325     return Builder.CreateAdd(Ops[0], Ops[1]);
   2326   case ARM::BI__builtin_neon_vst1_v:
   2327   case ARM::BI__builtin_neon_vst1q_v:
   2328     Ops.push_back(Align);
   2329     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
   2330                         Ops, "");
   2331   case ARM::BI__builtin_neon_vst1q_lane_v:
   2332     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
   2333     // a one-element vector and avoid poor code for i64 in the backend.
   2334     if (VTy->getElementType()->isIntegerTy(64)) {
   2335       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2336       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
   2337       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
   2338       Ops[2] = Align;
   2339       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
   2340                                                  Ops[1]->getType()), Ops);
   2341     }
   2342     // fall through
   2343   case ARM::BI__builtin_neon_vst1_lane_v: {
   2344     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2345     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
   2346     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
   2347     StoreInst *St = Builder.CreateStore(Ops[1],
   2348                                         Builder.CreateBitCast(Ops[0], Ty));
   2349     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
   2350     return St;
   2351   }
   2352   case ARM::BI__builtin_neon_vst2_v:
   2353   case ARM::BI__builtin_neon_vst2q_v:
   2354     Ops.push_back(Align);
   2355     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
   2356                         Ops, "");
   2357   case ARM::BI__builtin_neon_vst2_lane_v:
   2358   case ARM::BI__builtin_neon_vst2q_lane_v:
   2359     Ops.push_back(Align);
   2360     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
   2361                         Ops, "");
   2362   case ARM::BI__builtin_neon_vst3_v:
   2363   case ARM::BI__builtin_neon_vst3q_v:
   2364     Ops.push_back(Align);
   2365     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
   2366                         Ops, "");
   2367   case ARM::BI__builtin_neon_vst3_lane_v:
   2368   case ARM::BI__builtin_neon_vst3q_lane_v:
   2369     Ops.push_back(Align);
   2370     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
   2371                         Ops, "");
   2372   case ARM::BI__builtin_neon_vst4_v:
   2373   case ARM::BI__builtin_neon_vst4q_v:
   2374     Ops.push_back(Align);
   2375     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
   2376                         Ops, "");
   2377   case ARM::BI__builtin_neon_vst4_lane_v:
   2378   case ARM::BI__builtin_neon_vst4q_lane_v:
   2379     Ops.push_back(Align);
   2380     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
   2381                         Ops, "");
   2382   case ARM::BI__builtin_neon_vsubhn_v:
   2383     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
   2384                         Ops, "vsubhn");
   2385   case ARM::BI__builtin_neon_vtbl1_v:
   2386     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
   2387                         Ops, "vtbl1");
   2388   case ARM::BI__builtin_neon_vtbl2_v:
   2389     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
   2390                         Ops, "vtbl2");
   2391   case ARM::BI__builtin_neon_vtbl3_v:
   2392     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
   2393                         Ops, "vtbl3");
   2394   case ARM::BI__builtin_neon_vtbl4_v:
   2395     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
   2396                         Ops, "vtbl4");
   2397   case ARM::BI__builtin_neon_vtbx1_v:
   2398     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
   2399                         Ops, "vtbx1");
   2400   case ARM::BI__builtin_neon_vtbx2_v:
   2401     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
   2402                         Ops, "vtbx2");
   2403   case ARM::BI__builtin_neon_vtbx3_v:
   2404     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
   2405                         Ops, "vtbx3");
   2406   case ARM::BI__builtin_neon_vtbx4_v:
   2407     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
   2408                         Ops, "vtbx4");
   2409   case ARM::BI__builtin_neon_vtst_v:
   2410   case ARM::BI__builtin_neon_vtstq_v: {
   2411     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
   2412     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2413     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
   2414     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
   2415                                 ConstantAggregateZero::get(Ty));
   2416     return Builder.CreateSExt(Ops[0], Ty, "vtst");
   2417   }
   2418   case ARM::BI__builtin_neon_vtrn_v:
   2419   case ARM::BI__builtin_neon_vtrnq_v: {
   2420     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   2421     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2422     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2423     Value *SV = 0;
   2424 
   2425     for (unsigned vi = 0; vi != 2; ++vi) {
   2426       SmallVector<Constant*, 16> Indices;
   2427       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   2428         Indices.push_back(Builder.getInt32(i+vi));
   2429         Indices.push_back(Builder.getInt32(i+e+vi));
   2430       }
   2431       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
   2432       SV = llvm::ConstantVector::get(Indices);
   2433       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
   2434       SV = Builder.CreateStore(SV, Addr);
   2435     }
   2436     return SV;
   2437   }
   2438   case ARM::BI__builtin_neon_vuzp_v:
   2439   case ARM::BI__builtin_neon_vuzpq_v: {
   2440     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   2441     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2442     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2443     Value *SV = 0;
   2444 
   2445     for (unsigned vi = 0; vi != 2; ++vi) {
   2446       SmallVector<Constant*, 16> Indices;
   2447       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
   2448         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
   2449 
   2450       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
   2451       SV = llvm::ConstantVector::get(Indices);
   2452       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
   2453       SV = Builder.CreateStore(SV, Addr);
   2454     }
   2455     return SV;
   2456   }
   2457   case ARM::BI__builtin_neon_vzip_v:
   2458   case ARM::BI__builtin_neon_vzipq_v: {
   2459     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
   2460     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
   2461     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
   2462     Value *SV = 0;
   2463 
   2464     for (unsigned vi = 0; vi != 2; ++vi) {
   2465       SmallVector<Constant*, 16> Indices;
   2466       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
   2467         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
   2468         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
   2469       }
   2470       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
   2471       SV = llvm::ConstantVector::get(Indices);
   2472       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
   2473       SV = Builder.CreateStore(SV, Addr);
   2474     }
   2475     return SV;
   2476   }
   2477   }
   2478 }
   2479 
   2480 llvm::Value *CodeGenFunction::
   2481 BuildVector(ArrayRef<llvm::Value*> Ops) {
   2482   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
   2483          "Not a power-of-two sized vector!");
   2484   bool AllConstants = true;
   2485   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
   2486     AllConstants &= isa<Constant>(Ops[i]);
   2487 
   2488   // If this is a constant vector, create a ConstantVector.
   2489   if (AllConstants) {
   2490     SmallVector<llvm::Constant*, 16> CstOps;
   2491     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2492       CstOps.push_back(cast<Constant>(Ops[i]));
   2493     return llvm::ConstantVector::get(CstOps);
   2494   }
   2495 
   2496   // Otherwise, insertelement the values to build the vector.
   2497   Value *Result =
   2498     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
   2499 
   2500   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2501     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
   2502 
   2503   return Result;
   2504 }
   2505 
   2506 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
   2507                                            const CallExpr *E) {
   2508   SmallVector<Value*, 4> Ops;
   2509 
   2510   // Find out if any arguments are required to be integer constant expressions.
   2511   unsigned ICEArguments = 0;
   2512   ASTContext::GetBuiltinTypeError Error;
   2513   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
   2514   assert(Error == ASTContext::GE_None && "Should not codegen an error");
   2515 
   2516   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
   2517     // If this is a normal argument, just emit it as a scalar.
   2518     if ((ICEArguments & (1 << i)) == 0) {
   2519       Ops.push_back(EmitScalarExpr(E->getArg(i)));
   2520       continue;
   2521     }
   2522 
   2523     // If this is required to be a constant, constant fold it so that we know
   2524     // that the generated intrinsic gets a ConstantInt.
   2525     llvm::APSInt Result;
   2526     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
   2527     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
   2528     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
   2529   }
   2530 
   2531   switch (BuiltinID) {
   2532   default: return 0;
   2533   case X86::BI__builtin_ia32_vec_init_v8qi:
   2534   case X86::BI__builtin_ia32_vec_init_v4hi:
   2535   case X86::BI__builtin_ia32_vec_init_v2si:
   2536     return Builder.CreateBitCast(BuildVector(Ops),
   2537                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
   2538   case X86::BI__builtin_ia32_vec_ext_v2si:
   2539     return Builder.CreateExtractElement(Ops[0],
   2540                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
   2541   case X86::BI__builtin_ia32_ldmxcsr: {
   2542     llvm::Type *PtrTy = Int8PtrTy;
   2543     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
   2544     Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
   2545     Builder.CreateStore(Ops[0], Tmp);
   2546     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
   2547                               Builder.CreateBitCast(Tmp, PtrTy));
   2548   }
   2549   case X86::BI__builtin_ia32_stmxcsr: {
   2550     llvm::Type *PtrTy = Int8PtrTy;
   2551     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
   2552     Value *Tmp = Builder.CreateAlloca(Int32Ty, One);
   2553     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
   2554                        Builder.CreateBitCast(Tmp, PtrTy));
   2555     return Builder.CreateLoad(Tmp, "stmxcsr");
   2556   }
   2557   case X86::BI__builtin_ia32_storehps:
   2558   case X86::BI__builtin_ia32_storelps: {
   2559     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
   2560     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
   2561 
   2562     // cast val v2i64
   2563     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
   2564 
   2565     // extract (0, 1)
   2566     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
   2567     llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
   2568     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
   2569 
   2570     // cast pointer to i64 & store
   2571     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
   2572     return Builder.CreateStore(Ops[1], Ops[0]);
   2573   }
   2574   case X86::BI__builtin_ia32_palignr: {
   2575     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
   2576 
   2577     // If palignr is shifting the pair of input vectors less than 9 bytes,
   2578     // emit a shuffle instruction.
   2579     if (shiftVal <= 8) {
   2580       SmallVector<llvm::Constant*, 8> Indices;
   2581       for (unsigned i = 0; i != 8; ++i)
   2582         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
   2583 
   2584       Value* SV = llvm::ConstantVector::get(Indices);
   2585       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
   2586     }
   2587 
   2588     // If palignr is shifting the pair of input vectors more than 8 but less
   2589     // than 16 bytes, emit a logical right shift of the destination.
   2590     if (shiftVal < 16) {
   2591       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
   2592       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
   2593 
   2594       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
   2595       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
   2596 
   2597       // create i32 constant
   2598       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
   2599       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
   2600     }
   2601 
   2602     // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
   2603     return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2604   }
   2605   case X86::BI__builtin_ia32_palignr128: {
   2606     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
   2607 
   2608     // If palignr is shifting the pair of input vectors less than 17 bytes,
   2609     // emit a shuffle instruction.
   2610     if (shiftVal <= 16) {
   2611       SmallVector<llvm::Constant*, 16> Indices;
   2612       for (unsigned i = 0; i != 16; ++i)
   2613         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
   2614 
   2615       Value* SV = llvm::ConstantVector::get(Indices);
   2616       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
   2617     }
   2618 
   2619     // If palignr is shifting the pair of input vectors more than 16 but less
   2620     // than 32 bytes, emit a logical right shift of the destination.
   2621     if (shiftVal < 32) {
   2622       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
   2623 
   2624       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
   2625       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
   2626 
   2627       // create i32 constant
   2628       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
   2629       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
   2630     }
   2631 
   2632     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
   2633     return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2634   }
   2635   case X86::BI__builtin_ia32_palignr256: {
   2636     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
   2637 
   2638     // If palignr is shifting the pair of input vectors less than 17 bytes,
   2639     // emit a shuffle instruction.
   2640     if (shiftVal <= 16) {
   2641       SmallVector<llvm::Constant*, 32> Indices;
   2642       // 256-bit palignr operates on 128-bit lanes so we need to handle that
   2643       for (unsigned l = 0; l != 2; ++l) {
   2644         unsigned LaneStart = l * 16;
   2645         unsigned LaneEnd = (l+1) * 16;
   2646         for (unsigned i = 0; i != 16; ++i) {
   2647           unsigned Idx = shiftVal + i + LaneStart;
   2648           if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
   2649           Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
   2650         }
   2651       }
   2652 
   2653       Value* SV = llvm::ConstantVector::get(Indices);
   2654       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
   2655     }
   2656 
   2657     // If palignr is shifting the pair of input vectors more than 16 but less
   2658     // than 32 bytes, emit a logical right shift of the destination.
   2659     if (shiftVal < 32) {
   2660       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
   2661 
   2662       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
   2663       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
   2664 
   2665       // create i32 constant
   2666       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
   2667       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
   2668     }
   2669 
   2670     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
   2671     return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2672   }
   2673   case X86::BI__builtin_ia32_movntps:
   2674   case X86::BI__builtin_ia32_movntps256:
   2675   case X86::BI__builtin_ia32_movntpd:
   2676   case X86::BI__builtin_ia32_movntpd256:
   2677   case X86::BI__builtin_ia32_movntdq:
   2678   case X86::BI__builtin_ia32_movntdq256:
   2679   case X86::BI__builtin_ia32_movnti: {
   2680     llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
   2681                                            Builder.getInt32(1));
   2682 
   2683     // Convert the type of the pointer to a pointer to the stored type.
   2684     Value *BC = Builder.CreateBitCast(Ops[0],
   2685                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
   2686                                       "cast");
   2687     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
   2688     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   2689     SI->setAlignment(16);
   2690     return SI;
   2691   }
   2692   // 3DNow!
   2693   case X86::BI__builtin_ia32_pswapdsf:
   2694   case X86::BI__builtin_ia32_pswapdsi: {
   2695     const char *name = 0;
   2696     Intrinsic::ID ID = Intrinsic::not_intrinsic;
   2697     switch(BuiltinID) {
   2698     default: llvm_unreachable("Unsupported intrinsic!");
   2699     case X86::BI__builtin_ia32_pswapdsf:
   2700     case X86::BI__builtin_ia32_pswapdsi:
   2701       name = "pswapd";
   2702       ID = Intrinsic::x86_3dnowa_pswapd;
   2703       break;
   2704     }
   2705     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
   2706     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
   2707     llvm::Function *F = CGM.getIntrinsic(ID);
   2708     return Builder.CreateCall(F, Ops, name);
   2709   }
   2710   case X86::BI__builtin_ia32_rdrand16_step:
   2711   case X86::BI__builtin_ia32_rdrand32_step:
   2712   case X86::BI__builtin_ia32_rdrand64_step: {
   2713     Intrinsic::ID ID;
   2714     switch (BuiltinID) {
   2715     default: llvm_unreachable("Unsupported intrinsic!");
   2716     case X86::BI__builtin_ia32_rdrand16_step:
   2717       ID = Intrinsic::x86_rdrand_16;
   2718       break;
   2719     case X86::BI__builtin_ia32_rdrand32_step:
   2720       ID = Intrinsic::x86_rdrand_32;
   2721       break;
   2722     case X86::BI__builtin_ia32_rdrand64_step:
   2723       ID = Intrinsic::x86_rdrand_64;
   2724       break;
   2725     }
   2726 
   2727     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
   2728     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
   2729     return Builder.CreateExtractValue(Call, 1);
   2730   }
   2731   }
   2732 }
   2733 
   2734 
   2735 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
   2736                                            const CallExpr *E) {
   2737   SmallVector<Value*, 4> Ops;
   2738 
   2739   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
   2740     Ops.push_back(EmitScalarExpr(E->getArg(i)));
   2741 
   2742   Intrinsic::ID ID = Intrinsic::not_intrinsic;
   2743 
   2744   switch (BuiltinID) {
   2745   default: return 0;
   2746 
   2747   // vec_ld, vec_lvsl, vec_lvsr
   2748   case PPC::BI__builtin_altivec_lvx:
   2749   case PPC::BI__builtin_altivec_lvxl:
   2750   case PPC::BI__builtin_altivec_lvebx:
   2751   case PPC::BI__builtin_altivec_lvehx:
   2752   case PPC::BI__builtin_altivec_lvewx:
   2753   case PPC::BI__builtin_altivec_lvsl:
   2754   case PPC::BI__builtin_altivec_lvsr:
   2755   {
   2756     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
   2757 
   2758     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
   2759     Ops.pop_back();
   2760 
   2761     switch (BuiltinID) {
   2762     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
   2763     case PPC::BI__builtin_altivec_lvx:
   2764       ID = Intrinsic::ppc_altivec_lvx;
   2765       break;
   2766     case PPC::BI__builtin_altivec_lvxl:
   2767       ID = Intrinsic::ppc_altivec_lvxl;
   2768       break;
   2769     case PPC::BI__builtin_altivec_lvebx:
   2770       ID = Intrinsic::ppc_altivec_lvebx;
   2771       break;
   2772     case PPC::BI__builtin_altivec_lvehx:
   2773       ID = Intrinsic::ppc_altivec_lvehx;
   2774       break;
   2775     case PPC::BI__builtin_altivec_lvewx:
   2776       ID = Intrinsic::ppc_altivec_lvewx;
   2777       break;
   2778     case PPC::BI__builtin_altivec_lvsl:
   2779       ID = Intrinsic::ppc_altivec_lvsl;
   2780       break;
   2781     case PPC::BI__builtin_altivec_lvsr:
   2782       ID = Intrinsic::ppc_altivec_lvsr;
   2783       break;
   2784     }
   2785     llvm::Function *F = CGM.getIntrinsic(ID);
   2786     return Builder.CreateCall(F, Ops, "");
   2787   }
   2788 
   2789   // vec_st
   2790   case PPC::BI__builtin_altivec_stvx:
   2791   case PPC::BI__builtin_altivec_stvxl:
   2792   case PPC::BI__builtin_altivec_stvebx:
   2793   case PPC::BI__builtin_altivec_stvehx:
   2794   case PPC::BI__builtin_altivec_stvewx:
   2795   {
   2796     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
   2797     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
   2798     Ops.pop_back();
   2799 
   2800     switch (BuiltinID) {
   2801     default: llvm_unreachable("Unsupported st intrinsic!");
   2802     case PPC::BI__builtin_altivec_stvx:
   2803       ID = Intrinsic::ppc_altivec_stvx;
   2804       break;
   2805     case PPC::BI__builtin_altivec_stvxl:
   2806       ID = Intrinsic::ppc_altivec_stvxl;
   2807       break;
   2808     case PPC::BI__builtin_altivec_stvebx:
   2809       ID = Intrinsic::ppc_altivec_stvebx;
   2810       break;
   2811     case PPC::BI__builtin_altivec_stvehx:
   2812       ID = Intrinsic::ppc_altivec_stvehx;
   2813       break;
   2814     case PPC::BI__builtin_altivec_stvewx:
   2815       ID = Intrinsic::ppc_altivec_stvewx;
   2816       break;
   2817     }
   2818     llvm::Function *F = CGM.getIntrinsic(ID);
   2819     return Builder.CreateCall(F, Ops, "");
   2820   }
   2821   }
   2822 }
   2823