Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/Basic/SourceManager.h"
     22 #include "clang/Lex/Preprocessor.h"
     23 #include "clang/Sema/DeclSpec.h"
     24 #include "clang/Sema/ExternalSemaSource.h"
     25 #include "clang/Sema/Lookup.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/ScopeInfo.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 
     30 using namespace clang;
     31 
     32 /// Check whether the given method, which must be in the 'init'
     33 /// family, is a valid member of that family.
     34 ///
     35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     36 ///   if non-null, check this as if making a call to it with the given
     37 ///   receiver type
     38 ///
     39 /// \return true to indicate that there was an error and appropriate
     40 ///   actions were taken
     41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     42                            QualType receiverTypeIfCall) {
     43   if (method->isInvalidDecl()) return true;
     44 
     45   // This castAs is safe: methods that don't return an object
     46   // pointer won't be inferred as inits and will reject an explicit
     47   // objc_method_family(init).
     48 
     49   // We ignore protocols here.  Should we?  What about Class?
     50 
     51   const ObjCObjectType *result = method->getResultType()
     52     ->castAs<ObjCObjectPointerType>()->getObjectType();
     53 
     54   if (result->isObjCId()) {
     55     return false;
     56   } else if (result->isObjCClass()) {
     57     // fall through: always an error
     58   } else {
     59     ObjCInterfaceDecl *resultClass = result->getInterface();
     60     assert(resultClass && "unexpected object type!");
     61 
     62     // It's okay for the result type to still be a forward declaration
     63     // if we're checking an interface declaration.
     64     if (!resultClass->hasDefinition()) {
     65       if (receiverTypeIfCall.isNull() &&
     66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     67         return false;
     68 
     69     // Otherwise, we try to compare class types.
     70     } else {
     71       // If this method was declared in a protocol, we can't check
     72       // anything unless we have a receiver type that's an interface.
     73       const ObjCInterfaceDecl *receiverClass = 0;
     74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     75         if (receiverTypeIfCall.isNull())
     76           return false;
     77 
     78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     79           ->getInterfaceDecl();
     80 
     81         // This can be null for calls to e.g. id<Foo>.
     82         if (!receiverClass) return false;
     83       } else {
     84         receiverClass = method->getClassInterface();
     85         assert(receiverClass && "method not associated with a class!");
     86       }
     87 
     88       // If either class is a subclass of the other, it's fine.
     89       if (receiverClass->isSuperClassOf(resultClass) ||
     90           resultClass->isSuperClassOf(receiverClass))
     91         return false;
     92     }
     93   }
     94 
     95   SourceLocation loc = method->getLocation();
     96 
     97   // If we're in a system header, and this is not a call, just make
     98   // the method unusable.
     99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
    101                 "init method returns a type unrelated to its receiver type"));
    102     return true;
    103   }
    104 
    105   // Otherwise, it's an error.
    106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    107   method->setInvalidDecl();
    108   return true;
    109 }
    110 
    111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    112                                    const ObjCMethodDecl *Overridden) {
    113   if (Overridden->hasRelatedResultType() &&
    114       !NewMethod->hasRelatedResultType()) {
    115     // This can only happen when the method follows a naming convention that
    116     // implies a related result type, and the original (overridden) method has
    117     // a suitable return type, but the new (overriding) method does not have
    118     // a suitable return type.
    119     QualType ResultType = NewMethod->getResultType();
    120     SourceRange ResultTypeRange;
    121     if (const TypeSourceInfo *ResultTypeInfo
    122                                         = NewMethod->getResultTypeSourceInfo())
    123       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    124 
    125     // Figure out which class this method is part of, if any.
    126     ObjCInterfaceDecl *CurrentClass
    127       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    128     if (!CurrentClass) {
    129       DeclContext *DC = NewMethod->getDeclContext();
    130       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    131         CurrentClass = Cat->getClassInterface();
    132       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    133         CurrentClass = Impl->getClassInterface();
    134       else if (ObjCCategoryImplDecl *CatImpl
    135                = dyn_cast<ObjCCategoryImplDecl>(DC))
    136         CurrentClass = CatImpl->getClassInterface();
    137     }
    138 
    139     if (CurrentClass) {
    140       Diag(NewMethod->getLocation(),
    141            diag::warn_related_result_type_compatibility_class)
    142         << Context.getObjCInterfaceType(CurrentClass)
    143         << ResultType
    144         << ResultTypeRange;
    145     } else {
    146       Diag(NewMethod->getLocation(),
    147            diag::warn_related_result_type_compatibility_protocol)
    148         << ResultType
    149         << ResultTypeRange;
    150     }
    151 
    152     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    153       Diag(Overridden->getLocation(),
    154            diag::note_related_result_type_overridden_family)
    155         << Family;
    156     else
    157       Diag(Overridden->getLocation(),
    158            diag::note_related_result_type_overridden);
    159   }
    160   if (getLangOpts().ObjCAutoRefCount) {
    161     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    162          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    163         Diag(NewMethod->getLocation(),
    164              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    165         Diag(Overridden->getLocation(), diag::note_previous_decl)
    166         << "method";
    167     }
    168     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    169               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    170         Diag(NewMethod->getLocation(),
    171              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    172         Diag(Overridden->getLocation(), diag::note_previous_decl)
    173         << "method";
    174     }
    175     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    176                                          oe = Overridden->param_end();
    177     for (ObjCMethodDecl::param_iterator
    178            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    179          ni != ne && oi != oe; ++ni, ++oi) {
    180       const ParmVarDecl *oldDecl = (*oi);
    181       ParmVarDecl *newDecl = (*ni);
    182       if (newDecl->hasAttr<NSConsumedAttr>() !=
    183           oldDecl->hasAttr<NSConsumedAttr>()) {
    184         Diag(newDecl->getLocation(),
    185              diag::err_nsconsumed_attribute_mismatch);
    186         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    187           << "parameter";
    188       }
    189     }
    190   }
    191 }
    192 
    193 /// \brief Check a method declaration for compatibility with the Objective-C
    194 /// ARC conventions.
    195 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
    196   ObjCMethodFamily family = method->getMethodFamily();
    197   switch (family) {
    198   case OMF_None:
    199   case OMF_finalize:
    200   case OMF_retain:
    201   case OMF_release:
    202   case OMF_autorelease:
    203   case OMF_retainCount:
    204   case OMF_self:
    205   case OMF_performSelector:
    206     return false;
    207 
    208   case OMF_dealloc:
    209     if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
    210       SourceRange ResultTypeRange;
    211       if (const TypeSourceInfo *ResultTypeInfo
    212           = method->getResultTypeSourceInfo())
    213         ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    214       if (ResultTypeRange.isInvalid())
    215         S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    216           << method->getResultType()
    217           << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    218       else
    219         S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    220           << method->getResultType()
    221           << FixItHint::CreateReplacement(ResultTypeRange, "void");
    222       return true;
    223     }
    224     return false;
    225 
    226   case OMF_init:
    227     // If the method doesn't obey the init rules, don't bother annotating it.
    228     if (S.checkInitMethod(method, QualType()))
    229       return true;
    230 
    231     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
    232                                                        S.Context));
    233 
    234     // Don't add a second copy of this attribute, but otherwise don't
    235     // let it be suppressed.
    236     if (method->hasAttr<NSReturnsRetainedAttr>())
    237       return false;
    238     break;
    239 
    240   case OMF_alloc:
    241   case OMF_copy:
    242   case OMF_mutableCopy:
    243   case OMF_new:
    244     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    245         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    246         method->hasAttr<NSReturnsAutoreleasedAttr>())
    247       return false;
    248     break;
    249   }
    250 
    251   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
    252                                                         S.Context));
    253   return false;
    254 }
    255 
    256 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    257                                                 NamedDecl *ND,
    258                                                 SourceLocation ImplLoc,
    259                                                 int select) {
    260   if (ND && ND->isDeprecated()) {
    261     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    262     if (select == 0)
    263       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    264         << ND->getDeclName();
    265     else
    266       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    267   }
    268 }
    269 
    270 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    271 /// pool.
    272 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    273   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    274 
    275   // If we don't have a valid method decl, simply return.
    276   if (!MDecl)
    277     return;
    278   if (MDecl->isInstanceMethod())
    279     AddInstanceMethodToGlobalPool(MDecl, true);
    280   else
    281     AddFactoryMethodToGlobalPool(MDecl, true);
    282 }
    283 
    284 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
    285 /// has explicit ownership attribute; false otherwise.
    286 static bool
    287 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
    288   QualType T = Param->getType();
    289 
    290   if (const PointerType *PT = T->getAs<PointerType>()) {
    291     T = PT->getPointeeType();
    292   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    293     T = RT->getPointeeType();
    294   } else {
    295     return true;
    296   }
    297 
    298   // If we have a lifetime qualifier, but it's local, we must have
    299   // inferred it. So, it is implicit.
    300   return !T.getLocalQualifiers().hasObjCLifetime();
    301 }
    302 
    303 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    304 /// and user declared, in the method definition's AST.
    305 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    306   assert((getCurMethodDecl() == 0) && "Methodparsing confused");
    307   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    308 
    309   // If we don't have a valid method decl, simply return.
    310   if (!MDecl)
    311     return;
    312 
    313   // Allow all of Sema to see that we are entering a method definition.
    314   PushDeclContext(FnBodyScope, MDecl);
    315   PushFunctionScope();
    316 
    317   // Create Decl objects for each parameter, entrring them in the scope for
    318   // binding to their use.
    319 
    320   // Insert the invisible arguments, self and _cmd!
    321   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    322 
    323   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    324   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    325 
    326   // Introduce all of the other parameters into this scope.
    327   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    328        E = MDecl->param_end(); PI != E; ++PI) {
    329     ParmVarDecl *Param = (*PI);
    330     if (!Param->isInvalidDecl() &&
    331         RequireCompleteType(Param->getLocation(), Param->getType(),
    332                             diag::err_typecheck_decl_incomplete_type))
    333           Param->setInvalidDecl();
    334     if (!Param->isInvalidDecl() &&
    335         getLangOpts().ObjCAutoRefCount &&
    336         !HasExplicitOwnershipAttr(*this, Param))
    337       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    338             Param->getType();
    339 
    340     if ((*PI)->getIdentifier())
    341       PushOnScopeChains(*PI, FnBodyScope);
    342   }
    343 
    344   // In ARC, disallow definition of retain/release/autorelease/retainCount
    345   if (getLangOpts().ObjCAutoRefCount) {
    346     switch (MDecl->getMethodFamily()) {
    347     case OMF_retain:
    348     case OMF_retainCount:
    349     case OMF_release:
    350     case OMF_autorelease:
    351       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    352         << MDecl->getSelector();
    353       break;
    354 
    355     case OMF_None:
    356     case OMF_dealloc:
    357     case OMF_finalize:
    358     case OMF_alloc:
    359     case OMF_init:
    360     case OMF_mutableCopy:
    361     case OMF_copy:
    362     case OMF_new:
    363     case OMF_self:
    364     case OMF_performSelector:
    365       break;
    366     }
    367   }
    368 
    369   // Warn on deprecated methods under -Wdeprecated-implementations,
    370   // and prepare for warning on missing super calls.
    371   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    372     ObjCMethodDecl *IMD =
    373       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    374 
    375     if (IMD) {
    376       ObjCImplDecl *ImplDeclOfMethodDef =
    377         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
    378       ObjCContainerDecl *ContDeclOfMethodDecl =
    379         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
    380       ObjCImplDecl *ImplDeclOfMethodDecl = 0;
    381       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
    382         ImplDeclOfMethodDecl = OID->getImplementation();
    383       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
    384         ImplDeclOfMethodDecl = CD->getImplementation();
    385       // No need to issue deprecated warning if deprecated mehod in class/category
    386       // is being implemented in its own implementation (no overriding is involved).
    387       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
    388         DiagnoseObjCImplementedDeprecations(*this,
    389                                           dyn_cast<NamedDecl>(IMD),
    390                                           MDecl->getLocation(), 0);
    391     }
    392 
    393     // If this is "dealloc" or "finalize", set some bit here.
    394     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    395     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    396     // Only do this if the current class actually has a superclass.
    397     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
    398       ObjCMethodFamily Family = MDecl->getMethodFamily();
    399       if (Family == OMF_dealloc) {
    400         if (!(getLangOpts().ObjCAutoRefCount ||
    401               getLangOpts().getGC() == LangOptions::GCOnly))
    402           getCurFunction()->ObjCShouldCallSuper = true;
    403 
    404       } else if (Family == OMF_finalize) {
    405         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
    406           getCurFunction()->ObjCShouldCallSuper = true;
    407 
    408       } else {
    409         const ObjCMethodDecl *SuperMethod =
    410           SuperClass->lookupMethod(MDecl->getSelector(),
    411                                    MDecl->isInstanceMethod());
    412         getCurFunction()->ObjCShouldCallSuper =
    413           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
    414       }
    415     }
    416   }
    417 }
    418 
    419 namespace {
    420 
    421 // Callback to only accept typo corrections that are Objective-C classes.
    422 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    423 // function will reject corrections to that class.
    424 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    425  public:
    426   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
    427   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    428       : CurrentIDecl(IDecl) {}
    429 
    430   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    431     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    432     return ID && !declaresSameEntity(ID, CurrentIDecl);
    433   }
    434 
    435  private:
    436   ObjCInterfaceDecl *CurrentIDecl;
    437 };
    438 
    439 }
    440 
    441 Decl *Sema::
    442 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    443                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    444                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    445                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    446                          const SourceLocation *ProtoLocs,
    447                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    448   assert(ClassName && "Missing class identifier");
    449 
    450   // Check for another declaration kind with the same name.
    451   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    452                                          LookupOrdinaryName, ForRedeclaration);
    453 
    454   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    455     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    456     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    457   }
    458 
    459   // Create a declaration to describe this @interface.
    460   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    461   ObjCInterfaceDecl *IDecl
    462     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    463                                 PrevIDecl, ClassLoc);
    464 
    465   if (PrevIDecl) {
    466     // Class already seen. Was it a definition?
    467     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    468       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    469         << PrevIDecl->getDeclName();
    470       Diag(Def->getLocation(), diag::note_previous_definition);
    471       IDecl->setInvalidDecl();
    472     }
    473   }
    474 
    475   if (AttrList)
    476     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    477   PushOnScopeChains(IDecl, TUScope);
    478 
    479   // Start the definition of this class. If we're in a redefinition case, there
    480   // may already be a definition, so we'll end up adding to it.
    481   if (!IDecl->hasDefinition())
    482     IDecl->startDefinition();
    483 
    484   if (SuperName) {
    485     // Check if a different kind of symbol declared in this scope.
    486     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    487                                 LookupOrdinaryName);
    488 
    489     if (!PrevDecl) {
    490       // Try to correct for a typo in the superclass name without correcting
    491       // to the class we're defining.
    492       ObjCInterfaceValidatorCCC Validator(IDecl);
    493       if (TypoCorrection Corrected = CorrectTypo(
    494           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    495           NULL, Validator)) {
    496         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    497         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    498           << SuperName << ClassName << PrevDecl->getDeclName();
    499         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    500           << PrevDecl->getDeclName();
    501       }
    502     }
    503 
    504     if (declaresSameEntity(PrevDecl, IDecl)) {
    505       Diag(SuperLoc, diag::err_recursive_superclass)
    506         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    507       IDecl->setEndOfDefinitionLoc(ClassLoc);
    508     } else {
    509       ObjCInterfaceDecl *SuperClassDecl =
    510                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    511 
    512       // Diagnose classes that inherit from deprecated classes.
    513       if (SuperClassDecl)
    514         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    515 
    516       if (PrevDecl && SuperClassDecl == 0) {
    517         // The previous declaration was not a class decl. Check if we have a
    518         // typedef. If we do, get the underlying class type.
    519         if (const TypedefNameDecl *TDecl =
    520               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    521           QualType T = TDecl->getUnderlyingType();
    522           if (T->isObjCObjectType()) {
    523             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
    524               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    525           }
    526         }
    527 
    528         // This handles the following case:
    529         //
    530         // typedef int SuperClass;
    531         // @interface MyClass : SuperClass {} @end
    532         //
    533         if (!SuperClassDecl) {
    534           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    535           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    536         }
    537       }
    538 
    539       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    540         if (!SuperClassDecl)
    541           Diag(SuperLoc, diag::err_undef_superclass)
    542             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    543         else if (RequireCompleteType(SuperLoc,
    544                                   Context.getObjCInterfaceType(SuperClassDecl),
    545                                      diag::err_forward_superclass,
    546                                      SuperClassDecl->getDeclName(),
    547                                      ClassName,
    548                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
    549           SuperClassDecl = 0;
    550         }
    551       }
    552       IDecl->setSuperClass(SuperClassDecl);
    553       IDecl->setSuperClassLoc(SuperLoc);
    554       IDecl->setEndOfDefinitionLoc(SuperLoc);
    555     }
    556   } else { // we have a root class.
    557     IDecl->setEndOfDefinitionLoc(ClassLoc);
    558   }
    559 
    560   // Check then save referenced protocols.
    561   if (NumProtoRefs) {
    562     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    563                            ProtoLocs, Context);
    564     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
    565   }
    566 
    567   CheckObjCDeclScope(IDecl);
    568   return ActOnObjCContainerStartDefinition(IDecl);
    569 }
    570 
    571 /// ActOnCompatibilityAlias - this action is called after complete parsing of
    572 /// a \@compatibility_alias declaration. It sets up the alias relationships.
    573 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
    574                                     IdentifierInfo *AliasName,
    575                                     SourceLocation AliasLocation,
    576                                     IdentifierInfo *ClassName,
    577                                     SourceLocation ClassLocation) {
    578   // Look for previous declaration of alias name
    579   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    580                                       LookupOrdinaryName, ForRedeclaration);
    581   if (ADecl) {
    582     if (isa<ObjCCompatibleAliasDecl>(ADecl))
    583       Diag(AliasLocation, diag::warn_previous_alias_decl);
    584     else
    585       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    586     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    587     return 0;
    588   }
    589   // Check for class declaration
    590   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    591                                        LookupOrdinaryName, ForRedeclaration);
    592   if (const TypedefNameDecl *TDecl =
    593         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    594     QualType T = TDecl->getUnderlyingType();
    595     if (T->isObjCObjectType()) {
    596       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    597         ClassName = IDecl->getIdentifier();
    598         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    599                                   LookupOrdinaryName, ForRedeclaration);
    600       }
    601     }
    602   }
    603   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    604   if (CDecl == 0) {
    605     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    606     if (CDeclU)
    607       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    608     return 0;
    609   }
    610 
    611   // Everything checked out, instantiate a new alias declaration AST.
    612   ObjCCompatibleAliasDecl *AliasDecl =
    613     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    614 
    615   if (!CheckObjCDeclScope(AliasDecl))
    616     PushOnScopeChains(AliasDecl, TUScope);
    617 
    618   return AliasDecl;
    619 }
    620 
    621 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    622   IdentifierInfo *PName,
    623   SourceLocation &Ploc, SourceLocation PrevLoc,
    624   const ObjCList<ObjCProtocolDecl> &PList) {
    625 
    626   bool res = false;
    627   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    628        E = PList.end(); I != E; ++I) {
    629     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    630                                                  Ploc)) {
    631       if (PDecl->getIdentifier() == PName) {
    632         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    633         Diag(PrevLoc, diag::note_previous_definition);
    634         res = true;
    635       }
    636 
    637       if (!PDecl->hasDefinition())
    638         continue;
    639 
    640       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    641             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    642         res = true;
    643     }
    644   }
    645   return res;
    646 }
    647 
    648 Decl *
    649 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    650                                   IdentifierInfo *ProtocolName,
    651                                   SourceLocation ProtocolLoc,
    652                                   Decl * const *ProtoRefs,
    653                                   unsigned NumProtoRefs,
    654                                   const SourceLocation *ProtoLocs,
    655                                   SourceLocation EndProtoLoc,
    656                                   AttributeList *AttrList) {
    657   bool err = false;
    658   // FIXME: Deal with AttrList.
    659   assert(ProtocolName && "Missing protocol identifier");
    660   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
    661                                               ForRedeclaration);
    662   ObjCProtocolDecl *PDecl = 0;
    663   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
    664     // If we already have a definition, complain.
    665     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    666     Diag(Def->getLocation(), diag::note_previous_definition);
    667 
    668     // Create a new protocol that is completely distinct from previous
    669     // declarations, and do not make this protocol available for name lookup.
    670     // That way, we'll end up completely ignoring the duplicate.
    671     // FIXME: Can we turn this into an error?
    672     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    673                                      ProtocolLoc, AtProtoInterfaceLoc,
    674                                      /*PrevDecl=*/0);
    675     PDecl->startDefinition();
    676   } else {
    677     if (PrevDecl) {
    678       // Check for circular dependencies among protocol declarations. This can
    679       // only happen if this protocol was forward-declared.
    680       ObjCList<ObjCProtocolDecl> PList;
    681       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    682       err = CheckForwardProtocolDeclarationForCircularDependency(
    683               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
    684     }
    685 
    686     // Create the new declaration.
    687     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    688                                      ProtocolLoc, AtProtoInterfaceLoc,
    689                                      /*PrevDecl=*/PrevDecl);
    690 
    691     PushOnScopeChains(PDecl, TUScope);
    692     PDecl->startDefinition();
    693   }
    694 
    695   if (AttrList)
    696     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    697 
    698   // Merge attributes from previous declarations.
    699   if (PrevDecl)
    700     mergeDeclAttributes(PDecl, PrevDecl);
    701 
    702   if (!err && NumProtoRefs ) {
    703     /// Check then save referenced protocols.
    704     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    705                            ProtoLocs, Context);
    706   }
    707 
    708   CheckObjCDeclScope(PDecl);
    709   return ActOnObjCContainerStartDefinition(PDecl);
    710 }
    711 
    712 /// FindProtocolDeclaration - This routine looks up protocols and
    713 /// issues an error if they are not declared. It returns list of
    714 /// protocol declarations in its 'Protocols' argument.
    715 void
    716 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    717                               const IdentifierLocPair *ProtocolId,
    718                               unsigned NumProtocols,
    719                               SmallVectorImpl<Decl *> &Protocols) {
    720   for (unsigned i = 0; i != NumProtocols; ++i) {
    721     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    722                                              ProtocolId[i].second);
    723     if (!PDecl) {
    724       DeclFilterCCC<ObjCProtocolDecl> Validator;
    725       TypoCorrection Corrected = CorrectTypo(
    726           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    727           LookupObjCProtocolName, TUScope, NULL, Validator);
    728       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    729         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    730           << ProtocolId[i].first << Corrected.getCorrection();
    731         Diag(PDecl->getLocation(), diag::note_previous_decl)
    732           << PDecl->getDeclName();
    733       }
    734     }
    735 
    736     if (!PDecl) {
    737       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    738         << ProtocolId[i].first;
    739       continue;
    740     }
    741 
    742     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    743 
    744     // If this is a forward declaration and we are supposed to warn in this
    745     // case, do it.
    746     // FIXME: Recover nicely in the hidden case.
    747     if (WarnOnDeclarations &&
    748         (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
    749       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    750         << ProtocolId[i].first;
    751     Protocols.push_back(PDecl);
    752   }
    753 }
    754 
    755 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    756 /// a class method in its extension.
    757 ///
    758 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    759                                             ObjCInterfaceDecl *ID) {
    760   if (!ID)
    761     return;  // Possibly due to previous error
    762 
    763   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    764   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    765        e =  ID->meth_end(); i != e; ++i) {
    766     ObjCMethodDecl *MD = *i;
    767     MethodMap[MD->getSelector()] = MD;
    768   }
    769 
    770   if (MethodMap.empty())
    771     return;
    772   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    773        e =  CAT->meth_end(); i != e; ++i) {
    774     ObjCMethodDecl *Method = *i;
    775     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    776     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    777       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    778             << Method->getDeclName();
    779       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    780     }
    781   }
    782 }
    783 
    784 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
    785 Sema::DeclGroupPtrTy
    786 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    787                                       const IdentifierLocPair *IdentList,
    788                                       unsigned NumElts,
    789                                       AttributeList *attrList) {
    790   SmallVector<Decl *, 8> DeclsInGroup;
    791   for (unsigned i = 0; i != NumElts; ++i) {
    792     IdentifierInfo *Ident = IdentList[i].first;
    793     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
    794                                                 ForRedeclaration);
    795     ObjCProtocolDecl *PDecl
    796       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    797                                  IdentList[i].second, AtProtocolLoc,
    798                                  PrevDecl);
    799 
    800     PushOnScopeChains(PDecl, TUScope);
    801     CheckObjCDeclScope(PDecl);
    802 
    803     if (attrList)
    804       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    805 
    806     if (PrevDecl)
    807       mergeDeclAttributes(PDecl, PrevDecl);
    808 
    809     DeclsInGroup.push_back(PDecl);
    810   }
    811 
    812   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
    813 }
    814 
    815 Decl *Sema::
    816 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    817                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    818                             IdentifierInfo *CategoryName,
    819                             SourceLocation CategoryLoc,
    820                             Decl * const *ProtoRefs,
    821                             unsigned NumProtoRefs,
    822                             const SourceLocation *ProtoLocs,
    823                             SourceLocation EndProtoLoc) {
    824   ObjCCategoryDecl *CDecl;
    825   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    826 
    827   /// Check that class of this category is already completely declared.
    828 
    829   if (!IDecl
    830       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    831                              diag::err_category_forward_interface,
    832                              CategoryName == 0)) {
    833     // Create an invalid ObjCCategoryDecl to serve as context for
    834     // the enclosing method declarations.  We mark the decl invalid
    835     // to make it clear that this isn't a valid AST.
    836     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    837                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    838     CDecl->setInvalidDecl();
    839     CurContext->addDecl(CDecl);
    840 
    841     if (!IDecl)
    842       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    843     return ActOnObjCContainerStartDefinition(CDecl);
    844   }
    845 
    846   if (!CategoryName && IDecl->getImplementation()) {
    847     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    848     Diag(IDecl->getImplementation()->getLocation(),
    849           diag::note_implementation_declared);
    850   }
    851 
    852   if (CategoryName) {
    853     /// Check for duplicate interface declaration for this category
    854     if (ObjCCategoryDecl *Previous
    855           = IDecl->FindCategoryDeclaration(CategoryName)) {
    856       // Class extensions can be declared multiple times, categories cannot.
    857       Diag(CategoryLoc, diag::warn_dup_category_def)
    858         << ClassName << CategoryName;
    859       Diag(Previous->getLocation(), diag::note_previous_definition);
    860     }
    861   }
    862 
    863   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    864                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    865   // FIXME: PushOnScopeChains?
    866   CurContext->addDecl(CDecl);
    867 
    868   if (NumProtoRefs) {
    869     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    870                            ProtoLocs, Context);
    871     // Protocols in the class extension belong to the class.
    872     if (CDecl->IsClassExtension())
    873      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
    874                                             NumProtoRefs, Context);
    875   }
    876 
    877   CheckObjCDeclScope(CDecl);
    878   return ActOnObjCContainerStartDefinition(CDecl);
    879 }
    880 
    881 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    882 /// category implementation declaration and build an ObjCCategoryImplDecl
    883 /// object.
    884 Decl *Sema::ActOnStartCategoryImplementation(
    885                       SourceLocation AtCatImplLoc,
    886                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    887                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    888   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    889   ObjCCategoryDecl *CatIDecl = 0;
    890   if (IDecl && IDecl->hasDefinition()) {
    891     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    892     if (!CatIDecl) {
    893       // Category @implementation with no corresponding @interface.
    894       // Create and install one.
    895       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
    896                                           ClassLoc, CatLoc,
    897                                           CatName, IDecl);
    898       CatIDecl->setImplicit();
    899     }
    900   }
    901 
    902   ObjCCategoryImplDecl *CDecl =
    903     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    904                                  ClassLoc, AtCatImplLoc, CatLoc);
    905   /// Check that class of this category is already completely declared.
    906   if (!IDecl) {
    907     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    908     CDecl->setInvalidDecl();
    909   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    910                                  diag::err_undef_interface)) {
    911     CDecl->setInvalidDecl();
    912   }
    913 
    914   // FIXME: PushOnScopeChains?
    915   CurContext->addDecl(CDecl);
    916 
    917   // If the interface is deprecated/unavailable, warn/error about it.
    918   if (IDecl)
    919     DiagnoseUseOfDecl(IDecl, ClassLoc);
    920 
    921   /// Check that CatName, category name, is not used in another implementation.
    922   if (CatIDecl) {
    923     if (CatIDecl->getImplementation()) {
    924       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    925         << CatName;
    926       Diag(CatIDecl->getImplementation()->getLocation(),
    927            diag::note_previous_definition);
    928     } else {
    929       CatIDecl->setImplementation(CDecl);
    930       // Warn on implementating category of deprecated class under
    931       // -Wdeprecated-implementations flag.
    932       DiagnoseObjCImplementedDeprecations(*this,
    933                                           dyn_cast<NamedDecl>(IDecl),
    934                                           CDecl->getLocation(), 2);
    935     }
    936   }
    937 
    938   CheckObjCDeclScope(CDecl);
    939   return ActOnObjCContainerStartDefinition(CDecl);
    940 }
    941 
    942 Decl *Sema::ActOnStartClassImplementation(
    943                       SourceLocation AtClassImplLoc,
    944                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    945                       IdentifierInfo *SuperClassname,
    946                       SourceLocation SuperClassLoc) {
    947   ObjCInterfaceDecl* IDecl = 0;
    948   // Check for another declaration kind with the same name.
    949   NamedDecl *PrevDecl
    950     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    951                        ForRedeclaration);
    952   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    953     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    954     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    955   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    956     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    957                         diag::warn_undef_interface);
    958   } else {
    959     // We did not find anything with the name ClassName; try to correct for
    960     // typos in the class name.
    961     ObjCInterfaceValidatorCCC Validator;
    962     if (TypoCorrection Corrected = CorrectTypo(
    963         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    964         NULL, Validator)) {
    965       // Suggest the (potentially) correct interface name. However, put the
    966       // fix-it hint itself in a separate note, since changing the name in
    967       // the warning would make the fix-it change semantics.However, don't
    968       // provide a code-modification hint or use the typo name for recovery,
    969       // because this is just a warning. The program may actually be correct.
    970       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    971       DeclarationName CorrectedName = Corrected.getCorrection();
    972       Diag(ClassLoc, diag::warn_undef_interface_suggest)
    973         << ClassName << CorrectedName;
    974       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
    975         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
    976       IDecl = 0;
    977     } else {
    978       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    979     }
    980   }
    981 
    982   // Check that super class name is valid class name
    983   ObjCInterfaceDecl* SDecl = 0;
    984   if (SuperClassname) {
    985     // Check if a different kind of symbol declared in this scope.
    986     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
    987                                 LookupOrdinaryName);
    988     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    989       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
    990         << SuperClassname;
    991       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    992     } else {
    993       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    994       if (SDecl && !SDecl->hasDefinition())
    995         SDecl = 0;
    996       if (!SDecl)
    997         Diag(SuperClassLoc, diag::err_undef_superclass)
    998           << SuperClassname << ClassName;
    999       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
   1000         // This implementation and its interface do not have the same
   1001         // super class.
   1002         Diag(SuperClassLoc, diag::err_conflicting_super_class)
   1003           << SDecl->getDeclName();
   1004         Diag(SDecl->getLocation(), diag::note_previous_definition);
   1005       }
   1006     }
   1007   }
   1008 
   1009   if (!IDecl) {
   1010     // Legacy case of @implementation with no corresponding @interface.
   1011     // Build, chain & install the interface decl into the identifier.
   1012 
   1013     // FIXME: Do we support attributes on the @implementation? If so we should
   1014     // copy them over.
   1015     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1016                                       ClassName, /*PrevDecl=*/0, ClassLoc,
   1017                                       true);
   1018     IDecl->startDefinition();
   1019     if (SDecl) {
   1020       IDecl->setSuperClass(SDecl);
   1021       IDecl->setSuperClassLoc(SuperClassLoc);
   1022       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1023     } else {
   1024       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1025     }
   1026 
   1027     PushOnScopeChains(IDecl, TUScope);
   1028   } else {
   1029     // Mark the interface as being completed, even if it was just as
   1030     //   @class ....;
   1031     // declaration; the user cannot reopen it.
   1032     if (!IDecl->hasDefinition())
   1033       IDecl->startDefinition();
   1034   }
   1035 
   1036   ObjCImplementationDecl* IMPDecl =
   1037     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1038                                    ClassLoc, AtClassImplLoc);
   1039 
   1040   if (CheckObjCDeclScope(IMPDecl))
   1041     return ActOnObjCContainerStartDefinition(IMPDecl);
   1042 
   1043   // Check that there is no duplicate implementation of this class.
   1044   if (IDecl->getImplementation()) {
   1045     // FIXME: Don't leak everything!
   1046     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1047     Diag(IDecl->getImplementation()->getLocation(),
   1048          diag::note_previous_definition);
   1049   } else { // add it to the list.
   1050     IDecl->setImplementation(IMPDecl);
   1051     PushOnScopeChains(IMPDecl, TUScope);
   1052     // Warn on implementating deprecated class under
   1053     // -Wdeprecated-implementations flag.
   1054     DiagnoseObjCImplementedDeprecations(*this,
   1055                                         dyn_cast<NamedDecl>(IDecl),
   1056                                         IMPDecl->getLocation(), 1);
   1057   }
   1058   return ActOnObjCContainerStartDefinition(IMPDecl);
   1059 }
   1060 
   1061 Sema::DeclGroupPtrTy
   1062 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   1063   SmallVector<Decl *, 64> DeclsInGroup;
   1064   DeclsInGroup.reserve(Decls.size() + 1);
   1065 
   1066   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1067     Decl *Dcl = Decls[i];
   1068     if (!Dcl)
   1069       continue;
   1070     if (Dcl->getDeclContext()->isFileContext())
   1071       Dcl->setTopLevelDeclInObjCContainer();
   1072     DeclsInGroup.push_back(Dcl);
   1073   }
   1074 
   1075   DeclsInGroup.push_back(ObjCImpDecl);
   1076 
   1077   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1078 }
   1079 
   1080 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1081                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1082                                     SourceLocation RBrace) {
   1083   assert(ImpDecl && "missing implementation decl");
   1084   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1085   if (!IDecl)
   1086     return;
   1087   /// Check case of non-existing \@interface decl.
   1088   /// (legacy objective-c \@implementation decl without an \@interface decl).
   1089   /// Add implementations's ivar to the synthesize class's ivar list.
   1090   if (IDecl->isImplicitInterfaceDecl()) {
   1091     IDecl->setEndOfDefinitionLoc(RBrace);
   1092     // Add ivar's to class's DeclContext.
   1093     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1094       ivars[i]->setLexicalDeclContext(ImpDecl);
   1095       IDecl->makeDeclVisibleInContext(ivars[i]);
   1096       ImpDecl->addDecl(ivars[i]);
   1097     }
   1098 
   1099     return;
   1100   }
   1101   // If implementation has empty ivar list, just return.
   1102   if (numIvars == 0)
   1103     return;
   1104 
   1105   assert(ivars && "missing @implementation ivars");
   1106   if (LangOpts.ObjCRuntime.isNonFragile()) {
   1107     if (ImpDecl->getSuperClass())
   1108       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1109     for (unsigned i = 0; i < numIvars; i++) {
   1110       ObjCIvarDecl* ImplIvar = ivars[i];
   1111       if (const ObjCIvarDecl *ClsIvar =
   1112             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1113         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1114         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1115         continue;
   1116       }
   1117       // Instance ivar to Implementation's DeclContext.
   1118       ImplIvar->setLexicalDeclContext(ImpDecl);
   1119       IDecl->makeDeclVisibleInContext(ImplIvar);
   1120       ImpDecl->addDecl(ImplIvar);
   1121     }
   1122     return;
   1123   }
   1124   // Check interface's Ivar list against those in the implementation.
   1125   // names and types must match.
   1126   //
   1127   unsigned j = 0;
   1128   ObjCInterfaceDecl::ivar_iterator
   1129     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1130   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1131     ObjCIvarDecl* ImplIvar = ivars[j++];
   1132     ObjCIvarDecl* ClsIvar = *IVI;
   1133     assert (ImplIvar && "missing implementation ivar");
   1134     assert (ClsIvar && "missing class ivar");
   1135 
   1136     // First, make sure the types match.
   1137     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1138       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1139         << ImplIvar->getIdentifier()
   1140         << ImplIvar->getType() << ClsIvar->getType();
   1141       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1142     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1143                ImplIvar->getBitWidthValue(Context) !=
   1144                ClsIvar->getBitWidthValue(Context)) {
   1145       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1146            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1147       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1148            diag::note_previous_definition);
   1149     }
   1150     // Make sure the names are identical.
   1151     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1152       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1153         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1154       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1155     }
   1156     --numIvars;
   1157   }
   1158 
   1159   if (numIvars > 0)
   1160     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1161   else if (IVI != IVE)
   1162     Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
   1163 }
   1164 
   1165 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1166                                bool &IncompleteImpl, unsigned DiagID) {
   1167   // No point warning no definition of method which is 'unavailable'.
   1168   switch (method->getAvailability()) {
   1169   case AR_Available:
   1170   case AR_Deprecated:
   1171     break;
   1172 
   1173       // Don't warn about unavailable or not-yet-introduced methods.
   1174   case AR_NotYetIntroduced:
   1175   case AR_Unavailable:
   1176     return;
   1177   }
   1178 
   1179   if (!IncompleteImpl) {
   1180     Diag(ImpLoc, diag::warn_incomplete_impl);
   1181     IncompleteImpl = true;
   1182   }
   1183   if (DiagID == diag::warn_unimplemented_protocol_method)
   1184     Diag(ImpLoc, DiagID) << method->getDeclName();
   1185   else
   1186     Diag(method->getLocation(), DiagID) << method->getDeclName();
   1187 }
   1188 
   1189 /// Determines if type B can be substituted for type A.  Returns true if we can
   1190 /// guarantee that anything that the user will do to an object of type A can
   1191 /// also be done to an object of type B.  This is trivially true if the two
   1192 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1193 /// in cases where protocols are involved.
   1194 ///
   1195 /// Object types in Objective-C describe the minimum requirements for an
   1196 /// object, rather than providing a complete description of a type.  For
   1197 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1198 /// The principle of substitutability means that we may use an instance of A
   1199 /// anywhere that we may use an instance of B - it will implement all of the
   1200 /// ivars of B and all of the methods of B.
   1201 ///
   1202 /// This substitutability is important when type checking methods, because
   1203 /// the implementation may have stricter type definitions than the interface.
   1204 /// The interface specifies minimum requirements, but the implementation may
   1205 /// have more accurate ones.  For example, a method may privately accept
   1206 /// instances of B, but only publish that it accepts instances of A.  Any
   1207 /// object passed to it will be type checked against B, and so will implicitly
   1208 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1209 /// it is declared as returning.
   1210 ///
   1211 /// This is most important when considering subclassing.  A method in a
   1212 /// subclass must accept any object as an argument that its superclass's
   1213 /// implementation accepts.  It may, however, accept a more general type
   1214 /// without breaking substitutability (i.e. you can still use the subclass
   1215 /// anywhere that you can use the superclass, but not vice versa).  The
   1216 /// converse requirement applies to return types: the return type for a
   1217 /// subclass method must be a valid object of the kind that the superclass
   1218 /// advertises, but it may be specified more accurately.  This avoids the need
   1219 /// for explicit down-casting by callers.
   1220 ///
   1221 /// Note: This is a stricter requirement than for assignment.
   1222 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1223                                     const ObjCObjectPointerType *A,
   1224                                     const ObjCObjectPointerType *B,
   1225                                     bool rejectId) {
   1226   // Reject a protocol-unqualified id.
   1227   if (rejectId && B->isObjCIdType()) return false;
   1228 
   1229   // If B is a qualified id, then A must also be a qualified id and it must
   1230   // implement all of the protocols in B.  It may not be a qualified class.
   1231   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1232   // stricter definition so it is not substitutable for id<A>.
   1233   if (B->isObjCQualifiedIdType()) {
   1234     return A->isObjCQualifiedIdType() &&
   1235            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1236                                                      QualType(B,0),
   1237                                                      false);
   1238   }
   1239 
   1240   /*
   1241   // id is a special type that bypasses type checking completely.  We want a
   1242   // warning when it is used in one place but not another.
   1243   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1244 
   1245 
   1246   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1247   // if we've got this far)
   1248   if (B->isObjCQualifiedIdType()) return false;
   1249   */
   1250 
   1251   // Now we know that A and B are (potentially-qualified) class types.  The
   1252   // normal rules for assignment apply.
   1253   return Context.canAssignObjCInterfaces(A, B);
   1254 }
   1255 
   1256 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1257   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1258 }
   1259 
   1260 static bool CheckMethodOverrideReturn(Sema &S,
   1261                                       ObjCMethodDecl *MethodImpl,
   1262                                       ObjCMethodDecl *MethodDecl,
   1263                                       bool IsProtocolMethodDecl,
   1264                                       bool IsOverridingMode,
   1265                                       bool Warn) {
   1266   if (IsProtocolMethodDecl &&
   1267       (MethodDecl->getObjCDeclQualifier() !=
   1268        MethodImpl->getObjCDeclQualifier())) {
   1269     if (Warn) {
   1270         S.Diag(MethodImpl->getLocation(),
   1271                (IsOverridingMode ?
   1272                  diag::warn_conflicting_overriding_ret_type_modifiers
   1273                  : diag::warn_conflicting_ret_type_modifiers))
   1274           << MethodImpl->getDeclName()
   1275           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1276         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1277           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1278     }
   1279     else
   1280       return false;
   1281   }
   1282 
   1283   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1284                                        MethodDecl->getResultType()))
   1285     return true;
   1286   if (!Warn)
   1287     return false;
   1288 
   1289   unsigned DiagID =
   1290     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1291                      : diag::warn_conflicting_ret_types;
   1292 
   1293   // Mismatches between ObjC pointers go into a different warning
   1294   // category, and sometimes they're even completely whitelisted.
   1295   if (const ObjCObjectPointerType *ImplPtrTy =
   1296         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1297     if (const ObjCObjectPointerType *IfacePtrTy =
   1298           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1299       // Allow non-matching return types as long as they don't violate
   1300       // the principle of substitutability.  Specifically, we permit
   1301       // return types that are subclasses of the declared return type,
   1302       // or that are more-qualified versions of the declared type.
   1303       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1304         return false;
   1305 
   1306       DiagID =
   1307         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1308                           : diag::warn_non_covariant_ret_types;
   1309     }
   1310   }
   1311 
   1312   S.Diag(MethodImpl->getLocation(), DiagID)
   1313     << MethodImpl->getDeclName()
   1314     << MethodDecl->getResultType()
   1315     << MethodImpl->getResultType()
   1316     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1317   S.Diag(MethodDecl->getLocation(),
   1318          IsOverridingMode ? diag::note_previous_declaration
   1319                           : diag::note_previous_definition)
   1320     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1321   return false;
   1322 }
   1323 
   1324 static bool CheckMethodOverrideParam(Sema &S,
   1325                                      ObjCMethodDecl *MethodImpl,
   1326                                      ObjCMethodDecl *MethodDecl,
   1327                                      ParmVarDecl *ImplVar,
   1328                                      ParmVarDecl *IfaceVar,
   1329                                      bool IsProtocolMethodDecl,
   1330                                      bool IsOverridingMode,
   1331                                      bool Warn) {
   1332   if (IsProtocolMethodDecl &&
   1333       (ImplVar->getObjCDeclQualifier() !=
   1334        IfaceVar->getObjCDeclQualifier())) {
   1335     if (Warn) {
   1336       if (IsOverridingMode)
   1337         S.Diag(ImplVar->getLocation(),
   1338                diag::warn_conflicting_overriding_param_modifiers)
   1339             << getTypeRange(ImplVar->getTypeSourceInfo())
   1340             << MethodImpl->getDeclName();
   1341       else S.Diag(ImplVar->getLocation(),
   1342              diag::warn_conflicting_param_modifiers)
   1343           << getTypeRange(ImplVar->getTypeSourceInfo())
   1344           << MethodImpl->getDeclName();
   1345       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1346           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1347     }
   1348     else
   1349       return false;
   1350   }
   1351 
   1352   QualType ImplTy = ImplVar->getType();
   1353   QualType IfaceTy = IfaceVar->getType();
   1354 
   1355   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1356     return true;
   1357 
   1358   if (!Warn)
   1359     return false;
   1360   unsigned DiagID =
   1361     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1362                      : diag::warn_conflicting_param_types;
   1363 
   1364   // Mismatches between ObjC pointers go into a different warning
   1365   // category, and sometimes they're even completely whitelisted.
   1366   if (const ObjCObjectPointerType *ImplPtrTy =
   1367         ImplTy->getAs<ObjCObjectPointerType>()) {
   1368     if (const ObjCObjectPointerType *IfacePtrTy =
   1369           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1370       // Allow non-matching argument types as long as they don't
   1371       // violate the principle of substitutability.  Specifically, the
   1372       // implementation must accept any objects that the superclass
   1373       // accepts, however it may also accept others.
   1374       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1375         return false;
   1376 
   1377       DiagID =
   1378       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1379                        :  diag::warn_non_contravariant_param_types;
   1380     }
   1381   }
   1382 
   1383   S.Diag(ImplVar->getLocation(), DiagID)
   1384     << getTypeRange(ImplVar->getTypeSourceInfo())
   1385     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1386   S.Diag(IfaceVar->getLocation(),
   1387          (IsOverridingMode ? diag::note_previous_declaration
   1388                         : diag::note_previous_definition))
   1389     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1390   return false;
   1391 }
   1392 
   1393 /// In ARC, check whether the conventional meanings of the two methods
   1394 /// match.  If they don't, it's a hard error.
   1395 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1396                                       ObjCMethodDecl *decl) {
   1397   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1398   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1399   if (implFamily == declFamily) return false;
   1400 
   1401   // Since conventions are sorted by selector, the only possibility is
   1402   // that the types differ enough to cause one selector or the other
   1403   // to fall out of the family.
   1404   assert(implFamily == OMF_None || declFamily == OMF_None);
   1405 
   1406   // No further diagnostics required on invalid declarations.
   1407   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1408 
   1409   const ObjCMethodDecl *unmatched = impl;
   1410   ObjCMethodFamily family = declFamily;
   1411   unsigned errorID = diag::err_arc_lost_method_convention;
   1412   unsigned noteID = diag::note_arc_lost_method_convention;
   1413   if (declFamily == OMF_None) {
   1414     unmatched = decl;
   1415     family = implFamily;
   1416     errorID = diag::err_arc_gained_method_convention;
   1417     noteID = diag::note_arc_gained_method_convention;
   1418   }
   1419 
   1420   // Indexes into a %select clause in the diagnostic.
   1421   enum FamilySelector {
   1422     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1423   };
   1424   FamilySelector familySelector = FamilySelector();
   1425 
   1426   switch (family) {
   1427   case OMF_None: llvm_unreachable("logic error, no method convention");
   1428   case OMF_retain:
   1429   case OMF_release:
   1430   case OMF_autorelease:
   1431   case OMF_dealloc:
   1432   case OMF_finalize:
   1433   case OMF_retainCount:
   1434   case OMF_self:
   1435   case OMF_performSelector:
   1436     // Mismatches for these methods don't change ownership
   1437     // conventions, so we don't care.
   1438     return false;
   1439 
   1440   case OMF_init: familySelector = F_init; break;
   1441   case OMF_alloc: familySelector = F_alloc; break;
   1442   case OMF_copy: familySelector = F_copy; break;
   1443   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1444   case OMF_new: familySelector = F_new; break;
   1445   }
   1446 
   1447   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1448   ReasonSelector reasonSelector;
   1449 
   1450   // The only reason these methods don't fall within their families is
   1451   // due to unusual result types.
   1452   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1453     reasonSelector = R_UnrelatedReturn;
   1454   } else {
   1455     reasonSelector = R_NonObjectReturn;
   1456   }
   1457 
   1458   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
   1459   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
   1460 
   1461   return true;
   1462 }
   1463 
   1464 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1465                                        ObjCMethodDecl *MethodDecl,
   1466                                        bool IsProtocolMethodDecl) {
   1467   if (getLangOpts().ObjCAutoRefCount &&
   1468       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1469     return;
   1470 
   1471   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1472                             IsProtocolMethodDecl, false,
   1473                             true);
   1474 
   1475   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1476        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1477        EF = MethodDecl->param_end();
   1478        IM != EM && IF != EF; ++IM, ++IF) {
   1479     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1480                              IsProtocolMethodDecl, false, true);
   1481   }
   1482 
   1483   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1484     Diag(ImpMethodDecl->getLocation(),
   1485          diag::warn_conflicting_variadic);
   1486     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1487   }
   1488 }
   1489 
   1490 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1491                                        ObjCMethodDecl *Overridden,
   1492                                        bool IsProtocolMethodDecl) {
   1493 
   1494   CheckMethodOverrideReturn(*this, Method, Overridden,
   1495                             IsProtocolMethodDecl, true,
   1496                             true);
   1497 
   1498   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1499        IF = Overridden->param_begin(), EM = Method->param_end(),
   1500        EF = Overridden->param_end();
   1501        IM != EM && IF != EF; ++IM, ++IF) {
   1502     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1503                              IsProtocolMethodDecl, true, true);
   1504   }
   1505 
   1506   if (Method->isVariadic() != Overridden->isVariadic()) {
   1507     Diag(Method->getLocation(),
   1508          diag::warn_conflicting_overriding_variadic);
   1509     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1510   }
   1511 }
   1512 
   1513 /// WarnExactTypedMethods - This routine issues a warning if method
   1514 /// implementation declaration matches exactly that of its declaration.
   1515 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1516                                  ObjCMethodDecl *MethodDecl,
   1517                                  bool IsProtocolMethodDecl) {
   1518   // don't issue warning when protocol method is optional because primary
   1519   // class is not required to implement it and it is safe for protocol
   1520   // to implement it.
   1521   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1522     return;
   1523   // don't issue warning when primary class's method is
   1524   // depecated/unavailable.
   1525   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1526       MethodDecl->hasAttr<DeprecatedAttr>())
   1527     return;
   1528 
   1529   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1530                                       IsProtocolMethodDecl, false, false);
   1531   if (match)
   1532     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1533          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1534          EF = MethodDecl->param_end();
   1535          IM != EM && IF != EF; ++IM, ++IF) {
   1536       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1537                                        *IM, *IF,
   1538                                        IsProtocolMethodDecl, false, false);
   1539       if (!match)
   1540         break;
   1541     }
   1542   if (match)
   1543     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1544   if (match)
   1545     match = !(MethodDecl->isClassMethod() &&
   1546               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1547 
   1548   if (match) {
   1549     Diag(ImpMethodDecl->getLocation(),
   1550          diag::warn_category_method_impl_match);
   1551     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   1552       << MethodDecl->getDeclName();
   1553   }
   1554 }
   1555 
   1556 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1557 /// improve the efficiency of selector lookups and type checking by associating
   1558 /// with each protocol / interface / category the flattened instance tables. If
   1559 /// we used an immutable set to keep the table then it wouldn't add significant
   1560 /// memory cost and it would be handy for lookups.
   1561 
   1562 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1563 /// Declared in protocol, and those referenced by it.
   1564 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1565                                    ObjCProtocolDecl *PDecl,
   1566                                    bool& IncompleteImpl,
   1567                                    const SelectorSet &InsMap,
   1568                                    const SelectorSet &ClsMap,
   1569                                    ObjCContainerDecl *CDecl) {
   1570   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   1571   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   1572                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   1573   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1574 
   1575   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1576   ObjCInterfaceDecl *NSIDecl = 0;
   1577   if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
   1578     // check to see if class implements forwardInvocation method and objects
   1579     // of this class are derived from 'NSProxy' so that to forward requests
   1580     // from one object to another.
   1581     // Under such conditions, which means that every method possible is
   1582     // implemented in the class, we should not issue "Method definition not
   1583     // found" warnings.
   1584     // FIXME: Use a general GetUnarySelector method for this.
   1585     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1586     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1587     if (InsMap.count(fISelector))
   1588       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1589       // need be implemented in the implementation.
   1590       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1591   }
   1592 
   1593   // If this is a forward protocol declaration, get its definition.
   1594   if (!PDecl->isThisDeclarationADefinition() &&
   1595       PDecl->getDefinition())
   1596     PDecl = PDecl->getDefinition();
   1597 
   1598   // If a method lookup fails locally we still need to look and see if
   1599   // the method was implemented by a base class or an inherited
   1600   // protocol. This lookup is slow, but occurs rarely in correct code
   1601   // and otherwise would terminate in a warning.
   1602 
   1603   // check unimplemented instance methods.
   1604   if (!NSIDecl)
   1605     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1606          E = PDecl->instmeth_end(); I != E; ++I) {
   1607       ObjCMethodDecl *method = *I;
   1608       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1609           !method->isPropertyAccessor() &&
   1610           !InsMap.count(method->getSelector()) &&
   1611           (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
   1612             // If a method is not implemented in the category implementation but
   1613             // has been declared in its primary class, superclass,
   1614             // or in one of their protocols, no need to issue the warning.
   1615             // This is because method will be implemented in the primary class
   1616             // or one of its super class implementation.
   1617 
   1618             // Ugly, but necessary. Method declared in protcol might have
   1619             // have been synthesized due to a property declared in the class which
   1620             // uses the protocol.
   1621             if (ObjCMethodDecl *MethodInClass =
   1622                   IDecl->lookupInstanceMethod(method->getSelector(),
   1623                                               true /*shallowCategoryLookup*/))
   1624               if (C || MethodInClass->isPropertyAccessor())
   1625                 continue;
   1626             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1627             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1628                 != DiagnosticsEngine::Ignored) {
   1629               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1630               Diag(method->getLocation(), diag::note_method_declared_at)
   1631                 << method->getDeclName();
   1632               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1633                 << PDecl->getDeclName();
   1634             }
   1635           }
   1636     }
   1637   // check unimplemented class methods
   1638   for (ObjCProtocolDecl::classmeth_iterator
   1639          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1640        I != E; ++I) {
   1641     ObjCMethodDecl *method = *I;
   1642     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1643         !ClsMap.count(method->getSelector()) &&
   1644         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1645       // See above comment for instance method lookups.
   1646       if (C && IDecl->lookupClassMethod(method->getSelector(),
   1647                                         true /*shallowCategoryLookup*/))
   1648         continue;
   1649       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1650       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
   1651             DiagnosticsEngine::Ignored) {
   1652         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1653         Diag(method->getLocation(), diag::note_method_declared_at)
   1654           << method->getDeclName();
   1655         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1656           PDecl->getDeclName();
   1657       }
   1658     }
   1659   }
   1660   // Check on this protocols's referenced protocols, recursively.
   1661   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1662        E = PDecl->protocol_end(); PI != E; ++PI)
   1663     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
   1664 }
   1665 
   1666 /// MatchAllMethodDeclarations - Check methods declared in interface
   1667 /// or protocol against those declared in their implementations.
   1668 ///
   1669 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   1670                                       const SelectorSet &ClsMap,
   1671                                       SelectorSet &InsMapSeen,
   1672                                       SelectorSet &ClsMapSeen,
   1673                                       ObjCImplDecl* IMPDecl,
   1674                                       ObjCContainerDecl* CDecl,
   1675                                       bool &IncompleteImpl,
   1676                                       bool ImmediateClass,
   1677                                       bool WarnCategoryMethodImpl) {
   1678   // Check and see if instance methods in class interface have been
   1679   // implemented in the implementation class. If so, their types match.
   1680   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1681        E = CDecl->instmeth_end(); I != E; ++I) {
   1682     if (InsMapSeen.count((*I)->getSelector()))
   1683         continue;
   1684     InsMapSeen.insert((*I)->getSelector());
   1685     if (!(*I)->isPropertyAccessor() &&
   1686         !InsMap.count((*I)->getSelector())) {
   1687       if (ImmediateClass)
   1688         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1689                             diag::note_undef_method_impl);
   1690       continue;
   1691     } else {
   1692       ObjCMethodDecl *ImpMethodDecl =
   1693         IMPDecl->getInstanceMethod((*I)->getSelector());
   1694       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
   1695              "Expected to find the method through lookup as well");
   1696       ObjCMethodDecl *MethodDecl = *I;
   1697       // ImpMethodDecl may be null as in a @dynamic property.
   1698       if (ImpMethodDecl) {
   1699         if (!WarnCategoryMethodImpl)
   1700           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1701                                       isa<ObjCProtocolDecl>(CDecl));
   1702         else if (!MethodDecl->isPropertyAccessor())
   1703           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1704                                 isa<ObjCProtocolDecl>(CDecl));
   1705       }
   1706     }
   1707   }
   1708 
   1709   // Check and see if class methods in class interface have been
   1710   // implemented in the implementation class. If so, their types match.
   1711    for (ObjCInterfaceDecl::classmeth_iterator
   1712        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1713      if (ClsMapSeen.count((*I)->getSelector()))
   1714        continue;
   1715      ClsMapSeen.insert((*I)->getSelector());
   1716     if (!ClsMap.count((*I)->getSelector())) {
   1717       if (ImmediateClass)
   1718         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1719                             diag::note_undef_method_impl);
   1720     } else {
   1721       ObjCMethodDecl *ImpMethodDecl =
   1722         IMPDecl->getClassMethod((*I)->getSelector());
   1723       assert(CDecl->getClassMethod((*I)->getSelector()) &&
   1724              "Expected to find the method through lookup as well");
   1725       ObjCMethodDecl *MethodDecl = *I;
   1726       if (!WarnCategoryMethodImpl)
   1727         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1728                                     isa<ObjCProtocolDecl>(CDecl));
   1729       else
   1730         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1731                               isa<ObjCProtocolDecl>(CDecl));
   1732     }
   1733   }
   1734 
   1735   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1736     // when checking that methods in implementation match their declaration,
   1737     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
   1738     // extension; as well as those in categories.
   1739     if (!WarnCategoryMethodImpl) {
   1740       for (ObjCInterfaceDecl::visible_categories_iterator
   1741              Cat = I->visible_categories_begin(),
   1742            CatEnd = I->visible_categories_end();
   1743            Cat != CatEnd; ++Cat) {
   1744         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1745                                    IMPDecl, *Cat, IncompleteImpl, false,
   1746                                    WarnCategoryMethodImpl);
   1747       }
   1748     } else {
   1749       // Also methods in class extensions need be looked at next.
   1750       for (ObjCInterfaceDecl::visible_extensions_iterator
   1751              Ext = I->visible_extensions_begin(),
   1752              ExtEnd = I->visible_extensions_end();
   1753            Ext != ExtEnd; ++Ext) {
   1754         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1755                                    IMPDecl, *Ext, IncompleteImpl, false,
   1756                                    WarnCategoryMethodImpl);
   1757       }
   1758     }
   1759 
   1760     // Check for any implementation of a methods declared in protocol.
   1761     for (ObjCInterfaceDecl::all_protocol_iterator
   1762           PI = I->all_referenced_protocol_begin(),
   1763           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1764       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1765                                  IMPDecl,
   1766                                  (*PI), IncompleteImpl, false,
   1767                                  WarnCategoryMethodImpl);
   1768 
   1769     // FIXME. For now, we are not checking for extact match of methods
   1770     // in category implementation and its primary class's super class.
   1771     if (!WarnCategoryMethodImpl && I->getSuperClass())
   1772       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1773                                  IMPDecl,
   1774                                  I->getSuperClass(), IncompleteImpl, false);
   1775   }
   1776 }
   1777 
   1778 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1779 /// category matches with those implemented in its primary class and
   1780 /// warns each time an exact match is found.
   1781 void Sema::CheckCategoryVsClassMethodMatches(
   1782                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1783   SelectorSet InsMap, ClsMap;
   1784 
   1785   for (ObjCImplementationDecl::instmeth_iterator
   1786        I = CatIMPDecl->instmeth_begin(),
   1787        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
   1788     InsMap.insert((*I)->getSelector());
   1789 
   1790   for (ObjCImplementationDecl::classmeth_iterator
   1791        I = CatIMPDecl->classmeth_begin(),
   1792        E = CatIMPDecl->classmeth_end(); I != E; ++I)
   1793     ClsMap.insert((*I)->getSelector());
   1794   if (InsMap.empty() && ClsMap.empty())
   1795     return;
   1796 
   1797   // Get category's primary class.
   1798   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1799   if (!CatDecl)
   1800     return;
   1801   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1802   if (!IDecl)
   1803     return;
   1804   SelectorSet InsMapSeen, ClsMapSeen;
   1805   bool IncompleteImpl = false;
   1806   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1807                              CatIMPDecl, IDecl,
   1808                              IncompleteImpl, false,
   1809                              true /*WarnCategoryMethodImpl*/);
   1810 }
   1811 
   1812 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1813                                      ObjCContainerDecl* CDecl,
   1814                                      bool IncompleteImpl) {
   1815   SelectorSet InsMap;
   1816   // Check and see if instance methods in class interface have been
   1817   // implemented in the implementation class.
   1818   for (ObjCImplementationDecl::instmeth_iterator
   1819          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1820     InsMap.insert((*I)->getSelector());
   1821 
   1822   // Check and see if properties declared in the interface have either 1)
   1823   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1824   // of the property in the @implementation.
   1825   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
   1826     if  (!(LangOpts.ObjCDefaultSynthProperties &&
   1827            LangOpts.ObjCRuntime.isNonFragile()) ||
   1828          IDecl->isObjCRequiresPropertyDefs())
   1829       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1830 
   1831   SelectorSet ClsMap;
   1832   for (ObjCImplementationDecl::classmeth_iterator
   1833        I = IMPDecl->classmeth_begin(),
   1834        E = IMPDecl->classmeth_end(); I != E; ++I)
   1835     ClsMap.insert((*I)->getSelector());
   1836 
   1837   // Check for type conflict of methods declared in a class/protocol and
   1838   // its implementation; if any.
   1839   SelectorSet InsMapSeen, ClsMapSeen;
   1840   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1841                              IMPDecl, CDecl,
   1842                              IncompleteImpl, true);
   1843 
   1844   // check all methods implemented in category against those declared
   1845   // in its primary class.
   1846   if (ObjCCategoryImplDecl *CatDecl =
   1847         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1848     CheckCategoryVsClassMethodMatches(CatDecl);
   1849 
   1850   // Check the protocol list for unimplemented methods in the @implementation
   1851   // class.
   1852   // Check and see if class methods in class interface have been
   1853   // implemented in the implementation class.
   1854 
   1855   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1856     for (ObjCInterfaceDecl::all_protocol_iterator
   1857           PI = I->all_referenced_protocol_begin(),
   1858           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1859       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1860                               InsMap, ClsMap, I);
   1861     // Check class extensions (unnamed categories)
   1862     for (ObjCInterfaceDecl::visible_extensions_iterator
   1863            Ext = I->visible_extensions_begin(),
   1864            ExtEnd = I->visible_extensions_end();
   1865          Ext != ExtEnd; ++Ext) {
   1866       ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
   1867     }
   1868   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1869     // For extended class, unimplemented methods in its protocols will
   1870     // be reported in the primary class.
   1871     if (!C->IsClassExtension()) {
   1872       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1873            E = C->protocol_end(); PI != E; ++PI)
   1874         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1875                                 InsMap, ClsMap, CDecl);
   1876       // Report unimplemented properties in the category as well.
   1877       // When reporting on missing setter/getters, do not report when
   1878       // setter/getter is implemented in category's primary class
   1879       // implementation.
   1880       if (ObjCInterfaceDecl *ID = C->getClassInterface())
   1881         if (ObjCImplDecl *IMP = ID->getImplementation()) {
   1882           for (ObjCImplementationDecl::instmeth_iterator
   1883                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
   1884             InsMap.insert((*I)->getSelector());
   1885         }
   1886       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1887     }
   1888   } else
   1889     llvm_unreachable("invalid ObjCContainerDecl type.");
   1890 }
   1891 
   1892 /// ActOnForwardClassDeclaration -
   1893 Sema::DeclGroupPtrTy
   1894 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1895                                    IdentifierInfo **IdentList,
   1896                                    SourceLocation *IdentLocs,
   1897                                    unsigned NumElts) {
   1898   SmallVector<Decl *, 8> DeclsInGroup;
   1899   for (unsigned i = 0; i != NumElts; ++i) {
   1900     // Check for another declaration kind with the same name.
   1901     NamedDecl *PrevDecl
   1902       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1903                          LookupOrdinaryName, ForRedeclaration);
   1904     if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1905       // Maybe we will complain about the shadowed template parameter.
   1906       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
   1907       // Just pretend that we didn't see the previous declaration.
   1908       PrevDecl = 0;
   1909     }
   1910 
   1911     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1912       // GCC apparently allows the following idiom:
   1913       //
   1914       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1915       // @class XCElementToggler;
   1916       //
   1917       // Here we have chosen to ignore the forward class declaration
   1918       // with a warning. Since this is the implied behavior.
   1919       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1920       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1921         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1922         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1923       } else {
   1924         // a forward class declaration matching a typedef name of a class refers
   1925         // to the underlying class. Just ignore the forward class with a warning
   1926         // as this will force the intended behavior which is to lookup the typedef
   1927         // name.
   1928         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   1929           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
   1930           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1931           continue;
   1932         }
   1933       }
   1934     }
   1935 
   1936     // Create a declaration to describe this forward declaration.
   1937     ObjCInterfaceDecl *PrevIDecl
   1938       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1939     ObjCInterfaceDecl *IDecl
   1940       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1941                                   IdentList[i], PrevIDecl, IdentLocs[i]);
   1942     IDecl->setAtEndRange(IdentLocs[i]);
   1943 
   1944     PushOnScopeChains(IDecl, TUScope);
   1945     CheckObjCDeclScope(IDecl);
   1946     DeclsInGroup.push_back(IDecl);
   1947   }
   1948 
   1949   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1950 }
   1951 
   1952 static bool tryMatchRecordTypes(ASTContext &Context,
   1953                                 Sema::MethodMatchStrategy strategy,
   1954                                 const Type *left, const Type *right);
   1955 
   1956 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1957                        QualType leftQT, QualType rightQT) {
   1958   const Type *left =
   1959     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   1960   const Type *right =
   1961     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   1962 
   1963   if (left == right) return true;
   1964 
   1965   // If we're doing a strict match, the types have to match exactly.
   1966   if (strategy == Sema::MMS_strict) return false;
   1967 
   1968   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   1969 
   1970   // Otherwise, use this absurdly complicated algorithm to try to
   1971   // validate the basic, low-level compatibility of the two types.
   1972 
   1973   // As a minimum, require the sizes and alignments to match.
   1974   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   1975     return false;
   1976 
   1977   // Consider all the kinds of non-dependent canonical types:
   1978   // - functions and arrays aren't possible as return and parameter types
   1979 
   1980   // - vector types of equal size can be arbitrarily mixed
   1981   if (isa<VectorType>(left)) return isa<VectorType>(right);
   1982   if (isa<VectorType>(right)) return false;
   1983 
   1984   // - references should only match references of identical type
   1985   // - structs, unions, and Objective-C objects must match more-or-less
   1986   //   exactly
   1987   // - everything else should be a scalar
   1988   if (!left->isScalarType() || !right->isScalarType())
   1989     return tryMatchRecordTypes(Context, strategy, left, right);
   1990 
   1991   // Make scalars agree in kind, except count bools as chars, and group
   1992   // all non-member pointers together.
   1993   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   1994   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   1995   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   1996   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   1997   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   1998     leftSK = Type::STK_ObjCObjectPointer;
   1999   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   2000     rightSK = Type::STK_ObjCObjectPointer;
   2001 
   2002   // Note that data member pointers and function member pointers don't
   2003   // intermix because of the size differences.
   2004 
   2005   return (leftSK == rightSK);
   2006 }
   2007 
   2008 static bool tryMatchRecordTypes(ASTContext &Context,
   2009                                 Sema::MethodMatchStrategy strategy,
   2010                                 const Type *lt, const Type *rt) {
   2011   assert(lt && rt && lt != rt);
   2012 
   2013   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   2014   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   2015   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   2016 
   2017   // Require union-hood to match.
   2018   if (left->isUnion() != right->isUnion()) return false;
   2019 
   2020   // Require an exact match if either is non-POD.
   2021   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   2022       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   2023     return false;
   2024 
   2025   // Require size and alignment to match.
   2026   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   2027 
   2028   // Require fields to match.
   2029   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   2030   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   2031   for (; li != le && ri != re; ++li, ++ri) {
   2032     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   2033       return false;
   2034   }
   2035   return (li == le && ri == re);
   2036 }
   2037 
   2038 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   2039 /// returns true, or false, accordingly.
   2040 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   2041 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   2042                                       const ObjCMethodDecl *right,
   2043                                       MethodMatchStrategy strategy) {
   2044   if (!matchTypes(Context, strategy,
   2045                   left->getResultType(), right->getResultType()))
   2046     return false;
   2047 
   2048   // If either is hidden, it is not considered to match.
   2049   if (left->isHidden() || right->isHidden())
   2050     return false;
   2051 
   2052   if (getLangOpts().ObjCAutoRefCount &&
   2053       (left->hasAttr<NSReturnsRetainedAttr>()
   2054          != right->hasAttr<NSReturnsRetainedAttr>() ||
   2055        left->hasAttr<NSConsumesSelfAttr>()
   2056          != right->hasAttr<NSConsumesSelfAttr>()))
   2057     return false;
   2058 
   2059   ObjCMethodDecl::param_const_iterator
   2060     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   2061     re = right->param_end();
   2062 
   2063   for (; li != le && ri != re; ++li, ++ri) {
   2064     assert(ri != right->param_end() && "Param mismatch");
   2065     const ParmVarDecl *lparm = *li, *rparm = *ri;
   2066 
   2067     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   2068       return false;
   2069 
   2070     if (getLangOpts().ObjCAutoRefCount &&
   2071         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   2072       return false;
   2073   }
   2074   return true;
   2075 }
   2076 
   2077 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
   2078   // If the list is empty, make it a singleton list.
   2079   if (List->Method == 0) {
   2080     List->Method = Method;
   2081     List->Next = 0;
   2082     return;
   2083   }
   2084 
   2085   // We've seen a method with this name, see if we have already seen this type
   2086   // signature.
   2087   ObjCMethodList *Previous = List;
   2088   for (; List; Previous = List, List = List->Next) {
   2089     if (!MatchTwoMethodDeclarations(Method, List->Method))
   2090       continue;
   2091 
   2092     ObjCMethodDecl *PrevObjCMethod = List->Method;
   2093 
   2094     // Propagate the 'defined' bit.
   2095     if (Method->isDefined())
   2096       PrevObjCMethod->setDefined(true);
   2097 
   2098     // If a method is deprecated, push it in the global pool.
   2099     // This is used for better diagnostics.
   2100     if (Method->isDeprecated()) {
   2101       if (!PrevObjCMethod->isDeprecated())
   2102         List->Method = Method;
   2103     }
   2104     // If new method is unavailable, push it into global pool
   2105     // unless previous one is deprecated.
   2106     if (Method->isUnavailable()) {
   2107       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   2108         List->Method = Method;
   2109     }
   2110 
   2111     return;
   2112   }
   2113 
   2114   // We have a new signature for an existing method - add it.
   2115   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   2116   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   2117   Previous->Next = new (Mem) ObjCMethodList(Method, 0);
   2118 }
   2119 
   2120 /// \brief Read the contents of the method pool for a given selector from
   2121 /// external storage.
   2122 void Sema::ReadMethodPool(Selector Sel) {
   2123   assert(ExternalSource && "We need an external AST source");
   2124   ExternalSource->ReadMethodPool(Sel);
   2125 }
   2126 
   2127 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   2128                                  bool instance) {
   2129   // Ignore methods of invalid containers.
   2130   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   2131     return;
   2132 
   2133   if (ExternalSource)
   2134     ReadMethodPool(Method->getSelector());
   2135 
   2136   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   2137   if (Pos == MethodPool.end())
   2138     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   2139                                            GlobalMethods())).first;
   2140 
   2141   Method->setDefined(impl);
   2142 
   2143   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   2144   addMethodToGlobalList(&Entry, Method);
   2145 }
   2146 
   2147 /// Determines if this is an "acceptable" loose mismatch in the global
   2148 /// method pool.  This exists mostly as a hack to get around certain
   2149 /// global mismatches which we can't afford to make warnings / errors.
   2150 /// Really, what we want is a way to take a method out of the global
   2151 /// method pool.
   2152 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   2153                                        ObjCMethodDecl *other) {
   2154   if (!chosen->isInstanceMethod())
   2155     return false;
   2156 
   2157   Selector sel = chosen->getSelector();
   2158   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   2159     return false;
   2160 
   2161   // Don't complain about mismatches for -length if the method we
   2162   // chose has an integral result type.
   2163   return (chosen->getResultType()->isIntegerType());
   2164 }
   2165 
   2166 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   2167                                                bool receiverIdOrClass,
   2168                                                bool warn, bool instance) {
   2169   if (ExternalSource)
   2170     ReadMethodPool(Sel);
   2171 
   2172   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2173   if (Pos == MethodPool.end())
   2174     return 0;
   2175 
   2176   // Gather the non-hidden methods.
   2177   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2178   llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
   2179   for (ObjCMethodList *M = &MethList; M; M = M->Next) {
   2180     if (M->Method && !M->Method->isHidden()) {
   2181       // If we're not supposed to warn about mismatches, we're done.
   2182       if (!warn)
   2183         return M->Method;
   2184 
   2185       Methods.push_back(M->Method);
   2186     }
   2187   }
   2188 
   2189   // If there aren't any visible methods, we're done.
   2190   // FIXME: Recover if there are any known-but-hidden methods?
   2191   if (Methods.empty())
   2192     return 0;
   2193 
   2194   if (Methods.size() == 1)
   2195     return Methods[0];
   2196 
   2197   // We found multiple methods, so we may have to complain.
   2198   bool issueDiagnostic = false, issueError = false;
   2199 
   2200   // We support a warning which complains about *any* difference in
   2201   // method signature.
   2202   bool strictSelectorMatch =
   2203     (receiverIdOrClass && warn &&
   2204      (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   2205                                R.getBegin())
   2206         != DiagnosticsEngine::Ignored));
   2207   if (strictSelectorMatch) {
   2208     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2209       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
   2210         issueDiagnostic = true;
   2211         break;
   2212       }
   2213     }
   2214   }
   2215 
   2216   // If we didn't see any strict differences, we won't see any loose
   2217   // differences.  In ARC, however, we also need to check for loose
   2218   // mismatches, because most of them are errors.
   2219   if (!strictSelectorMatch ||
   2220       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   2221     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2222       // This checks if the methods differ in type mismatch.
   2223       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
   2224           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
   2225         issueDiagnostic = true;
   2226         if (getLangOpts().ObjCAutoRefCount)
   2227           issueError = true;
   2228         break;
   2229       }
   2230     }
   2231 
   2232   if (issueDiagnostic) {
   2233     if (issueError)
   2234       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2235     else if (strictSelectorMatch)
   2236       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2237     else
   2238       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2239 
   2240     Diag(Methods[0]->getLocStart(),
   2241          issueError ? diag::note_possibility : diag::note_using)
   2242       << Methods[0]->getSourceRange();
   2243     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2244       Diag(Methods[I]->getLocStart(), diag::note_also_found)
   2245         << Methods[I]->getSourceRange();
   2246   }
   2247   }
   2248   return Methods[0];
   2249 }
   2250 
   2251 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2252   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2253   if (Pos == MethodPool.end())
   2254     return 0;
   2255 
   2256   GlobalMethods &Methods = Pos->second;
   2257 
   2258   if (Methods.first.Method && Methods.first.Method->isDefined())
   2259     return Methods.first.Method;
   2260   if (Methods.second.Method && Methods.second.Method->isDefined())
   2261     return Methods.second.Method;
   2262   return 0;
   2263 }
   2264 
   2265 /// DiagnoseDuplicateIvars -
   2266 /// Check for duplicate ivars in the entire class at the start of
   2267 /// \@implementation. This becomes necesssary because class extension can
   2268 /// add ivars to a class in random order which will not be known until
   2269 /// class's \@implementation is seen.
   2270 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2271                                   ObjCInterfaceDecl *SID) {
   2272   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   2273        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   2274     ObjCIvarDecl* Ivar = *IVI;
   2275     if (Ivar->isInvalidDecl())
   2276       continue;
   2277     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2278       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2279       if (prevIvar) {
   2280         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2281         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2282         Ivar->setInvalidDecl();
   2283       }
   2284     }
   2285   }
   2286 }
   2287 
   2288 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   2289   switch (CurContext->getDeclKind()) {
   2290     case Decl::ObjCInterface:
   2291       return Sema::OCK_Interface;
   2292     case Decl::ObjCProtocol:
   2293       return Sema::OCK_Protocol;
   2294     case Decl::ObjCCategory:
   2295       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   2296         return Sema::OCK_ClassExtension;
   2297       else
   2298         return Sema::OCK_Category;
   2299     case Decl::ObjCImplementation:
   2300       return Sema::OCK_Implementation;
   2301     case Decl::ObjCCategoryImpl:
   2302       return Sema::OCK_CategoryImplementation;
   2303 
   2304     default:
   2305       return Sema::OCK_None;
   2306   }
   2307 }
   2308 
   2309 // Note: For class/category implemenations, allMethods/allProperties is
   2310 // always null.
   2311 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
   2312                        Decl **allMethods, unsigned allNum,
   2313                        Decl **allProperties, unsigned pNum,
   2314                        DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
   2315 
   2316   if (getObjCContainerKind() == Sema::OCK_None)
   2317     return 0;
   2318 
   2319   assert(AtEnd.isValid() && "Invalid location for '@end'");
   2320 
   2321   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2322   Decl *ClassDecl = cast<Decl>(OCD);
   2323 
   2324   bool isInterfaceDeclKind =
   2325         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2326          || isa<ObjCProtocolDecl>(ClassDecl);
   2327   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2328 
   2329   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2330   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2331   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2332 
   2333   for (unsigned i = 0; i < allNum; i++ ) {
   2334     ObjCMethodDecl *Method =
   2335       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2336 
   2337     if (!Method) continue;  // Already issued a diagnostic.
   2338     if (Method->isInstanceMethod()) {
   2339       /// Check for instance method of the same name with incompatible types
   2340       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2341       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2342                               : false;
   2343       if ((isInterfaceDeclKind && PrevMethod && !match)
   2344           || (checkIdenticalMethods && match)) {
   2345           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2346             << Method->getDeclName();
   2347           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2348         Method->setInvalidDecl();
   2349       } else {
   2350         if (PrevMethod) {
   2351           Method->setAsRedeclaration(PrevMethod);
   2352           if (!Context.getSourceManager().isInSystemHeader(
   2353                  Method->getLocation()))
   2354             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2355               << Method->getDeclName();
   2356           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2357         }
   2358         InsMap[Method->getSelector()] = Method;
   2359         /// The following allows us to typecheck messages to "id".
   2360         AddInstanceMethodToGlobalPool(Method);
   2361       }
   2362     } else {
   2363       /// Check for class method of the same name with incompatible types
   2364       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2365       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2366                               : false;
   2367       if ((isInterfaceDeclKind && PrevMethod && !match)
   2368           || (checkIdenticalMethods && match)) {
   2369         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2370           << Method->getDeclName();
   2371         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2372         Method->setInvalidDecl();
   2373       } else {
   2374         if (PrevMethod) {
   2375           Method->setAsRedeclaration(PrevMethod);
   2376           if (!Context.getSourceManager().isInSystemHeader(
   2377                  Method->getLocation()))
   2378             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2379               << Method->getDeclName();
   2380           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2381         }
   2382         ClsMap[Method->getSelector()] = Method;
   2383         AddFactoryMethodToGlobalPool(Method);
   2384       }
   2385     }
   2386   }
   2387   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
   2388     // Nothing to do here.
   2389   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2390     // Categories are used to extend the class by declaring new methods.
   2391     // By the same token, they are also used to add new properties. No
   2392     // need to compare the added property to those in the class.
   2393 
   2394     if (C->IsClassExtension()) {
   2395       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2396       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2397     }
   2398   }
   2399   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2400     if (CDecl->getIdentifier())
   2401       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2402       // user-defined setter/getter. It also synthesizes setter/getter methods
   2403       // and adds them to the DeclContext and global method pools.
   2404       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2405                                             E = CDecl->prop_end();
   2406            I != E; ++I)
   2407         ProcessPropertyDecl(*I, CDecl);
   2408     CDecl->setAtEndRange(AtEnd);
   2409   }
   2410   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2411     IC->setAtEndRange(AtEnd);
   2412     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2413       // Any property declared in a class extension might have user
   2414       // declared setter or getter in current class extension or one
   2415       // of the other class extensions. Mark them as synthesized as
   2416       // property will be synthesized when property with same name is
   2417       // seen in the @implementation.
   2418       for (ObjCInterfaceDecl::visible_extensions_iterator
   2419              Ext = IDecl->visible_extensions_begin(),
   2420              ExtEnd = IDecl->visible_extensions_end();
   2421            Ext != ExtEnd; ++Ext) {
   2422         for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
   2423              E = Ext->prop_end(); I != E; ++I) {
   2424           ObjCPropertyDecl *Property = *I;
   2425           // Skip over properties declared @dynamic
   2426           if (const ObjCPropertyImplDecl *PIDecl
   2427               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2428             if (PIDecl->getPropertyImplementation()
   2429                   == ObjCPropertyImplDecl::Dynamic)
   2430               continue;
   2431 
   2432           for (ObjCInterfaceDecl::visible_extensions_iterator
   2433                  Ext = IDecl->visible_extensions_begin(),
   2434                  ExtEnd = IDecl->visible_extensions_end();
   2435                Ext != ExtEnd; ++Ext) {
   2436             if (ObjCMethodDecl *GetterMethod
   2437                   = Ext->getInstanceMethod(Property->getGetterName()))
   2438               GetterMethod->setPropertyAccessor(true);
   2439             if (!Property->isReadOnly())
   2440               if (ObjCMethodDecl *SetterMethod
   2441                     = Ext->getInstanceMethod(Property->getSetterName()))
   2442                 SetterMethod->setPropertyAccessor(true);
   2443           }
   2444         }
   2445       }
   2446       ImplMethodsVsClassMethods(S, IC, IDecl);
   2447       AtomicPropertySetterGetterRules(IC, IDecl);
   2448       DiagnoseOwningPropertyGetterSynthesis(IC);
   2449 
   2450       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   2451       if (IDecl->getSuperClass() == NULL) {
   2452         // This class has no superclass, so check that it has been marked with
   2453         // __attribute((objc_root_class)).
   2454         if (!HasRootClassAttr) {
   2455           SourceLocation DeclLoc(IDecl->getLocation());
   2456           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
   2457           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   2458             << IDecl->getIdentifier();
   2459           // See if NSObject is in the current scope, and if it is, suggest
   2460           // adding " : NSObject " to the class declaration.
   2461           NamedDecl *IF = LookupSingleName(TUScope,
   2462                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   2463                                            DeclLoc, LookupOrdinaryName);
   2464           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   2465           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   2466             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   2467               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   2468           } else {
   2469             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   2470           }
   2471         }
   2472       } else if (HasRootClassAttr) {
   2473         // Complain that only root classes may have this attribute.
   2474         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   2475       }
   2476 
   2477       if (LangOpts.ObjCRuntime.isNonFragile()) {
   2478         while (IDecl->getSuperClass()) {
   2479           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2480           IDecl = IDecl->getSuperClass();
   2481         }
   2482       }
   2483     }
   2484     SetIvarInitializers(IC);
   2485   } else if (ObjCCategoryImplDecl* CatImplClass =
   2486                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2487     CatImplClass->setAtEndRange(AtEnd);
   2488 
   2489     // Find category interface decl and then check that all methods declared
   2490     // in this interface are implemented in the category @implementation.
   2491     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2492       if (ObjCCategoryDecl *Cat
   2493             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
   2494         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
   2495       }
   2496     }
   2497   }
   2498   if (isInterfaceDeclKind) {
   2499     // Reject invalid vardecls.
   2500     for (unsigned i = 0; i != tuvNum; i++) {
   2501       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2502       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2503         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2504           if (!VDecl->hasExternalStorage())
   2505             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2506         }
   2507     }
   2508   }
   2509   ActOnObjCContainerFinishDefinition();
   2510 
   2511   for (unsigned i = 0; i != tuvNum; i++) {
   2512     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2513     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2514       (*I)->setTopLevelDeclInObjCContainer();
   2515     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2516   }
   2517 
   2518   ActOnDocumentableDecl(ClassDecl);
   2519   return ClassDecl;
   2520 }
   2521 
   2522 
   2523 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2524 /// objective-c's type qualifier from the parser version of the same info.
   2525 static Decl::ObjCDeclQualifier
   2526 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2527   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2528 }
   2529 
   2530 static inline
   2531 unsigned countAlignAttr(const AttrVec &A) {
   2532   unsigned count=0;
   2533   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
   2534     if ((*i)->getKind() == attr::Aligned)
   2535       ++count;
   2536   return count;
   2537 }
   2538 
   2539 static inline
   2540 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
   2541                                         const AttrVec &A) {
   2542   // If method is only declared in implementation (private method),
   2543   // No need to issue any diagnostics on method definition with attributes.
   2544   if (!IMD)
   2545     return false;
   2546 
   2547   // method declared in interface has no attribute.
   2548   // But implementation has attributes. This is invalid.
   2549   // Except when implementation has 'Align' attribute which is
   2550   // immaterial to method declared in interface.
   2551   if (!IMD->hasAttrs())
   2552     return (A.size() > countAlignAttr(A));
   2553 
   2554   const AttrVec &D = IMD->getAttrs();
   2555 
   2556   unsigned countAlignOnImpl = countAlignAttr(A);
   2557   if (!countAlignOnImpl && (A.size() != D.size()))
   2558     return true;
   2559   else if (countAlignOnImpl) {
   2560     unsigned countAlignOnDecl = countAlignAttr(D);
   2561     if (countAlignOnDecl && (A.size() != D.size()))
   2562       return true;
   2563     else if (!countAlignOnDecl &&
   2564              ((A.size()-countAlignOnImpl) != D.size()))
   2565       return true;
   2566   }
   2567 
   2568   // attributes on method declaration and definition must match exactly.
   2569   // Note that we have at most a couple of attributes on methods, so this
   2570   // n*n search is good enough.
   2571   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
   2572     if ((*i)->getKind() == attr::Aligned)
   2573       continue;
   2574     bool match = false;
   2575     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
   2576       if ((*i)->getKind() == (*i1)->getKind()) {
   2577         match = true;
   2578         break;
   2579       }
   2580     }
   2581     if (!match)
   2582       return true;
   2583   }
   2584 
   2585   return false;
   2586 }
   2587 
   2588 /// \brief Check whether the declared result type of the given Objective-C
   2589 /// method declaration is compatible with the method's class.
   2590 ///
   2591 static Sema::ResultTypeCompatibilityKind
   2592 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2593                                     ObjCInterfaceDecl *CurrentClass) {
   2594   QualType ResultType = Method->getResultType();
   2595 
   2596   // If an Objective-C method inherits its related result type, then its
   2597   // declared result type must be compatible with its own class type. The
   2598   // declared result type is compatible if:
   2599   if (const ObjCObjectPointerType *ResultObjectType
   2600                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2601     //   - it is id or qualified id, or
   2602     if (ResultObjectType->isObjCIdType() ||
   2603         ResultObjectType->isObjCQualifiedIdType())
   2604       return Sema::RTC_Compatible;
   2605 
   2606     if (CurrentClass) {
   2607       if (ObjCInterfaceDecl *ResultClass
   2608                                       = ResultObjectType->getInterfaceDecl()) {
   2609         //   - it is the same as the method's class type, or
   2610         if (declaresSameEntity(CurrentClass, ResultClass))
   2611           return Sema::RTC_Compatible;
   2612 
   2613         //   - it is a superclass of the method's class type
   2614         if (ResultClass->isSuperClassOf(CurrentClass))
   2615           return Sema::RTC_Compatible;
   2616       }
   2617     } else {
   2618       // Any Objective-C pointer type might be acceptable for a protocol
   2619       // method; we just don't know.
   2620       return Sema::RTC_Unknown;
   2621     }
   2622   }
   2623 
   2624   return Sema::RTC_Incompatible;
   2625 }
   2626 
   2627 namespace {
   2628 /// A helper class for searching for methods which a particular method
   2629 /// overrides.
   2630 class OverrideSearch {
   2631 public:
   2632   Sema &S;
   2633   ObjCMethodDecl *Method;
   2634   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   2635   bool Recursive;
   2636 
   2637 public:
   2638   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2639     Selector selector = method->getSelector();
   2640 
   2641     // Bypass this search if we've never seen an instance/class method
   2642     // with this selector before.
   2643     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2644     if (it == S.MethodPool.end()) {
   2645       if (!S.getExternalSource()) return;
   2646       S.ReadMethodPool(selector);
   2647 
   2648       it = S.MethodPool.find(selector);
   2649       if (it == S.MethodPool.end())
   2650         return;
   2651     }
   2652     ObjCMethodList &list =
   2653       method->isInstanceMethod() ? it->second.first : it->second.second;
   2654     if (!list.Method) return;
   2655 
   2656     ObjCContainerDecl *container
   2657       = cast<ObjCContainerDecl>(method->getDeclContext());
   2658 
   2659     // Prevent the search from reaching this container again.  This is
   2660     // important with categories, which override methods from the
   2661     // interface and each other.
   2662     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   2663       searchFromContainer(container);
   2664       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   2665         searchFromContainer(Interface);
   2666     } else {
   2667       searchFromContainer(container);
   2668     }
   2669   }
   2670 
   2671   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   2672   iterator begin() const { return Overridden.begin(); }
   2673   iterator end() const { return Overridden.end(); }
   2674 
   2675 private:
   2676   void searchFromContainer(ObjCContainerDecl *container) {
   2677     if (container->isInvalidDecl()) return;
   2678 
   2679     switch (container->getDeclKind()) {
   2680 #define OBJCCONTAINER(type, base) \
   2681     case Decl::type: \
   2682       searchFrom(cast<type##Decl>(container)); \
   2683       break;
   2684 #define ABSTRACT_DECL(expansion)
   2685 #define DECL(type, base) \
   2686     case Decl::type:
   2687 #include "clang/AST/DeclNodes.inc"
   2688       llvm_unreachable("not an ObjC container!");
   2689     }
   2690   }
   2691 
   2692   void searchFrom(ObjCProtocolDecl *protocol) {
   2693     if (!protocol->hasDefinition())
   2694       return;
   2695 
   2696     // A method in a protocol declaration overrides declarations from
   2697     // referenced ("parent") protocols.
   2698     search(protocol->getReferencedProtocols());
   2699   }
   2700 
   2701   void searchFrom(ObjCCategoryDecl *category) {
   2702     // A method in a category declaration overrides declarations from
   2703     // the main class and from protocols the category references.
   2704     // The main class is handled in the constructor.
   2705     search(category->getReferencedProtocols());
   2706   }
   2707 
   2708   void searchFrom(ObjCCategoryImplDecl *impl) {
   2709     // A method in a category definition that has a category
   2710     // declaration overrides declarations from the category
   2711     // declaration.
   2712     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2713       search(category);
   2714       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   2715         search(Interface);
   2716 
   2717     // Otherwise it overrides declarations from the class.
   2718     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   2719       search(Interface);
   2720     }
   2721   }
   2722 
   2723   void searchFrom(ObjCInterfaceDecl *iface) {
   2724     // A method in a class declaration overrides declarations from
   2725     if (!iface->hasDefinition())
   2726       return;
   2727 
   2728     //   - categories,
   2729     for (ObjCInterfaceDecl::visible_categories_iterator
   2730            cat = iface->visible_categories_begin(),
   2731            catEnd = iface->visible_categories_end();
   2732          cat != catEnd; ++cat) {
   2733       search(*cat);
   2734     }
   2735 
   2736     //   - the super class, and
   2737     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2738       search(super);
   2739 
   2740     //   - any referenced protocols.
   2741     search(iface->getReferencedProtocols());
   2742   }
   2743 
   2744   void searchFrom(ObjCImplementationDecl *impl) {
   2745     // A method in a class implementation overrides declarations from
   2746     // the class interface.
   2747     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   2748       search(Interface);
   2749   }
   2750 
   2751 
   2752   void search(const ObjCProtocolList &protocols) {
   2753     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2754          i != e; ++i)
   2755       search(*i);
   2756   }
   2757 
   2758   void search(ObjCContainerDecl *container) {
   2759     // Check for a method in this container which matches this selector.
   2760     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2761                                                 Method->isInstanceMethod());
   2762 
   2763     // If we find one, record it and bail out.
   2764     if (meth) {
   2765       Overridden.insert(meth);
   2766       return;
   2767     }
   2768 
   2769     // Otherwise, search for methods that a hypothetical method here
   2770     // would have overridden.
   2771 
   2772     // Note that we're now in a recursive case.
   2773     Recursive = true;
   2774 
   2775     searchFromContainer(container);
   2776   }
   2777 };
   2778 }
   2779 
   2780 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   2781                                     ObjCInterfaceDecl *CurrentClass,
   2782                                     ResultTypeCompatibilityKind RTC) {
   2783   // Search for overridden methods and merge information down from them.
   2784   OverrideSearch overrides(*this, ObjCMethod);
   2785   // Keep track if the method overrides any method in the class's base classes,
   2786   // its protocols, or its categories' protocols; we will keep that info
   2787   // in the ObjCMethodDecl.
   2788   // For this info, a method in an implementation is not considered as
   2789   // overriding the same method in the interface or its categories.
   2790   bool hasOverriddenMethodsInBaseOrProtocol = false;
   2791   for (OverrideSearch::iterator
   2792          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   2793     ObjCMethodDecl *overridden = *i;
   2794 
   2795     if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   2796         CurrentClass != overridden->getClassInterface() ||
   2797         overridden->isOverriding())
   2798       hasOverriddenMethodsInBaseOrProtocol = true;
   2799 
   2800     // Propagate down the 'related result type' bit from overridden methods.
   2801     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   2802       ObjCMethod->SetRelatedResultType();
   2803 
   2804     // Then merge the declarations.
   2805     mergeObjCMethodDecls(ObjCMethod, overridden);
   2806 
   2807     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   2808       continue; // Conflicting properties are detected elsewhere.
   2809 
   2810     // Check for overriding methods
   2811     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   2812         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   2813       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   2814               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   2815 
   2816     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   2817         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   2818         !overridden->isImplicit() /* not meant for properties */) {
   2819       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   2820                                           E = ObjCMethod->param_end();
   2821       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   2822                                      PrevE = overridden->param_end();
   2823       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   2824         assert(PrevI != overridden->param_end() && "Param mismatch");
   2825         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   2826         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   2827         // If type of argument of method in this class does not match its
   2828         // respective argument type in the super class method, issue warning;
   2829         if (!Context.typesAreCompatible(T1, T2)) {
   2830           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   2831             << T1 << T2;
   2832           Diag(overridden->getLocation(), diag::note_previous_declaration);
   2833           break;
   2834         }
   2835       }
   2836     }
   2837   }
   2838 
   2839   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   2840 }
   2841 
   2842 Decl *Sema::ActOnMethodDeclaration(
   2843     Scope *S,
   2844     SourceLocation MethodLoc, SourceLocation EndLoc,
   2845     tok::TokenKind MethodType,
   2846     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   2847     ArrayRef<SourceLocation> SelectorLocs,
   2848     Selector Sel,
   2849     // optional arguments. The number of types/arguments is obtained
   2850     // from the Sel.getNumArgs().
   2851     ObjCArgInfo *ArgInfo,
   2852     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   2853     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   2854     bool isVariadic, bool MethodDefinition) {
   2855   // Make sure we can establish a context for the method.
   2856   if (!CurContext->isObjCContainer()) {
   2857     Diag(MethodLoc, diag::error_missing_method_context);
   2858     return 0;
   2859   }
   2860   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2861   Decl *ClassDecl = cast<Decl>(OCD);
   2862   QualType resultDeclType;
   2863 
   2864   bool HasRelatedResultType = false;
   2865   TypeSourceInfo *ResultTInfo = 0;
   2866   if (ReturnType) {
   2867     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   2868 
   2869     // Methods cannot return interface types. All ObjC objects are
   2870     // passed by reference.
   2871     if (resultDeclType->isObjCObjectType()) {
   2872       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2873         << 0 << resultDeclType;
   2874       return 0;
   2875     }
   2876 
   2877     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   2878   } else { // get the type for "id".
   2879     resultDeclType = Context.getObjCIdType();
   2880     Diag(MethodLoc, diag::warn_missing_method_return_type)
   2881       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   2882   }
   2883 
   2884   ObjCMethodDecl* ObjCMethod =
   2885     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
   2886                            resultDeclType,
   2887                            ResultTInfo,
   2888                            CurContext,
   2889                            MethodType == tok::minus, isVariadic,
   2890                            /*isPropertyAccessor=*/false,
   2891                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   2892                            MethodDeclKind == tok::objc_optional
   2893                              ? ObjCMethodDecl::Optional
   2894                              : ObjCMethodDecl::Required,
   2895                            HasRelatedResultType);
   2896 
   2897   SmallVector<ParmVarDecl*, 16> Params;
   2898 
   2899   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   2900     QualType ArgType;
   2901     TypeSourceInfo *DI;
   2902 
   2903     if (ArgInfo[i].Type == 0) {
   2904       ArgType = Context.getObjCIdType();
   2905       DI = 0;
   2906     } else {
   2907       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   2908     }
   2909 
   2910     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   2911                    LookupOrdinaryName, ForRedeclaration);
   2912     LookupName(R, S);
   2913     if (R.isSingleResult()) {
   2914       NamedDecl *PrevDecl = R.getFoundDecl();
   2915       if (S->isDeclScope(PrevDecl)) {
   2916         Diag(ArgInfo[i].NameLoc,
   2917              (MethodDefinition ? diag::warn_method_param_redefinition
   2918                                : diag::warn_method_param_declaration))
   2919           << ArgInfo[i].Name;
   2920         Diag(PrevDecl->getLocation(),
   2921              diag::note_previous_declaration);
   2922       }
   2923     }
   2924 
   2925     SourceLocation StartLoc = DI
   2926       ? DI->getTypeLoc().getBeginLoc()
   2927       : ArgInfo[i].NameLoc;
   2928 
   2929     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   2930                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   2931                                         ArgType, DI, SC_None, SC_None);
   2932 
   2933     Param->setObjCMethodScopeInfo(i);
   2934 
   2935     Param->setObjCDeclQualifier(
   2936       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   2937 
   2938     // Apply the attributes to the parameter.
   2939     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   2940 
   2941     if (Param->hasAttr<BlocksAttr>()) {
   2942       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   2943       Param->setInvalidDecl();
   2944     }
   2945     S->AddDecl(Param);
   2946     IdResolver.AddDecl(Param);
   2947 
   2948     Params.push_back(Param);
   2949   }
   2950 
   2951   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   2952     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   2953     QualType ArgType = Param->getType();
   2954     if (ArgType.isNull())
   2955       ArgType = Context.getObjCIdType();
   2956     else
   2957       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2958       ArgType = Context.getAdjustedParameterType(ArgType);
   2959     if (ArgType->isObjCObjectType()) {
   2960       Diag(Param->getLocation(),
   2961            diag::err_object_cannot_be_passed_returned_by_value)
   2962       << 1 << ArgType;
   2963       Param->setInvalidDecl();
   2964     }
   2965     Param->setDeclContext(ObjCMethod);
   2966 
   2967     Params.push_back(Param);
   2968   }
   2969 
   2970   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   2971   ObjCMethod->setObjCDeclQualifier(
   2972     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   2973 
   2974   if (AttrList)
   2975     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   2976 
   2977   // Add the method now.
   2978   const ObjCMethodDecl *PrevMethod = 0;
   2979   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   2980     if (MethodType == tok::minus) {
   2981       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   2982       ImpDecl->addInstanceMethod(ObjCMethod);
   2983     } else {
   2984       PrevMethod = ImpDecl->getClassMethod(Sel);
   2985       ImpDecl->addClassMethod(ObjCMethod);
   2986     }
   2987 
   2988     ObjCMethodDecl *IMD = 0;
   2989     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
   2990       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   2991                                 ObjCMethod->isInstanceMethod());
   2992     if (ObjCMethod->hasAttrs() &&
   2993         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
   2994       SourceLocation MethodLoc = IMD->getLocation();
   2995       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
   2996         Diag(EndLoc, diag::warn_attribute_method_def);
   2997         Diag(MethodLoc, diag::note_method_declared_at)
   2998           << ObjCMethod->getDeclName();
   2999       }
   3000     }
   3001   } else {
   3002     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   3003   }
   3004 
   3005   if (PrevMethod) {
   3006     // You can never have two method definitions with the same name.
   3007     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   3008       << ObjCMethod->getDeclName();
   3009     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3010   }
   3011 
   3012   // If this Objective-C method does not have a related result type, but we
   3013   // are allowed to infer related result types, try to do so based on the
   3014   // method family.
   3015   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   3016   if (!CurrentClass) {
   3017     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   3018       CurrentClass = Cat->getClassInterface();
   3019     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   3020       CurrentClass = Impl->getClassInterface();
   3021     else if (ObjCCategoryImplDecl *CatImpl
   3022                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   3023       CurrentClass = CatImpl->getClassInterface();
   3024   }
   3025 
   3026   ResultTypeCompatibilityKind RTC
   3027     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   3028 
   3029   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   3030 
   3031   bool ARCError = false;
   3032   if (getLangOpts().ObjCAutoRefCount)
   3033     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
   3034 
   3035   // Infer the related result type when possible.
   3036   if (!ARCError && RTC == Sema::RTC_Compatible &&
   3037       !ObjCMethod->hasRelatedResultType() &&
   3038       LangOpts.ObjCInferRelatedResultType) {
   3039     bool InferRelatedResultType = false;
   3040     switch (ObjCMethod->getMethodFamily()) {
   3041     case OMF_None:
   3042     case OMF_copy:
   3043     case OMF_dealloc:
   3044     case OMF_finalize:
   3045     case OMF_mutableCopy:
   3046     case OMF_release:
   3047     case OMF_retainCount:
   3048     case OMF_performSelector:
   3049       break;
   3050 
   3051     case OMF_alloc:
   3052     case OMF_new:
   3053       InferRelatedResultType = ObjCMethod->isClassMethod();
   3054       break;
   3055 
   3056     case OMF_init:
   3057     case OMF_autorelease:
   3058     case OMF_retain:
   3059     case OMF_self:
   3060       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   3061       break;
   3062     }
   3063 
   3064     if (InferRelatedResultType)
   3065       ObjCMethod->SetRelatedResultType();
   3066   }
   3067 
   3068   ActOnDocumentableDecl(ObjCMethod);
   3069 
   3070   return ObjCMethod;
   3071 }
   3072 
   3073 bool Sema::CheckObjCDeclScope(Decl *D) {
   3074   // Following is also an error. But it is caused by a missing @end
   3075   // and diagnostic is issued elsewhere.
   3076   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   3077     return false;
   3078 
   3079   // If we switched context to translation unit while we are still lexically in
   3080   // an objc container, it means the parser missed emitting an error.
   3081   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   3082     return false;
   3083 
   3084   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   3085   D->setInvalidDecl();
   3086 
   3087   return true;
   3088 }
   3089 
   3090 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   3091 /// instance variables of ClassName into Decls.
   3092 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   3093                      IdentifierInfo *ClassName,
   3094                      SmallVectorImpl<Decl*> &Decls) {
   3095   // Check that ClassName is a valid class
   3096   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   3097   if (!Class) {
   3098     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   3099     return;
   3100   }
   3101   if (LangOpts.ObjCRuntime.isNonFragile()) {
   3102     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   3103     return;
   3104   }
   3105 
   3106   // Collect the instance variables
   3107   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   3108   Context.DeepCollectObjCIvars(Class, true, Ivars);
   3109   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   3110   for (unsigned i = 0; i < Ivars.size(); i++) {
   3111     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   3112     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   3113     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   3114                                            /*FIXME: StartL=*/ID->getLocation(),
   3115                                            ID->getLocation(),
   3116                                            ID->getIdentifier(), ID->getType(),
   3117                                            ID->getBitWidth());
   3118     Decls.push_back(FD);
   3119   }
   3120 
   3121   // Introduce all of these fields into the appropriate scope.
   3122   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   3123        D != Decls.end(); ++D) {
   3124     FieldDecl *FD = cast<FieldDecl>(*D);
   3125     if (getLangOpts().CPlusPlus)
   3126       PushOnScopeChains(cast<FieldDecl>(FD), S);
   3127     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   3128       Record->addDecl(FD);
   3129   }
   3130 }
   3131 
   3132 /// \brief Build a type-check a new Objective-C exception variable declaration.
   3133 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   3134                                       SourceLocation StartLoc,
   3135                                       SourceLocation IdLoc,
   3136                                       IdentifierInfo *Id,
   3137                                       bool Invalid) {
   3138   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   3139   // duration shall not be qualified by an address-space qualifier."
   3140   // Since all parameters have automatic store duration, they can not have
   3141   // an address space.
   3142   if (T.getAddressSpace() != 0) {
   3143     Diag(IdLoc, diag::err_arg_with_address_space);
   3144     Invalid = true;
   3145   }
   3146 
   3147   // An @catch parameter must be an unqualified object pointer type;
   3148   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   3149   if (Invalid) {
   3150     // Don't do any further checking.
   3151   } else if (T->isDependentType()) {
   3152     // Okay: we don't know what this type will instantiate to.
   3153   } else if (!T->isObjCObjectPointerType()) {
   3154     Invalid = true;
   3155     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   3156   } else if (T->isObjCQualifiedIdType()) {
   3157     Invalid = true;
   3158     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   3159   }
   3160 
   3161   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   3162                                  T, TInfo, SC_None, SC_None);
   3163   New->setExceptionVariable(true);
   3164 
   3165   // In ARC, infer 'retaining' for variables of retainable type.
   3166   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   3167     Invalid = true;
   3168 
   3169   if (Invalid)
   3170     New->setInvalidDecl();
   3171   return New;
   3172 }
   3173 
   3174 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   3175   const DeclSpec &DS = D.getDeclSpec();
   3176 
   3177   // We allow the "register" storage class on exception variables because
   3178   // GCC did, but we drop it completely. Any other storage class is an error.
   3179   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   3180     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   3181       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   3182   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   3183     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   3184       << DS.getStorageClassSpec();
   3185   }
   3186   if (D.getDeclSpec().isThreadSpecified())
   3187     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3188   D.getMutableDeclSpec().ClearStorageClassSpecs();
   3189 
   3190   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   3191 
   3192   // Check that there are no default arguments inside the type of this
   3193   // exception object (C++ only).
   3194   if (getLangOpts().CPlusPlus)
   3195     CheckExtraCXXDefaultArguments(D);
   3196 
   3197   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3198   QualType ExceptionType = TInfo->getType();
   3199 
   3200   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   3201                                         D.getSourceRange().getBegin(),
   3202                                         D.getIdentifierLoc(),
   3203                                         D.getIdentifier(),
   3204                                         D.isInvalidType());
   3205 
   3206   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   3207   if (D.getCXXScopeSpec().isSet()) {
   3208     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   3209       << D.getCXXScopeSpec().getRange();
   3210     New->setInvalidDecl();
   3211   }
   3212 
   3213   // Add the parameter declaration into this scope.
   3214   S->AddDecl(New);
   3215   if (D.getIdentifier())
   3216     IdResolver.AddDecl(New);
   3217 
   3218   ProcessDeclAttributes(S, New, D);
   3219 
   3220   if (New->hasAttr<BlocksAttr>())
   3221     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   3222   return New;
   3223 }
   3224 
   3225 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   3226 /// initialization.
   3227 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   3228                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   3229   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   3230        Iv= Iv->getNextIvar()) {
   3231     QualType QT = Context.getBaseElementType(Iv->getType());
   3232     if (QT->isRecordType())
   3233       Ivars.push_back(Iv);
   3234   }
   3235 }
   3236 
   3237 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   3238   // Load referenced selectors from the external source.
   3239   if (ExternalSource) {
   3240     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   3241     ExternalSource->ReadReferencedSelectors(Sels);
   3242     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   3243       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   3244   }
   3245 
   3246   // Warning will be issued only when selector table is
   3247   // generated (which means there is at lease one implementation
   3248   // in the TU). This is to match gcc's behavior.
   3249   if (ReferencedSelectors.empty() ||
   3250       !Context.AnyObjCImplementation())
   3251     return;
   3252   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   3253         ReferencedSelectors.begin(),
   3254        E = ReferencedSelectors.end(); S != E; ++S) {
   3255     Selector Sel = (*S).first;
   3256     if (!LookupImplementedMethodInGlobalPool(Sel))
   3257       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   3258   }
   3259   return;
   3260 }
   3261