1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <title>Checker Developer Manual</title> 6 <link type="text/css" rel="stylesheet" href="menu.css"> 7 <link type="text/css" rel="stylesheet" href="content.css"> 8 <script type="text/javascript" src="scripts/menu.js"></script> 9 </head> 10 <body> 11 12 <div id="page"> 13 <!--#include virtual="menu.html.incl"--> 14 15 <div id="content"> 16 17 <h1 style="color:red">This Page Is Under Construction</h1> 18 19 <h1>Checker Developer Manual</h1> 20 21 <p>The static analyzer engine performs symbolic execution of the program and 22 relies on a set of checkers to implement the logic for detecting and 23 constructing bug reports. This page provides hints and guidelines for anyone 24 who is interested in implementing their own checker. The static analyzer is a 25 part of the Clang project, so consult <a href="http://clang.llvm.org/hacking.html">Hacking on Clang</a> 26 and <a href="http://llvm.org/docs/ProgrammersManual.html">LLVM Programmer's Manual</a> 27 for general developer guidelines and information. </p> 28 29 <ul> 30 <li><a href="#start">Getting Started</a></li> 31 <li><a href="#analyzer">Analyzer Overview</a></li> 32 <li><a href="#idea">Idea for a Checker</a></li> 33 <li><a href="#registration">Checker Registration</a></li> 34 <li><a href="#skeleton">Checker Skeleton</a></li> 35 <li><a href="#node">Exploded Node</a></li> 36 <li><a href="#bugs">Bug Reports</a></li> 37 <li><a href="#ast">AST Visitors</a></li> 38 <li><a href="#testing">Testing</a></li> 39 <li><a href="#commands">Useful Commands</a></li> 40 </ul> 41 42 <h2 id=start>Getting Started</h2> 43 <ul> 44 <li>To check out the source code and build the project, follow steps 1-4 of 45 the <a href="http://clang.llvm.org/get_started.html">Clang Getting Started</a> 46 page.</li> 47 48 <li>The analyzer source code is located under the Clang source tree: 49 <br><tt> 50 $ <b>cd llvm/tools/clang</b> 51 </tt> 52 <br>See: <tt>include/clang/StaticAnalyzer</tt>, <tt>lib/StaticAnalyzer</tt>, 53 <tt>test/Analysis</tt>.</li> 54 55 <li>The analyzer regression tests can be executed from the Clang's build 56 directory: 57 <br><tt> 58 $ <b>cd ../../../; cd build/tools/clang; TESTDIRS=Analysis make test</b> 59 </tt></li> 60 61 <li>Analyze a file with the specified checker: 62 <br><tt> 63 $ <b>clang -cc1 -analyze -analyzer-checker=core.DivideZero test.c</b> 64 </tt></li> 65 66 <li>List the available checkers: 67 <br><tt> 68 $ <b>clang -cc1 -analyzer-checker-help</b> 69 </tt></li> 70 71 <li>See the analyzer help for different output formats, fine tuning, and 72 debug options: 73 <br><tt> 74 $ <b>clang -cc1 -help | grep "analyzer"</b> 75 </tt></li> 76 77 </ul> 78 79 <h2 id=analyzer>Static Analyzer Overview</h2> 80 The analyzer core performs symbolic execution of the given program. All the 81 input values are represented with symbolic values; further, the engine deduces 82 the values of all the expressions in the program based on the input symbols 83 and the path. The execution is path sensitive and every possible path through 84 the program is explored. The explored execution traces are represented with 85 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedGraph.html">ExplodedGraph</a> object. 86 Each node of the graph is 87 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedNode.html">ExplodedNode</a>, 88 which consists of a <tt>ProgramPoint</tt> and a <tt>ProgramState</tt>. 89 <p> 90 <a href="http://clang.llvm.org/doxygen/classclang_1_1ProgramPoint.html">ProgramPoint</a> 91 represents the corresponding location in the program (or the CFG graph). 92 <tt>ProgramPoint</tt> is also used to record additional information on 93 when/how the state was added. For example, <tt>PostPurgeDeadSymbolsKind</tt> 94 kind means that the state is the result of purging dead symbols - the 95 analyzer's equivalent of garbage collection. 96 <p> 97 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ProgramState.html">ProgramState</a> 98 represents abstract state of the program. It consists of: 99 <ul> 100 <li><tt>Environment</tt> - a mapping from source code expressions to symbolic 101 values 102 <li><tt>Store</tt> - a mapping from memory locations to symbolic values 103 <li><tt>GenericDataMap</tt> - constraints on symbolic values 104 </ul> 105 106 <h3>Interaction with Checkers</h3> 107 Checkers are not merely passive receivers of the analyzer core changes - they 108 actively participate in the <tt>ProgramState</tt> construction through the 109 <tt>GenericDataMap</tt> which can be used to store the checker-defined part 110 of the state. Each time the analyzer engine explores a new statement, it 111 notifies each checker registered to listen for that statement, giving it an 112 opportunity to either report a bug or modify the state. (As a rule of thumb, 113 the checker itself should be stateless.) The checkers are called one after another 114 in the predefined order; thus, calling all the checkers adds a chain to the 115 <tt>ExplodedGraph</tt>. 116 117 <h3>Representing Values</h3> 118 During symbolic execution, <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SVal.html">SVal</a> 119 objects are used to represent the semantic evaluation of expressions. 120 They can represent things like concrete 121 integers, symbolic values, or memory locations (which are memory regions). 122 They are a discriminated union of "values", symbolic and otherwise. 123 If a value isn't symbolic, usually that means there is no symbolic 124 information to track. For example, if the value was an integer, such as 125 <tt>42</tt>, it would be a <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1nonloc_1_1ConcreteInt.html">ConcreteInt</a>, 126 and the checker doesn't usually need to track any state with the concrete 127 number. In some cases, <tt>SVal</tt> is not a symbol, but it really should be 128 a symbolic value. This happens when the analyzer cannot reason about something 129 (yet). An example is floating point numbers. In such cases, the 130 <tt>SVal</tt> will evaluate to <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1UnknownVal.html">UnknownVal<a>. 131 This represents a case that is outside the realm of the analyzer's reasoning 132 capabilities. <tt>SVals</tt> are value objects and their values can be viewed 133 using the <tt>.dump()</tt> method. Often they wrap persistent objects such as 134 symbols or regions. 135 <p> 136 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymExpr.html">SymExpr</a> (symbol) 137 is meant to represent abstract, but named, symbolic value. Symbols represent 138 an actual (immutable) value. We might not know what its specific value is, but 139 we can associate constraints with that value as we analyze a path. For 140 example, we might record that the value of a symbol is greater than 141 <tt>0</tt>, etc. 142 <p> 143 144 <p> 145 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1MemRegion.html">MemRegion</a> is similar to a symbol. 146 It is used to provide a lexicon of how to describe abstract memory. Regions can 147 layer on top of other regions, providing a layered approach to representing memory. 148 For example, a struct object on the stack might be represented by a <tt>VarRegion</tt>, 149 but a <tt>FieldRegion</tt> which is a subregion of the <tt>VarRegion</tt> could 150 be used to represent the memory associated with a specific field of that object. 151 So how do we represent symbolic memory regions? That's what 152 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymbolicRegion.html">SymbolicRegion</a> 153 is for. It is a <tt>MemRegion</tt> that has an associated symbol. Since the 154 symbol is unique and has a unique name; that symbol names the region. 155 156 <P> 157 Let's see how the analyzer processes the expressions in the following example: 158 <p> 159 <pre class="code_example"> 160 int foo(int x) { 161 int y = x * 2; 162 int z = x; 163 ... 164 } 165 </pre> 166 <p> 167 Let's look at how <tt>x*2</tt> gets evaluated. When <tt>x</tt> is evaluated, 168 we first construct an <tt>SVal</tt> that represents the lvalue of <tt>x</tt>, in 169 this case it is an <tt>SVal</tt> that references the <tt>MemRegion</tt> for <tt>x</tt>. 170 Afterwards, when we do the lvalue-to-rvalue conversion, we get a new <tt>SVal</tt>, 171 which references the value <b>currently bound</b> to <tt>x</tt>. That value is 172 symbolic; it's whatever <tt>x</tt> was bound to at the start of the function. 173 Let's call that symbol <tt>$0</tt>. Similarly, we evaluate the expression for <tt>2</tt>, 174 and get an <tt>SVal</tt> that references the concrete number <tt>2</tt>. When 175 we evaluate <tt>x*2</tt>, we take the two <tt>SVals</tt> of the subexpressions, 176 and create a new <tt>SVal</tt> that represents their multiplication (which in 177 this case is a new symbolic expression, which we might call <tt>$1</tt>). When we 178 evaluate the assignment to <tt>y</tt>, we again compute its lvalue (a <tt>MemRegion</tt>), 179 and then bind the <tt>SVal</tt> for the RHS (which references the symbolic value <tt>$1</tt>) 180 to the <tt>MemRegion</tt> in the symbolic store. 181 <br> 182 The second line is similar. When we evaluate <tt>x</tt> again, we do the same 183 dance, and create an <tt>SVal</tt> that references the symbol <tt>$0</tt>. Note, two <tt>SVals</tt> 184 might reference the same underlying values. 185 186 <p> 187 To summarize, MemRegions are unique names for blocks of memory. Symbols are 188 unique names for abstract symbolic values. Some MemRegions represents abstract 189 symbolic chunks of memory, and thus are also based on symbols. SVals are just 190 references to values, and can reference either MemRegions, Symbols, or concrete 191 values (e.g., the number 1). 192 193 <!-- 194 TODO: Add a picture. 195 <br> 196 Symbols<br> 197 FunctionalObjects are used throughout. 198 --> 199 <h2 id=idea>Idea for a Checker</h2> 200 Here are several questions which you should consider when evaluating your 201 checker idea: 202 <ul> 203 <li>Can the check be effectively implemented without path-sensitive 204 analysis? See <a href="#ast">AST Visitors</a>.</li> 205 206 <li>How high the false positive rate is going to be? Looking at the occurrences 207 of the issue you want to write a checker for in the existing code bases might 208 give you some ideas. </li> 209 210 <li>How the current limitations of the analysis will effect the false alarm 211 rate? Currently, the analyzer only reasons about one procedure at a time (no 212 inter-procedural analysis). Also, it uses a simple range tracking based 213 solver to model symbolic execution.</li> 214 215 <li>Consult the <a 216 href="http://llvm.org/bugs/buglist.cgi?query_format=advanced&bug_status=NEW&bug_status=REOPENED&version=trunk&component=Static%20Analyzer&product=clang">Bugzilla database</a> 217 to get some ideas for new checkers and consider starting with improving/fixing 218 bugs in the existing checkers.</li> 219 </ul> 220 221 <h2 id=registration>Checker Registration</h2> 222 All checker implementation files are located in <tt>clang/lib/StaticAnalyzer/Checkers</tt> 223 folder. Follow the steps below to register a new checker with the analyzer. 224 <ol> 225 <li>Create a new checker implementation file, for example <tt>./lib/StaticAnalyzer/Checkers/NewChecker.cpp</tt> 226 <pre class="code_example"> 227 using namespace clang; 228 using namespace ento; 229 230 namespace { 231 class NewChecker: public Checker< check::PreStmt<CallExpr> > { 232 public: 233 void checkPreStmt(const CallExpr *CE, CheckerContext &Ctx) const {} 234 } 235 } 236 void ento::registerNewChecker(CheckerManager &mgr) { 237 mgr.registerChecker<NewChecker>(); 238 } 239 </pre> 240 241 <li>Pick the package name for your checker and add the registration code to 242 <tt>./lib/StaticAnalyzer/Checkers/Checkers.td</tt>. Note, all checkers should 243 first be developed as experimental. Suppose our new checker performs security 244 related checks, then we should add the following lines under 245 <tt>SecurityExperimental</tt> package: 246 <pre class="code_example"> 247 let ParentPackage = SecurityExperimental in { 248 ... 249 def NewChecker : Checker<"NewChecker">, 250 HelpText<"This text should give a short description of the checks performed.">, 251 DescFile<"NewChecker.cpp">; 252 ... 253 } // end "security.experimental" 254 </pre> 255 256 <li>Make the source code file visible to CMake by adding it to 257 <tt>./lib/StaticAnalyzer/Checkers/CMakeLists.txt</tt>. 258 259 <li>Compile and see your checker in the list of available checkers by running:<br> 260 <tt><b>$clang -cc1 -analyzer-checker-help</b></tt> 261 </ol> 262 263 264 <h2 id=skeleton>Checker Skeleton</h2> 265 There are two main decisions you need to make: 266 <ul> 267 <li> Which events the checker should be tracking. 268 See <a href="http://clang.llvm.org/doxygen/classento_1_1CheckerDocumentation.html">CheckerDocumentation</a> 269 for the list of available checker callbacks.</li> 270 <li> What data you want to store as part of the checker-specific program 271 state. Try to minimize the checker state as much as possible. </li> 272 </ul> 273 274 <h2 id=bugs>Bug Reports</h2> 275 276 <h2 id=ast>AST Visitors</h2> 277 Some checks might not require path-sensitivity to be effective. Simple AST walk 278 might be sufficient. If that is the case, consider implementing a Clang 279 compiler warning. On the other hand, a check might not be acceptable as a compiler 280 warning; for example, because of a relatively high false positive rate. In this 281 situation, AST callbacks <tt><b>checkASTDecl</b></tt> and 282 <tt><b>checkASTCodeBody</b></tt> are your best friends. 283 284 <h2 id=testing>Testing</h2> 285 Every patch should be well tested with Clang regression tests. The checker tests 286 live in <tt>clang/test/Analysis</tt> folder. To run all of the analyzer tests, 287 execute the following from the <tt>clang</tt> build directory: 288 <pre class="code"> 289 $ <b>TESTDIRS=Analysis make test</b> 290 </pre> 291 292 <h2 id=commands>Useful Commands/Debugging Hints</h2> 293 <ul> 294 <li> 295 While investigating a checker-related issue, instruct the analyzer to only 296 execute a single checker: 297 <br><tt> 298 $ <b>clang -cc1 -analyze -analyzer-checker=osx.KeychainAPI test.c</b> 299 </tt> 300 </li> 301 <li> 302 To dump AST: 303 <br><tt> 304 $ <b>clang -cc1 -ast-dump test.c</b> 305 </tt> 306 </li> 307 <li> 308 To view/dump CFG use <tt>debug.ViewCFG</tt> or <tt>debug.DumpCFG</tt> checkers: 309 <br><tt> 310 $ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewCFG test.c</b> 311 </tt> 312 </li> 313 <li> 314 To see all available debug checkers: 315 <br><tt> 316 $ <b>clang -cc1 -analyzer-checker-help | grep "debug"</b> 317 </tt> 318 </li> 319 <li> 320 To see which function is failing while processing a large file use 321 <tt>-analyzer-display-progress</tt> option. 322 </li> 323 <li> 324 While debugging execute <tt>clang -cc1 -analyze -analyzer-checker=core</tt> 325 instead of <tt>clang --analyze</tt>, as the later would call the compiler 326 in a separate process. 327 </li> 328 <li> 329 To view <tt>ExplodedGraph</tt> (the state graph explored by the analyzer) while 330 debugging, goto a frame that has <tt>clang::ento::ExprEngine</tt> object and 331 execute: 332 <br><tt> 333 (gdb) <b>p ViewGraph(0)</b> 334 </tt> 335 </li> 336 <li> 337 To see the <tt>ProgramState</tt> while debugging use the following command. 338 <br><tt> 339 (gdb) <b>p State->dump()</b> 340 </tt> 341 </li> 342 <li> 343 To see <tt>clang::Expr</tt> while debugging use the following command. If you 344 pass in a SourceManager object, it will also dump the corresponding line in the 345 source code. 346 <br><tt> 347 (gdb) <b>p E->dump()</b> 348 </tt> 349 </li> 350 <li> 351 To dump AST of a method that the current <tt>ExplodedNode</tt> belongs to: 352 <br><tt> 353 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump()</b> 354 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump(getContext().getSourceManager())</b> 355 </tt> 356 </li> 357 </ul> 358 359 </div> 360 </div> 361 </body> 362 </html> 363