Home | History | Annotate | Download | only in e2fsck
      1 /*
      2  * linux/fs/revoke.c
      3  *
      4  * Written by Stephen C. Tweedie <sct (at) redhat.com>, 2000
      5  *
      6  * Copyright 2000 Red Hat corp --- All Rights Reserved
      7  *
      8  * This file is part of the Linux kernel and is made available under
      9  * the terms of the GNU General Public License, version 2, or at your
     10  * option, any later version, incorporated herein by reference.
     11  *
     12  * Journal revoke routines for the generic filesystem journaling code;
     13  * part of the ext2fs journaling system.
     14  *
     15  * Revoke is the mechanism used to prevent old log records for deleted
     16  * metadata from being replayed on top of newer data using the same
     17  * blocks.  The revoke mechanism is used in two separate places:
     18  *
     19  * + Commit: during commit we write the entire list of the current
     20  *   transaction's revoked blocks to the journal
     21  *
     22  * + Recovery: during recovery we record the transaction ID of all
     23  *   revoked blocks.  If there are multiple revoke records in the log
     24  *   for a single block, only the last one counts, and if there is a log
     25  *   entry for a block beyond the last revoke, then that log entry still
     26  *   gets replayed.
     27  *
     28  * We can get interactions between revokes and new log data within a
     29  * single transaction:
     30  *
     31  * Block is revoked and then journaled:
     32  *   The desired end result is the journaling of the new block, so we
     33  *   cancel the revoke before the transaction commits.
     34  *
     35  * Block is journaled and then revoked:
     36  *   The revoke must take precedence over the write of the block, so we
     37  *   need either to cancel the journal entry or to write the revoke
     38  *   later in the log than the log block.  In this case, we choose the
     39  *   latter: journaling a block cancels any revoke record for that block
     40  *   in the current transaction, so any revoke for that block in the
     41  *   transaction must have happened after the block was journaled and so
     42  *   the revoke must take precedence.
     43  *
     44  * Block is revoked and then written as data:
     45  *   The data write is allowed to succeed, but the revoke is _not_
     46  *   cancelled.  We still need to prevent old log records from
     47  *   overwriting the new data.  We don't even need to clear the revoke
     48  *   bit here.
     49  *
     50  * Revoke information on buffers is a tri-state value:
     51  *
     52  * RevokeValid clear:	no cached revoke status, need to look it up
     53  * RevokeValid set, Revoked clear:
     54  *			buffer has not been revoked, and cancel_revoke
     55  *			need do nothing.
     56  * RevokeValid set, Revoked set:
     57  *			buffer has been revoked.
     58  */
     59 
     60 #ifndef __KERNEL__
     61 #include "jfs_user.h"
     62 #else
     63 #include <linux/sched.h>
     64 #include <linux/fs.h>
     65 #include <linux/jbd.h>
     66 #include <linux/errno.h>
     67 #include <linux/slab.h>
     68 #include <linux/locks.h>
     69 #include <linux/list.h>
     70 #include <linux/smp_lock.h>
     71 #include <linux/init.h>
     72 #endif
     73 
     74 static lkmem_cache_t *revoke_record_cache;
     75 static lkmem_cache_t *revoke_table_cache;
     76 
     77 /* Each revoke record represents one single revoked block.  During
     78    journal replay, this involves recording the transaction ID of the
     79    last transaction to revoke this block. */
     80 
     81 struct jbd_revoke_record_s
     82 {
     83 	struct list_head  hash;
     84 	tid_t		  sequence;	/* Used for recovery only */
     85 	unsigned long	  blocknr;
     86 };
     87 
     88 
     89 /* The revoke table is just a simple hash table of revoke records. */
     90 struct jbd_revoke_table_s
     91 {
     92 	/* It is conceivable that we might want a larger hash table
     93 	 * for recovery.  Must be a power of two. */
     94 	int		  hash_size;
     95 	int		  hash_shift;
     96 	struct list_head *hash_table;
     97 };
     98 
     99 
    100 #ifdef __KERNEL__
    101 static void write_one_revoke_record(journal_t *, transaction_t *,
    102 				    struct journal_head **, int *,
    103 				    struct jbd_revoke_record_s *);
    104 static void flush_descriptor(journal_t *, struct journal_head *, int);
    105 #endif
    106 
    107 /* Utility functions to maintain the revoke table */
    108 
    109 /* Borrowed from buffer.c: this is a tried and tested block hash function */
    110 static inline int hash(journal_t *journal, unsigned long block)
    111 {
    112 	struct jbd_revoke_table_s *table = journal->j_revoke;
    113 	int hash_shift = table->hash_shift;
    114 
    115 	return ((block << (hash_shift - 6)) ^
    116 		(block >> 13) ^
    117 		(block << (hash_shift - 12))) & (table->hash_size - 1);
    118 }
    119 
    120 static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
    121 			      tid_t seq)
    122 {
    123 	struct list_head *hash_list;
    124 	struct jbd_revoke_record_s *record;
    125 
    126 #ifdef __KERNEL__
    127 repeat:
    128 #endif
    129 	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
    130 	if (!record)
    131 		goto oom;
    132 
    133 	record->sequence = seq;
    134 	record->blocknr = blocknr;
    135 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    136 	list_add(&record->hash, hash_list);
    137 	return 0;
    138 
    139 oom:
    140 #ifdef __KERNEL__
    141 	if (!journal_oom_retry)
    142 		return -ENOMEM;
    143 	jbd_debug(1, "ENOMEM in " __FUNCTION__ ", retrying.\n");
    144 	current->policy |= SCHED_YIELD;
    145 	schedule();
    146 	goto repeat;
    147 #else
    148 	return -ENOMEM;
    149 #endif
    150 }
    151 
    152 /* Find a revoke record in the journal's hash table. */
    153 
    154 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
    155 						      unsigned long blocknr)
    156 {
    157 	struct list_head *hash_list;
    158 	struct jbd_revoke_record_s *record;
    159 
    160 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    161 
    162 	record = (struct jbd_revoke_record_s *) hash_list->next;
    163 	while (&(record->hash) != hash_list) {
    164 		if (record->blocknr == blocknr)
    165 			return record;
    166 		record = (struct jbd_revoke_record_s *) record->hash.next;
    167 	}
    168 	return NULL;
    169 }
    170 
    171 int __init journal_init_revoke_caches(void)
    172 {
    173 	revoke_record_cache = kmem_cache_create("revoke_record",
    174 					   sizeof(struct jbd_revoke_record_s),
    175 					   0, SLAB_HWCACHE_ALIGN, NULL, NULL);
    176 	if (revoke_record_cache == 0)
    177 		return -ENOMEM;
    178 
    179 	revoke_table_cache = kmem_cache_create("revoke_table",
    180 					   sizeof(struct jbd_revoke_table_s),
    181 					   0, 0, NULL, NULL);
    182 	if (revoke_table_cache == 0) {
    183 		kmem_cache_destroy(revoke_record_cache);
    184 		revoke_record_cache = NULL;
    185 		return -ENOMEM;
    186 	}
    187 	return 0;
    188 }
    189 
    190 void journal_destroy_revoke_caches(void)
    191 {
    192 	kmem_cache_destroy(revoke_record_cache);
    193 	revoke_record_cache = 0;
    194 	kmem_cache_destroy(revoke_table_cache);
    195 	revoke_table_cache = 0;
    196 }
    197 
    198 /* Initialise the revoke table for a given journal to a given size. */
    199 
    200 int journal_init_revoke(journal_t *journal, int hash_size)
    201 {
    202 	int shift, tmp;
    203 
    204 	J_ASSERT (journal->j_revoke == NULL);
    205 
    206 	journal->j_revoke = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
    207 	if (!journal->j_revoke)
    208 		return -ENOMEM;
    209 
    210 	/* Check that the hash_size is a power of two */
    211 	J_ASSERT ((hash_size & (hash_size-1)) == 0);
    212 
    213 	journal->j_revoke->hash_size = hash_size;
    214 
    215 	shift = 0;
    216 	tmp = hash_size;
    217 	while((tmp >>= 1UL) != 0UL)
    218 		shift++;
    219 	journal->j_revoke->hash_shift = shift;
    220 
    221 	journal->j_revoke->hash_table =
    222 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
    223 	if (!journal->j_revoke->hash_table) {
    224 		kmem_cache_free(revoke_table_cache, journal->j_revoke);
    225 		journal->j_revoke = NULL;
    226 		return -ENOMEM;
    227 	}
    228 
    229 	for (tmp = 0; tmp < hash_size; tmp++)
    230 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
    231 
    232 	return 0;
    233 }
    234 
    235 /* Destoy a journal's revoke table.  The table must already be empty! */
    236 
    237 void journal_destroy_revoke(journal_t *journal)
    238 {
    239 	struct jbd_revoke_table_s *table;
    240 	struct list_head *hash_list;
    241 	int i;
    242 
    243 	table = journal->j_revoke;
    244 	if (!table)
    245 		return;
    246 
    247 	for (i=0; i<table->hash_size; i++) {
    248 		hash_list = &table->hash_table[i];
    249 		J_ASSERT (list_empty(hash_list));
    250 	}
    251 
    252 	kfree(table->hash_table);
    253 	kmem_cache_free(revoke_table_cache, table);
    254 	journal->j_revoke = NULL;
    255 }
    256 
    257 
    258 #ifdef __KERNEL__
    259 
    260 /*
    261  * journal_revoke: revoke a given buffer_head from the journal.  This
    262  * prevents the block from being replayed during recovery if we take a
    263  * crash after this current transaction commits.  Any subsequent
    264  * metadata writes of the buffer in this transaction cancel the
    265  * revoke.
    266  *
    267  * Note that this call may block --- it is up to the caller to make
    268  * sure that there are no further calls to journal_write_metadata
    269  * before the revoke is complete.  In ext3, this implies calling the
    270  * revoke before clearing the block bitmap when we are deleting
    271  * metadata.
    272  *
    273  * Revoke performs a journal_forget on any buffer_head passed in as a
    274  * parameter, but does _not_ forget the buffer_head if the bh was only
    275  * found implicitly.
    276  *
    277  * bh_in may not be a journalled buffer - it may have come off
    278  * the hash tables without an attached journal_head.
    279  *
    280  * If bh_in is non-zero, journal_revoke() will decrement its b_count
    281  * by one.
    282  */
    283 
    284 int journal_revoke(handle_t *handle, unsigned long blocknr,
    285 		   struct buffer_head *bh_in)
    286 {
    287 	struct buffer_head *bh = NULL;
    288 	journal_t *journal;
    289 	kdev_t dev;
    290 	int err;
    291 
    292 	if (bh_in)
    293 		BUFFER_TRACE(bh_in, "enter");
    294 
    295 	journal = handle->h_transaction->t_journal;
    296 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
    297 		J_ASSERT (!"Cannot set revoke feature!");
    298 		return -EINVAL;
    299 	}
    300 
    301 	dev = journal->j_fs_dev;
    302 	bh = bh_in;
    303 
    304 	if (!bh) {
    305 		bh = get_hash_table(dev, blocknr, journal->j_blocksize);
    306 		if (bh)
    307 			BUFFER_TRACE(bh, "found on hash");
    308 	}
    309 #ifdef JBD_EXPENSIVE_CHECKING
    310 	else {
    311 		struct buffer_head *bh2;
    312 
    313 		/* If there is a different buffer_head lying around in
    314 		 * memory anywhere... */
    315 		bh2 = get_hash_table(dev, blocknr, journal->j_blocksize);
    316 		if (bh2) {
    317 			/* ... and it has RevokeValid status... */
    318 			if ((bh2 != bh) &&
    319 			    test_bit(BH_RevokeValid, &bh2->b_state))
    320 				/* ...then it better be revoked too,
    321 				 * since it's illegal to create a revoke
    322 				 * record against a buffer_head which is
    323 				 * not marked revoked --- that would
    324 				 * risk missing a subsequent revoke
    325 				 * cancel. */
    326 				J_ASSERT_BH(bh2, test_bit(BH_Revoked, &
    327 							  bh2->b_state));
    328 			__brelse(bh2);
    329 		}
    330 	}
    331 #endif
    332 
    333 	/* We really ought not ever to revoke twice in a row without
    334            first having the revoke cancelled: it's illegal to free a
    335            block twice without allocating it in between! */
    336 	if (bh) {
    337 		J_ASSERT_BH(bh, !test_bit(BH_Revoked, &bh->b_state));
    338 		set_bit(BH_Revoked, &bh->b_state);
    339 		set_bit(BH_RevokeValid, &bh->b_state);
    340 		if (bh_in) {
    341 			BUFFER_TRACE(bh_in, "call journal_forget");
    342 			journal_forget(handle, bh_in);
    343 		} else {
    344 			BUFFER_TRACE(bh, "call brelse");
    345 			__brelse(bh);
    346 		}
    347 	}
    348 
    349 	lock_journal(journal);
    350 	jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
    351 	err = insert_revoke_hash(journal, blocknr,
    352 				handle->h_transaction->t_tid);
    353 	unlock_journal(journal);
    354 	BUFFER_TRACE(bh_in, "exit");
    355 	return err;
    356 }
    357 
    358 /*
    359  * Cancel an outstanding revoke.  For use only internally by the
    360  * journaling code (called from journal_get_write_access).
    361  *
    362  * We trust the BH_Revoked bit on the buffer if the buffer is already
    363  * being journaled: if there is no revoke pending on the buffer, then we
    364  * don't do anything here.
    365  *
    366  * This would break if it were possible for a buffer to be revoked and
    367  * discarded, and then reallocated within the same transaction.  In such
    368  * a case we would have lost the revoked bit, but when we arrived here
    369  * the second time we would still have a pending revoke to cancel.  So,
    370  * do not trust the Revoked bit on buffers unless RevokeValid is also
    371  * set.
    372  *
    373  * The caller must have the journal locked.
    374  */
    375 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
    376 {
    377 	struct jbd_revoke_record_s *record;
    378 	journal_t *journal = handle->h_transaction->t_journal;
    379 	int need_cancel;
    380 	int did_revoke = 0;	/* akpm: debug */
    381 	struct buffer_head *bh = jh2bh(jh);
    382 
    383 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
    384 
    385 	/* Is the existing Revoke bit valid?  If so, we trust it, and
    386 	 * only perform the full cancel if the revoke bit is set.  If
    387 	 * not, we can't trust the revoke bit, and we need to do the
    388 	 * full search for a revoke record. */
    389 	if (test_and_set_bit(BH_RevokeValid, &bh->b_state))
    390 		need_cancel = (test_and_clear_bit(BH_Revoked, &bh->b_state));
    391 	else {
    392 		need_cancel = 1;
    393 		clear_bit(BH_Revoked, &bh->b_state);
    394 	}
    395 
    396 	if (need_cancel) {
    397 		record = find_revoke_record(journal, bh->b_blocknr);
    398 		if (record) {
    399 			jbd_debug(4, "cancelled existing revoke on "
    400 				  "blocknr %lu\n", bh->b_blocknr);
    401 			list_del(&record->hash);
    402 			kmem_cache_free(revoke_record_cache, record);
    403 			did_revoke = 1;
    404 		}
    405 	}
    406 
    407 #ifdef JBD_EXPENSIVE_CHECKING
    408 	/* There better not be one left behind by now! */
    409 	record = find_revoke_record(journal, bh->b_blocknr);
    410 	J_ASSERT_JH(jh, record == NULL);
    411 #endif
    412 
    413 	/* Finally, have we just cleared revoke on an unhashed
    414 	 * buffer_head?  If so, we'd better make sure we clear the
    415 	 * revoked status on any hashed alias too, otherwise the revoke
    416 	 * state machine will get very upset later on. */
    417 	if (need_cancel && !bh->b_pprev) {
    418 		struct buffer_head *bh2;
    419 		bh2 = get_hash_table(bh->b_dev, bh->b_blocknr, bh->b_size);
    420 		if (bh2) {
    421 			clear_bit(BH_Revoked, &bh2->b_state);
    422 			__brelse(bh2);
    423 		}
    424 	}
    425 
    426 	return did_revoke;
    427 }
    428 
    429 
    430 /*
    431  * Write revoke records to the journal for all entries in the current
    432  * revoke hash, deleting the entries as we go.
    433  *
    434  * Called with the journal lock held.
    435  */
    436 
    437 void journal_write_revoke_records(journal_t *journal,
    438 				  transaction_t *transaction)
    439 {
    440 	struct journal_head *descriptor;
    441 	struct jbd_revoke_record_s *record;
    442 	struct jbd_revoke_table_s *revoke;
    443 	struct list_head *hash_list;
    444 	int i, offset, count;
    445 
    446 	descriptor = NULL;
    447 	offset = 0;
    448 	count = 0;
    449 	revoke = journal->j_revoke;
    450 
    451 	for (i = 0; i < revoke->hash_size; i++) {
    452 		hash_list = &revoke->hash_table[i];
    453 
    454 		while (!list_empty(hash_list)) {
    455 			record = (struct jbd_revoke_record_s *)
    456 				hash_list->next;
    457 			write_one_revoke_record(journal, transaction,
    458 						&descriptor, &offset,
    459 						record);
    460 			count++;
    461 			list_del(&record->hash);
    462 			kmem_cache_free(revoke_record_cache, record);
    463 		}
    464 	}
    465 	if (descriptor)
    466 		flush_descriptor(journal, descriptor, offset);
    467 	jbd_debug(1, "Wrote %d revoke records\n", count);
    468 }
    469 
    470 /*
    471  * Write out one revoke record.  We need to create a new descriptor
    472  * block if the old one is full or if we have not already created one.
    473  */
    474 
    475 static void write_one_revoke_record(journal_t *journal,
    476 				    transaction_t *transaction,
    477 				    struct journal_head **descriptorp,
    478 				    int *offsetp,
    479 				    struct jbd_revoke_record_s *record)
    480 {
    481 	struct journal_head *descriptor;
    482 	int offset;
    483 	journal_header_t *header;
    484 
    485 	/* If we are already aborting, this all becomes a noop.  We
    486            still need to go round the loop in
    487            journal_write_revoke_records in order to free all of the
    488            revoke records: only the IO to the journal is omitted. */
    489 	if (is_journal_aborted(journal))
    490 		return;
    491 
    492 	descriptor = *descriptorp;
    493 	offset = *offsetp;
    494 
    495 	/* Make sure we have a descriptor with space left for the record */
    496 	if (descriptor) {
    497 		if (offset == journal->j_blocksize) {
    498 			flush_descriptor(journal, descriptor, offset);
    499 			descriptor = NULL;
    500 		}
    501 	}
    502 
    503 	if (!descriptor) {
    504 		descriptor = journal_get_descriptor_buffer(journal);
    505 		if (!descriptor)
    506 			return;
    507 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
    508 		header->h_magic     = htonl(JFS_MAGIC_NUMBER);
    509 		header->h_blocktype = htonl(JFS_REVOKE_BLOCK);
    510 		header->h_sequence  = htonl(transaction->t_tid);
    511 
    512 		/* Record it so that we can wait for IO completion later */
    513 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
    514 		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
    515 
    516 		offset = sizeof(journal_revoke_header_t);
    517 		*descriptorp = descriptor;
    518 	}
    519 
    520 	* ((unsigned int *)(&jh2bh(descriptor)->b_data[offset])) =
    521 		htonl(record->blocknr);
    522 	offset += 4;
    523 	*offsetp = offset;
    524 }
    525 
    526 /*
    527  * Flush a revoke descriptor out to the journal.  If we are aborting,
    528  * this is a noop; otherwise we are generating a buffer which needs to
    529  * be waited for during commit, so it has to go onto the appropriate
    530  * journal buffer list.
    531  */
    532 
    533 static void flush_descriptor(journal_t *journal,
    534 			     struct journal_head *descriptor,
    535 			     int offset)
    536 {
    537 	journal_revoke_header_t *header;
    538 
    539 	if (is_journal_aborted(journal)) {
    540 		JBUFFER_TRACE(descriptor, "brelse");
    541 		__brelse(jh2bh(descriptor));
    542 		return;
    543 	}
    544 
    545 	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
    546 	header->r_count = htonl(offset);
    547 	set_bit(BH_JWrite, &jh2bh(descriptor)->b_state);
    548 	{
    549 		struct buffer_head *bh = jh2bh(descriptor);
    550 		BUFFER_TRACE(bh, "write");
    551 		ll_rw_block (WRITE, 1, &bh);
    552 	}
    553 }
    554 
    555 #endif
    556 
    557 /*
    558  * Revoke support for recovery.
    559  *
    560  * Recovery needs to be able to:
    561  *
    562  *  record all revoke records, including the tid of the latest instance
    563  *  of each revoke in the journal
    564  *
    565  *  check whether a given block in a given transaction should be replayed
    566  *  (ie. has not been revoked by a revoke record in that or a subsequent
    567  *  transaction)
    568  *
    569  *  empty the revoke table after recovery.
    570  */
    571 
    572 /*
    573  * First, setting revoke records.  We create a new revoke record for
    574  * every block ever revoked in the log as we scan it for recovery, and
    575  * we update the existing records if we find multiple revokes for a
    576  * single block.
    577  */
    578 
    579 int journal_set_revoke(journal_t *journal,
    580 		       unsigned long blocknr,
    581 		       tid_t sequence)
    582 {
    583 	struct jbd_revoke_record_s *record;
    584 
    585 	record = find_revoke_record(journal, blocknr);
    586 	if (record) {
    587 		/* If we have multiple occurences, only record the
    588 		 * latest sequence number in the hashed record */
    589 		if (tid_gt(sequence, record->sequence))
    590 			record->sequence = sequence;
    591 		return 0;
    592 	}
    593 	return insert_revoke_hash(journal, blocknr, sequence);
    594 }
    595 
    596 /*
    597  * Test revoke records.  For a given block referenced in the log, has
    598  * that block been revoked?  A revoke record with a given transaction
    599  * sequence number revokes all blocks in that transaction and earlier
    600  * ones, but later transactions still need replayed.
    601  */
    602 
    603 int journal_test_revoke(journal_t *journal,
    604 			unsigned long blocknr,
    605 			tid_t sequence)
    606 {
    607 	struct jbd_revoke_record_s *record;
    608 
    609 	record = find_revoke_record(journal, blocknr);
    610 	if (!record)
    611 		return 0;
    612 	if (tid_gt(sequence, record->sequence))
    613 		return 0;
    614 	return 1;
    615 }
    616 
    617 /*
    618  * Finally, once recovery is over, we need to clear the revoke table so
    619  * that it can be reused by the running filesystem.
    620  */
    621 
    622 void journal_clear_revoke(journal_t *journal)
    623 {
    624 	int i;
    625 	struct list_head *hash_list;
    626 	struct jbd_revoke_record_s *record;
    627 	struct jbd_revoke_table_s *revoke;
    628 
    629 	revoke = journal->j_revoke;
    630 
    631 	for (i = 0; i < revoke->hash_size; i++) {
    632 		hash_list = &revoke->hash_table[i];
    633 		while (!list_empty(hash_list)) {
    634 			record = (struct jbd_revoke_record_s*) hash_list->next;
    635 			list_del(&record->hash);
    636 			kmem_cache_free(revoke_record_cache, record);
    637 		}
    638 	}
    639 }
    640 
    641