Home | History | Annotate | Download | only in blas
      1       SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
      2 *     .. Scalar Arguments ..
      3       COMPLEX ALPHA
      4       INTEGER INCX,INCY,N
      5       CHARACTER UPLO
      6 *     ..
      7 *     .. Array Arguments ..
      8       COMPLEX AP(*),X(*),Y(*)
      9 *     ..
     10 *
     11 *  Purpose
     12 *  =======
     13 *
     14 *  CHPR2  performs the hermitian rank 2 operation
     15 *
     16 *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
     17 *
     18 *  where alpha is a scalar, x and y are n element vectors and A is an
     19 *  n by n hermitian matrix, supplied in packed form.
     20 *
     21 *  Arguments
     22 *  ==========
     23 *
     24 *  UPLO   - CHARACTER*1.
     25 *           On entry, UPLO specifies whether the upper or lower
     26 *           triangular part of the matrix A is supplied in the packed
     27 *           array AP as follows:
     28 *
     29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
     30 *                                  supplied in AP.
     31 *
     32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
     33 *                                  supplied in AP.
     34 *
     35 *           Unchanged on exit.
     36 *
     37 *  N      - INTEGER.
     38 *           On entry, N specifies the order of the matrix A.
     39 *           N must be at least zero.
     40 *           Unchanged on exit.
     41 *
     42 *  ALPHA  - COMPLEX         .
     43 *           On entry, ALPHA specifies the scalar alpha.
     44 *           Unchanged on exit.
     45 *
     46 *  X      - COMPLEX          array of dimension at least
     47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     48 *           Before entry, the incremented array X must contain the n
     49 *           element vector x.
     50 *           Unchanged on exit.
     51 *
     52 *  INCX   - INTEGER.
     53 *           On entry, INCX specifies the increment for the elements of
     54 *           X. INCX must not be zero.
     55 *           Unchanged on exit.
     56 *
     57 *  Y      - COMPLEX          array of dimension at least
     58 *           ( 1 + ( n - 1 )*abs( INCY ) ).
     59 *           Before entry, the incremented array Y must contain the n
     60 *           element vector y.
     61 *           Unchanged on exit.
     62 *
     63 *  INCY   - INTEGER.
     64 *           On entry, INCY specifies the increment for the elements of
     65 *           Y. INCY must not be zero.
     66 *           Unchanged on exit.
     67 *
     68 *  AP     - COMPLEX          array of DIMENSION at least
     69 *           ( ( n*( n + 1 ) )/2 ).
     70 *           Before entry with  UPLO = 'U' or 'u', the array AP must
     71 *           contain the upper triangular part of the hermitian matrix
     72 *           packed sequentially, column by column, so that AP( 1 )
     73 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
     74 *           and a( 2, 2 ) respectively, and so on. On exit, the array
     75 *           AP is overwritten by the upper triangular part of the
     76 *           updated matrix.
     77 *           Before entry with UPLO = 'L' or 'l', the array AP must
     78 *           contain the lower triangular part of the hermitian matrix
     79 *           packed sequentially, column by column, so that AP( 1 )
     80 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
     81 *           and a( 3, 1 ) respectively, and so on. On exit, the array
     82 *           AP is overwritten by the lower triangular part of the
     83 *           updated matrix.
     84 *           Note that the imaginary parts of the diagonal elements need
     85 *           not be set, they are assumed to be zero, and on exit they
     86 *           are set to zero.
     87 *
     88 *  Further Details
     89 *  ===============
     90 *
     91 *  Level 2 Blas routine.
     92 *
     93 *  -- Written on 22-October-1986.
     94 *     Jack Dongarra, Argonne National Lab.
     95 *     Jeremy Du Croz, Nag Central Office.
     96 *     Sven Hammarling, Nag Central Office.
     97 *     Richard Hanson, Sandia National Labs.
     98 *
     99 *  =====================================================================
    100 *
    101 *     .. Parameters ..
    102       COMPLEX ZERO
    103       PARAMETER (ZERO= (0.0E+0,0.0E+0))
    104 *     ..
    105 *     .. Local Scalars ..
    106       COMPLEX TEMP1,TEMP2
    107       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
    108 *     ..
    109 *     .. External Functions ..
    110       LOGICAL LSAME
    111       EXTERNAL LSAME
    112 *     ..
    113 *     .. External Subroutines ..
    114       EXTERNAL XERBLA
    115 *     ..
    116 *     .. Intrinsic Functions ..
    117       INTRINSIC CONJG,REAL
    118 *     ..
    119 *
    120 *     Test the input parameters.
    121 *
    122       INFO = 0
    123       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    124           INFO = 1
    125       ELSE IF (N.LT.0) THEN
    126           INFO = 2
    127       ELSE IF (INCX.EQ.0) THEN
    128           INFO = 5
    129       ELSE IF (INCY.EQ.0) THEN
    130           INFO = 7
    131       END IF
    132       IF (INFO.NE.0) THEN
    133           CALL XERBLA('CHPR2 ',INFO)
    134           RETURN
    135       END IF
    136 *
    137 *     Quick return if possible.
    138 *
    139       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
    140 *
    141 *     Set up the start points in X and Y if the increments are not both
    142 *     unity.
    143 *
    144       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
    145           IF (INCX.GT.0) THEN
    146               KX = 1
    147           ELSE
    148               KX = 1 - (N-1)*INCX
    149           END IF
    150           IF (INCY.GT.0) THEN
    151               KY = 1
    152           ELSE
    153               KY = 1 - (N-1)*INCY
    154           END IF
    155           JX = KX
    156           JY = KY
    157       END IF
    158 *
    159 *     Start the operations. In this version the elements of the array AP
    160 *     are accessed sequentially with one pass through AP.
    161 *
    162       KK = 1
    163       IF (LSAME(UPLO,'U')) THEN
    164 *
    165 *        Form  A  when upper triangle is stored in AP.
    166 *
    167           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    168               DO 20 J = 1,N
    169                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
    170                       TEMP1 = ALPHA*CONJG(Y(J))
    171                       TEMP2 = CONJG(ALPHA*X(J))
    172                       K = KK
    173                       DO 10 I = 1,J - 1
    174                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
    175                           K = K + 1
    176    10                 CONTINUE
    177                       AP(KK+J-1) = REAL(AP(KK+J-1)) +
    178      +                             REAL(X(J)*TEMP1+Y(J)*TEMP2)
    179                   ELSE
    180                       AP(KK+J-1) = REAL(AP(KK+J-1))
    181                   END IF
    182                   KK = KK + J
    183    20         CONTINUE
    184           ELSE
    185               DO 40 J = 1,N
    186                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
    187                       TEMP1 = ALPHA*CONJG(Y(JY))
    188                       TEMP2 = CONJG(ALPHA*X(JX))
    189                       IX = KX
    190                       IY = KY
    191                       DO 30 K = KK,KK + J - 2
    192                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
    193                           IX = IX + INCX
    194                           IY = IY + INCY
    195    30                 CONTINUE
    196                       AP(KK+J-1) = REAL(AP(KK+J-1)) +
    197      +                             REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
    198                   ELSE
    199                       AP(KK+J-1) = REAL(AP(KK+J-1))
    200                   END IF
    201                   JX = JX + INCX
    202                   JY = JY + INCY
    203                   KK = KK + J
    204    40         CONTINUE
    205           END IF
    206       ELSE
    207 *
    208 *        Form  A  when lower triangle is stored in AP.
    209 *
    210           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    211               DO 60 J = 1,N
    212                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
    213                       TEMP1 = ALPHA*CONJG(Y(J))
    214                       TEMP2 = CONJG(ALPHA*X(J))
    215                       AP(KK) = REAL(AP(KK)) +
    216      +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
    217                       K = KK + 1
    218                       DO 50 I = J + 1,N
    219                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
    220                           K = K + 1
    221    50                 CONTINUE
    222                   ELSE
    223                       AP(KK) = REAL(AP(KK))
    224                   END IF
    225                   KK = KK + N - J + 1
    226    60         CONTINUE
    227           ELSE
    228               DO 80 J = 1,N
    229                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
    230                       TEMP1 = ALPHA*CONJG(Y(JY))
    231                       TEMP2 = CONJG(ALPHA*X(JX))
    232                       AP(KK) = REAL(AP(KK)) +
    233      +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
    234                       IX = JX
    235                       IY = JY
    236                       DO 70 K = KK + 1,KK + N - J
    237                           IX = IX + INCX
    238                           IY = IY + INCY
    239                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
    240    70                 CONTINUE
    241                   ELSE
    242                       AP(KK) = REAL(AP(KK))
    243                   END IF
    244                   JX = JX + INCX
    245                   JY = JY + INCY
    246                   KK = KK + N - J + 1
    247    80         CONTINUE
    248           END IF
    249       END IF
    250 *
    251       RETURN
    252 *
    253 *     End of CHPR2 .
    254 *
    255       END
    256