Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier (at) cea.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/Geometry>
     13 #include <Eigen/LU>
     14 #include <Eigen/SVD>
     15 
     16 template<typename T> T bounded_acos(T v)
     17 {
     18   using std::acos;
     19   using std::min;
     20   using std::max;
     21   return acos((max)(T(-1),(min)(v,T(1))));
     22 }
     23 
     24 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
     25 {
     26   typedef typename QuatType::Scalar Scalar;
     27   typedef Matrix<Scalar,3,1> VectorType;
     28   typedef AngleAxis<Scalar> AA;
     29 
     30   Scalar largeEps = test_precision<Scalar>();
     31 
     32   Scalar theta_tot = AA(q1*q0.inverse()).angle();
     33   if(theta_tot>M_PI)
     34     theta_tot = 2.*M_PI-theta_tot;
     35   for(Scalar t=0; t<=1.001; t+=0.1)
     36   {
     37     QuatType q = q0.slerp(t,q1);
     38     Scalar theta = AA(q*q0.inverse()).angle();
     39     VERIFY(internal::abs(q.norm() - 1) < largeEps);
     40     if(theta_tot==0)  VERIFY(theta_tot==0);
     41     else              VERIFY(internal::abs(theta/theta_tot - t) < largeEps);
     42   }
     43 }
     44 
     45 template<typename Scalar, int Options> void quaternion(void)
     46 {
     47   /* this test covers the following files:
     48      Quaternion.h
     49   */
     50 
     51   typedef Matrix<Scalar,3,3> Matrix3;
     52   typedef Matrix<Scalar,3,1> Vector3;
     53   typedef Matrix<Scalar,4,1> Vector4;
     54   typedef Quaternion<Scalar,Options> Quaternionx;
     55   typedef AngleAxis<Scalar> AngleAxisx;
     56 
     57   Scalar largeEps = test_precision<Scalar>();
     58   if (internal::is_same<Scalar,float>::value)
     59     largeEps = 1e-3f;
     60 
     61   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
     62 
     63   Vector3 v0 = Vector3::Random(),
     64           v1 = Vector3::Random(),
     65           v2 = Vector3::Random(),
     66           v3 = Vector3::Random();
     67 
     68   Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
     69           b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
     70 
     71   // Quaternion: Identity(), setIdentity();
     72   Quaternionx q1, q2;
     73   q2.setIdentity();
     74   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
     75   q1.coeffs().setRandom();
     76   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
     77 
     78   // concatenation
     79   q1 *= q2;
     80 
     81   q1 = AngleAxisx(a, v0.normalized());
     82   q2 = AngleAxisx(a, v1.normalized());
     83 
     84   // angular distance
     85   Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle());
     86   if (refangle>Scalar(M_PI))
     87     refangle = Scalar(2)*Scalar(M_PI) - refangle;
     88 
     89   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
     90   {
     91     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(q1.angularDistance(q2) - refangle), Scalar(1));
     92   }
     93 
     94   // rotation matrix conversion
     95   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
     96   VERIFY_IS_APPROX(q1 * q2 * v2,
     97     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
     98 
     99   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
    100         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
    101 
    102   q2 = q1.toRotationMatrix();
    103   VERIFY_IS_APPROX(q1*v1,q2*v1);
    104 
    105 
    106   // angle-axis conversion
    107   AngleAxisx aa = AngleAxisx(q1);
    108   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
    109 
    110   // Do not execute the test if the rotation angle is almost zero, or
    111   // the rotation axis and v1 are almost parallel.
    112   if (internal::abs(aa.angle()) > 5*test_precision<Scalar>()
    113       && (aa.axis() - v1.normalized()).norm() < 1.99
    114       && (aa.axis() + v1.normalized()).norm() < 1.99)
    115   {
    116     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
    117   }
    118 
    119   // from two vector creation
    120   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
    121   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
    122   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
    123   if (internal::is_same<Scalar,double>::value)
    124   {
    125     v3 = (v1.array()+eps).matrix();
    126     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
    127     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
    128   }
    129 
    130   // from two vector creation static function
    131   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
    132   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
    133   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
    134   if (internal::is_same<Scalar,double>::value)
    135   {
    136     v3 = (v1.array()+eps).matrix();
    137     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
    138     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
    139   }
    140 
    141   // inverse and conjugate
    142   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
    143   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
    144 
    145   // test casting
    146   Quaternion<float> q1f = q1.template cast<float>();
    147   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
    148   Quaternion<double> q1d = q1.template cast<double>();
    149   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
    150 
    151   // test bug 369 - improper alignment.
    152   Quaternionx *q = new Quaternionx;
    153   delete q;
    154 
    155   q1 = AngleAxisx(a, v0.normalized());
    156   q2 = AngleAxisx(b, v1.normalized());
    157   check_slerp(q1,q2);
    158 
    159   q1 = AngleAxisx(b, v1.normalized());
    160   q2 = AngleAxisx(b+M_PI, v1.normalized());
    161   check_slerp(q1,q2);
    162 
    163   q1 = AngleAxisx(b,  v1.normalized());
    164   q2 = AngleAxisx(-b, -v1.normalized());
    165   check_slerp(q1,q2);
    166 
    167   q1.coeffs() = Vector4::Random().normalized();
    168   q2.coeffs() = -q1.coeffs();
    169   check_slerp(q1,q2);
    170 }
    171 
    172 template<typename Scalar> void mapQuaternion(void){
    173   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
    174   typedef Map<Quaternion<Scalar> > MQuaternionUA;
    175   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
    176   typedef Quaternion<Scalar> Quaternionx;
    177 
    178   EIGEN_ALIGN16 Scalar array1[4];
    179   EIGEN_ALIGN16 Scalar array2[4];
    180   EIGEN_ALIGN16 Scalar array3[4+1];
    181   Scalar* array3unaligned = array3+1;
    182 
    183 //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
    184   MQuaternionA(array1).coeffs().setRandom();
    185   (MQuaternionA(array2)) = MQuaternionA(array1);
    186   (MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
    187 
    188   Quaternionx q1 = MQuaternionA(array1);
    189   Quaternionx q2 = MQuaternionA(array2);
    190   Quaternionx q3 = MQuaternionUA(array3unaligned);
    191   Quaternionx q4 = MCQuaternionUA(array3unaligned);
    192 
    193   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
    194   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
    195   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
    196   #ifdef EIGEN_VECTORIZE
    197   if(internal::packet_traits<Scalar>::Vectorizable)
    198     VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
    199   #endif
    200 }
    201 
    202 template<typename Scalar> void quaternionAlignment(void){
    203   typedef Quaternion<Scalar,AutoAlign> QuaternionA;
    204   typedef Quaternion<Scalar,DontAlign> QuaternionUA;
    205 
    206   EIGEN_ALIGN16 Scalar array1[4];
    207   EIGEN_ALIGN16 Scalar array2[4];
    208   EIGEN_ALIGN16 Scalar array3[4+1];
    209   Scalar* arrayunaligned = array3+1;
    210 
    211   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
    212   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
    213   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
    214 
    215   q1->coeffs().setRandom();
    216   *q2 = *q1;
    217   *q3 = *q1;
    218 
    219   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
    220   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
    221   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
    222   if(internal::packet_traits<Scalar>::Vectorizable)
    223     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
    224   #endif
    225 }
    226 
    227 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
    228 {
    229   // there's a lot that we can't test here while still having this test compile!
    230   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
    231   // CMake can help with that.
    232 
    233   // verify that map-to-const don't have LvalueBit
    234   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
    235   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
    236   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
    237   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
    238   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
    239 }
    240 
    241 void test_geo_quaternion()
    242 {
    243   for(int i = 0; i < g_repeat; i++) {
    244     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
    245     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
    246     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
    247     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
    248     CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
    249     CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
    250     CALL_SUBTEST_5(( quaternionAlignment<float>() ));
    251     CALL_SUBTEST_6(( quaternionAlignment<double>() ));
    252     CALL_SUBTEST_1( mapQuaternion<float>() );
    253     CALL_SUBTEST_2( mapQuaternion<double>() );
    254   }
    255 }
    256