Home | History | Annotate | Download | only in Eigen
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Gael Guennebaud <g.gael (a] free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ALIGNED_VECTOR3
     11 #define EIGEN_ALIGNED_VECTOR3
     12 
     13 #include <Eigen/Geometry>
     14 
     15 namespace Eigen {
     16 
     17 /** \ingroup Unsupported_modules
     18   * \defgroup AlignedVector3_Module Aligned vector3 module
     19   *
     20   * \code
     21   * #include <unsupported/Eigen/AlignedVector3>
     22   * \endcode
     23   */
     24   //@{
     25 
     26 
     27 /** \class AlignedVector3
     28   *
     29   * \brief A vectorization friendly 3D vector
     30   *
     31   * This class represents a 3D vector internally using a 4D vector
     32   * such that vectorization can be seamlessly enabled. Of course,
     33   * the same result can be achieved by directly using a 4D vector.
     34   * This class makes this process simpler.
     35   *
     36   */
     37 // TODO specialize Cwise
     38 template<typename _Scalar> class AlignedVector3;
     39 
     40 namespace internal {
     41 template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
     42   : traits<Matrix<_Scalar,3,1,0,4,1> >
     43 {
     44 };
     45 }
     46 
     47 template<typename _Scalar> class AlignedVector3
     48   : public MatrixBase<AlignedVector3<_Scalar> >
     49 {
     50     typedef Matrix<_Scalar,4,1> CoeffType;
     51     CoeffType m_coeffs;
     52   public:
     53 
     54     typedef MatrixBase<AlignedVector3<_Scalar> > Base;	
     55     EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
     56     using Base::operator*;
     57 
     58     inline Index rows() const { return 3; }
     59     inline Index cols() const { return 1; }
     60 
     61     inline const Scalar& coeff(Index row, Index col) const
     62     { return m_coeffs.coeff(row, col); }
     63 
     64     inline Scalar& coeffRef(Index row, Index col)
     65     { return m_coeffs.coeffRef(row, col); }
     66 
     67     inline const Scalar& coeff(Index index) const
     68     { return m_coeffs.coeff(index); }
     69 
     70     inline Scalar& coeffRef(Index index)
     71     { return m_coeffs.coeffRef(index);}
     72 
     73 
     74     inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
     75       : m_coeffs(x, y, z, Scalar(0))
     76     {}
     77 
     78     inline AlignedVector3(const AlignedVector3& other)
     79       : Base(), m_coeffs(other.m_coeffs)
     80     {}
     81 
     82     template<typename XprType, int Size=XprType::SizeAtCompileTime>
     83     struct generic_assign_selector {};
     84 
     85     template<typename XprType> struct generic_assign_selector<XprType,4>
     86     {
     87       inline static void run(AlignedVector3& dest, const XprType& src)
     88       {
     89         dest.m_coeffs = src;
     90       }
     91     };
     92 
     93     template<typename XprType> struct generic_assign_selector<XprType,3>
     94     {
     95       inline static void run(AlignedVector3& dest, const XprType& src)
     96       {
     97         dest.m_coeffs.template head<3>() = src;
     98         dest.m_coeffs.w() = Scalar(0);
     99       }
    100     };
    101 
    102     template<typename Derived>
    103     inline explicit AlignedVector3(const MatrixBase<Derived>& other)
    104     {
    105       generic_assign_selector<Derived>::run(*this,other.derived());
    106     }
    107 
    108     inline AlignedVector3& operator=(const AlignedVector3& other)
    109     { m_coeffs = other.m_coeffs; return *this; }
    110 
    111 
    112     inline AlignedVector3 operator+(const AlignedVector3& other) const
    113     { return AlignedVector3(m_coeffs + other.m_coeffs); }
    114 
    115     inline AlignedVector3& operator+=(const AlignedVector3& other)
    116     { m_coeffs += other.m_coeffs; return *this; }
    117 
    118     inline AlignedVector3 operator-(const AlignedVector3& other) const
    119     { return AlignedVector3(m_coeffs - other.m_coeffs); }
    120 
    121     inline AlignedVector3 operator-=(const AlignedVector3& other)
    122     { m_coeffs -= other.m_coeffs; return *this; }
    123 
    124     inline AlignedVector3 operator*(const Scalar& s) const
    125     { return AlignedVector3(m_coeffs * s); }
    126 
    127     inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
    128     { return AlignedVector3(s * vec.m_coeffs); }
    129 
    130     inline AlignedVector3& operator*=(const Scalar& s)
    131     { m_coeffs *= s; return *this; }
    132 
    133     inline AlignedVector3 operator/(const Scalar& s) const
    134     { return AlignedVector3(m_coeffs / s); }
    135 
    136     inline AlignedVector3& operator/=(const Scalar& s)
    137     { m_coeffs /= s; return *this; }
    138 
    139     inline Scalar dot(const AlignedVector3& other) const
    140     {
    141       eigen_assert(m_coeffs.w()==Scalar(0));
    142       eigen_assert(other.m_coeffs.w()==Scalar(0));
    143       return m_coeffs.dot(other.m_coeffs);
    144     }
    145 
    146     inline void normalize()
    147     {
    148       m_coeffs /= norm();
    149     }
    150 
    151     inline AlignedVector3 normalized()
    152     {
    153       return AlignedVector3(m_coeffs / norm());
    154     }
    155 
    156     inline Scalar sum() const
    157     {
    158       eigen_assert(m_coeffs.w()==Scalar(0));
    159       return m_coeffs.sum();
    160     }
    161 
    162     inline Scalar squaredNorm() const
    163     {
    164       eigen_assert(m_coeffs.w()==Scalar(0));
    165       return m_coeffs.squaredNorm();
    166     }
    167 
    168     inline Scalar norm() const
    169     {
    170       return internal::sqrt(squaredNorm());
    171     }
    172 
    173     inline AlignedVector3 cross(const AlignedVector3& other) const
    174     {
    175       return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
    176     }
    177 
    178     template<typename Derived>
    179     inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const
    180     {
    181       return m_coeffs.template head<3>().isApprox(other,eps);
    182     }
    183 };
    184 
    185 //@}
    186 
    187 }
    188 
    189 #endif // EIGEN_ALIGNED_VECTOR3
    190