1 ================================ 2 Writing an LLVM Compiler Backend 3 ================================ 4 5 .. toctree:: 6 :hidden: 7 8 HowToUseInstrMappings 9 10 .. contents:: 11 :local: 12 13 Introduction 14 ============ 15 16 This document describes techniques for writing compiler backends that convert 17 the LLVM Intermediate Representation (IR) to code for a specified machine or 18 other languages. Code intended for a specific machine can take the form of 19 either assembly code or binary code (usable for a JIT compiler). 20 21 The backend of LLVM features a target-independent code generator that may 22 create output for several types of target CPUs --- including X86, PowerPC, 23 ARM, and SPARC. The backend may also be used to generate code targeted at SPUs 24 of the Cell processor or GPUs to support the execution of compute kernels. 25 26 The document focuses on existing examples found in subdirectories of 27 ``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document 28 focuses on the example of creating a static compiler (one that emits text 29 assembly) for a SPARC target, because SPARC has fairly standard 30 characteristics, such as a RISC instruction set and straightforward calling 31 conventions. 32 33 Audience 34 -------- 35 36 The audience for this document is anyone who needs to write an LLVM backend to 37 generate code for a specific hardware or software target. 38 39 Prerequisite Reading 40 -------------------- 41 42 These essential documents must be read before reading this document: 43 44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for 45 the LLVM assembly language. 46 47 * :doc:`CodeGenerator` --- a guide to the components (classes and code 48 generation algorithms) for translating the LLVM internal representation into 49 machine code for a specified target. Pay particular attention to the 50 descriptions of code generation stages: Instruction Selection, Scheduling and 51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code 52 Insertion, Late Machine Code Optimizations, and Code Emission. 53 54 * :doc:`TableGenFundamentals` --- a document that describes the TableGen 55 (``tblgen``) application that manages domain-specific information to support 56 LLVM code generation. TableGen processes input from a target description 57 file (``.td`` suffix) and generates C++ code that can be used for code 58 generation. 59 60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as 61 are several ``SelectionDAG`` processing steps. 62 63 To follow the SPARC examples in this document, have a copy of `The SPARC 64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for 65 reference. For details about the ARM instruction set, refer to the `ARM 66 Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about 67 the GNU Assembler format (``GAS``), see `Using As 68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the 69 assembly printer. "Using As" contains a list of target machine dependent 70 features. 71 72 Basic Steps 73 ----------- 74 75 To write a compiler backend for LLVM that converts the LLVM IR to code for a 76 specified target (machine or other language), follow these steps: 77 78 * Create a subclass of the ``TargetMachine`` class that describes 79 characteristics of your target machine. Copy existing examples of specific 80 ``TargetMachine`` class and header files; for example, start with 81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file 82 names for your target. Similarly, change code that references "``Sparc``" to 83 reference your target. 84 85 * Describe the register set of the target. Use TableGen to generate code for 86 register definition, register aliases, and register classes from a 87 target-specific ``RegisterInfo.td`` input file. You should also write 88 additional code for a subclass of the ``TargetRegisterInfo`` class that 89 represents the class register file data used for register allocation and also 90 describes the interactions between registers. 91 92 * Describe the instruction set of the target. Use TableGen to generate code 93 for target-specific instructions from target-specific versions of 94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write 95 additional code for a subclass of the ``TargetInstrInfo`` class to represent 96 machine instructions supported by the target machine. 97 98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic 99 Graph (DAG) representation of instructions to native target-specific 100 instructions. Use TableGen to generate code that matches patterns and 101 selects instructions based on additional information in a target-specific 102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``, 103 where ``XXX`` identifies the specific target, to perform pattern matching and 104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp`` 105 to replace or remove operations and data types that are not supported 106 natively in a SelectionDAG. 107 108 * Write code for an assembly printer that converts LLVM IR to a GAS format for 109 your target machine. You should add assembly strings to the instructions 110 defined in your target-specific version of ``TargetInstrInfo.td``. You 111 should also write code for a subclass of ``AsmPrinter`` that performs the 112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``. 113 114 * Optionally, add support for subtargets (i.e., variants with different 115 capabilities). You should also write code for a subclass of the 116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and 117 ``-mattr=`` command-line options. 118 119 * Optionally, add JIT support and create a machine code emitter (subclass of 120 ``TargetJITInfo``) that is used to emit binary code directly into memory. 121 122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then 123 implement them later. Initially, you may not know which private members that 124 the class will need and which components will need to be subclassed. 125 126 Preliminaries 127 ------------- 128 129 To actually create your compiler backend, you need to create and modify a few 130 files. The absolute minimum is discussed here. But to actually use the LLVM 131 target-independent code generator, you must perform the steps described in the 132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document. 133 134 First, you should create a subdirectory under ``lib/Target`` to hold all the 135 files related to your target. If your target is called "Dummy", create the 136 directory ``lib/Target/Dummy``. 137 138 In this new directory, create a ``Makefile``. It is easiest to copy a 139 ``Makefile`` of another target and modify it. It should at least contain the 140 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include 141 ``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for 142 example, see the MIPS target). Alternatively, you can split the library into 143 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be 144 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the 145 PowerPC target). 146 147 Note that these two naming schemes are hardcoded into ``llvm-config``. Using 148 any other naming scheme will confuse ``llvm-config`` and produce a lot of 149 (seemingly unrelated) linker errors when linking ``llc``. 150 151 To make your target actually do something, you need to implement a subclass of 152 ``TargetMachine``. This implementation should typically be in the file 153 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target`` 154 directory will be built and should work. To use LLVM's target independent code 155 generator, you should do what all current machine backends do: create a 156 subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a 157 subclass of ``TargetMachine``.) 158 159 To get LLVM to actually build and link your target, you need to add it to the 160 ``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to 161 know about your target when parsing the ``--enable-targets`` option. Search 162 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists 163 there (some creativity required), and then reconfigure. Alternatively, you can 164 change ``autotools/configure.ac`` and regenerate configure by running 165 ``./autoconf/AutoRegen.sh``. 166 167 Target Machine 168 ============== 169 170 ``LLVMTargetMachine`` is designed as a base class for targets implemented with 171 the LLVM target-independent code generator. The ``LLVMTargetMachine`` class 172 should be specialized by a concrete target class that implements the various 173 virtual methods. ``LLVMTargetMachine`` is defined as a subclass of 174 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The 175 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes 176 numerous command-line options. 177 178 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start 179 by copying an existing ``TargetMachine`` class and header. You should name the 180 files that you create to reflect your specific target. For instance, for the 181 SPARC target, name the files ``SparcTargetMachine.h`` and 182 ``SparcTargetMachine.cpp``. 183 184 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must 185 have access methods to obtain objects that represent target components. These 186 methods are named ``get*Info``, and are intended to obtain the instruction set 187 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout 188 (``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also 189 implement the ``getDataLayout`` method to access an object with target-specific 190 data characteristics, such as data type size and alignment requirements. 191 192 For instance, for the SPARC target, the header file ``SparcTargetMachine.h`` 193 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that 194 simply return a class member. 195 196 .. code-block:: c++ 197 198 namespace llvm { 199 200 class Module; 201 202 class SparcTargetMachine : public LLVMTargetMachine { 203 const DataLayout DataLayout; // Calculates type size & alignment 204 SparcSubtarget Subtarget; 205 SparcInstrInfo InstrInfo; 206 TargetFrameInfo FrameInfo; 207 208 protected: 209 virtual const TargetAsmInfo *createTargetAsmInfo() const; 210 211 public: 212 SparcTargetMachine(const Module &M, const std::string &FS); 213 214 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } 215 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } 216 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } 217 virtual const TargetRegisterInfo *getRegisterInfo() const { 218 return &InstrInfo.getRegisterInfo(); 219 } 220 virtual const DataLayout *getDataLayout() const { return &DataLayout; } 221 static unsigned getModuleMatchQuality(const Module &M); 222 223 // Pass Pipeline Configuration 224 virtual bool addInstSelector(PassManagerBase &PM, bool Fast); 225 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); 226 }; 227 228 } // end namespace llvm 229 230 * ``getInstrInfo()`` 231 * ``getRegisterInfo()`` 232 * ``getFrameInfo()`` 233 * ``getDataLayout()`` 234 * ``getSubtargetImpl()`` 235 236 For some targets, you also need to support the following methods: 237 238 * ``getTargetLowering()`` 239 * ``getJITInfo()`` 240 241 In addition, the ``XXXTargetMachine`` constructor should specify a 242 ``TargetDescription`` string that determines the data layout for the target 243 machine, including characteristics such as pointer size, alignment, and 244 endianness. For example, the constructor for ``SparcTargetMachine`` contains 245 the following: 246 247 .. code-block:: c++ 248 249 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) 250 : DataLayout("E-p:32:32-f128:128:128"), 251 Subtarget(M, FS), InstrInfo(Subtarget), 252 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { 253 } 254 255 Hyphens separate portions of the ``TargetDescription`` string. 256 257 * An upper-case "``E``" in the string indicates a big-endian target data model. 258 A lower-case "``e``" indicates little-endian. 259 260 * "``p:``" is followed by pointer information: size, ABI alignment, and 261 preferred alignment. If only two figures follow "``p:``", then the first 262 value is pointer size, and the second value is both ABI and preferred 263 alignment. 264 265 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or 266 "``a``" (corresponding to integer, floating point, vector, or aggregate). 267 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred 268 alignment. "``f``" is followed by three values: the first indicates the size 269 of a long double, then ABI alignment, and then ABI preferred alignment. 270 271 Target Registration 272 =================== 273 274 You must also register your target with the ``TargetRegistry``, which is what 275 other LLVM tools use to be able to lookup and use your target at runtime. The 276 ``TargetRegistry`` can be used directly, but for most targets there are helper 277 templates which should take care of the work for you. 278 279 All targets should declare a global ``Target`` object which is used to 280 represent the target during registration. Then, in the target's ``TargetInfo`` 281 library, the target should define that object and use the ``RegisterTarget`` 282 template to register the target. For example, the Sparc registration code 283 looks like this: 284 285 .. code-block:: c++ 286 287 Target llvm::TheSparcTarget; 288 289 extern "C" void LLVMInitializeSparcTargetInfo() { 290 RegisterTarget<Triple::sparc, /*HasJIT=*/false> 291 X(TheSparcTarget, "sparc", "Sparc"); 292 } 293 294 This allows the ``TargetRegistry`` to look up the target by name or by target 295 triple. In addition, most targets will also register additional features which 296 are available in separate libraries. These registration steps are separate, 297 because some clients may wish to only link in some parts of the target --- the 298 JIT code generator does not require the use of the assembler printer, for 299 example. Here is an example of registering the Sparc assembly printer: 300 301 .. code-block:: c++ 302 303 extern "C" void LLVMInitializeSparcAsmPrinter() { 304 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); 305 } 306 307 For more information, see "`llvm/Target/TargetRegistry.h 308 </doxygen/TargetRegistry_8h-source.html>`_". 309 310 Register Set and Register Classes 311 ================================= 312 313 You should describe a concrete target-specific class that represents the 314 register file of a target machine. This class is called ``XXXRegisterInfo`` 315 (where ``XXX`` identifies the target) and represents the class register file 316 data that is used for register allocation. It also describes the interactions 317 between registers. 318 319 You also need to define register classes to categorize related registers. A 320 register class should be added for groups of registers that are all treated the 321 same way for some instruction. Typical examples are register classes for 322 integer, floating-point, or vector registers. A register allocator allows an 323 instruction to use any register in a specified register class to perform the 324 instruction in a similar manner. Register classes allocate virtual registers 325 to instructions from these sets, and register classes let the 326 target-independent register allocator automatically choose the actual 327 registers. 328 329 Much of the code for registers, including register definition, register 330 aliases, and register classes, is generated by TableGen from 331 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc`` 332 and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the 333 implementation of ``XXXRegisterInfo`` requires hand-coding. 334 335 Defining a Register 336 ------------------- 337 338 The ``XXXRegisterInfo.td`` file typically starts with register definitions for 339 a target machine. The ``Register`` class (specified in ``Target.td``) is used 340 to define an object for each register. The specified string ``n`` becomes the 341 ``Name`` of the register. The basic ``Register`` object does not have any 342 subregisters and does not specify any aliases. 343 344 .. code-block:: llvm 345 346 class Register<string n> { 347 string Namespace = ""; 348 string AsmName = n; 349 string Name = n; 350 int SpillSize = 0; 351 int SpillAlignment = 0; 352 list<Register> Aliases = []; 353 list<Register> SubRegs = []; 354 list<int> DwarfNumbers = []; 355 } 356 357 For example, in the ``X86RegisterInfo.td`` file, there are register definitions 358 that utilize the ``Register`` class, such as: 359 360 .. code-block:: llvm 361 362 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; 363 364 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``) 365 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a 366 register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values 367 representing 3 different modes: the first element is for X86-64, the second for 368 exception handling (EH) on X86-32, and the third is generic. -1 is a special 369 Dwarf number that indicates the gcc number is undefined, and -2 indicates the 370 register number is invalid for this mode. 371 372 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen 373 generates this code in the ``X86GenRegisterInfo.inc`` file: 374 375 .. code-block:: c++ 376 377 static const unsigned GR8[] = { X86::AL, ... }; 378 379 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; 380 381 const TargetRegisterDesc RegisterDescriptors[] = { 382 ... 383 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... 384 385 From the register info file, TableGen generates a ``TargetRegisterDesc`` object 386 for each register. ``TargetRegisterDesc`` is defined in 387 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields: 388 389 .. code-block:: c++ 390 391 struct TargetRegisterDesc { 392 const char *AsmName; // Assembly language name for the register 393 const char *Name; // Printable name for the reg (for debugging) 394 const unsigned *AliasSet; // Register Alias Set 395 const unsigned *SubRegs; // Sub-register set 396 const unsigned *ImmSubRegs; // Immediate sub-register set 397 const unsigned *SuperRegs; // Super-register set 398 }; 399 400 TableGen uses the entire target description file (``.td``) to determine text 401 names for the register (in the ``AsmName`` and ``Name`` fields of 402 ``TargetRegisterDesc``) and the relationships of other registers to the defined 403 register (in the other ``TargetRegisterDesc`` fields). In this example, other 404 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as 405 aliases for one another, so TableGen generates a null-terminated array 406 (``AL_AliasSet``) for this register alias set. 407 408 The ``Register`` class is commonly used as a base class for more complex 409 classes. In ``Target.td``, the ``Register`` class is the base for the 410 ``RegisterWithSubRegs`` class that is used to define registers that need to 411 specify subregisters in the ``SubRegs`` list, as shown here: 412 413 .. code-block:: llvm 414 415 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { 416 let SubRegs = subregs; 417 } 418 419 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC: 420 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``, 421 and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a 422 feature common to these subclasses. Note the use of "``let``" expressions to 423 override values that are initially defined in a superclass (such as ``SubRegs`` 424 field in the ``Rd`` class). 425 426 .. code-block:: llvm 427 428 class SparcReg<string n> : Register<n> { 429 field bits<5> Num; 430 let Namespace = "SP"; 431 } 432 // Ri - 32-bit integer registers 433 class Ri<bits<5> num, string n> : 434 SparcReg<n> { 435 let Num = num; 436 } 437 // Rf - 32-bit floating-point registers 438 class Rf<bits<5> num, string n> : 439 SparcReg<n> { 440 let Num = num; 441 } 442 // Rd - Slots in the FP register file for 64-bit floating-point values. 443 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { 444 let Num = num; 445 let SubRegs = subregs; 446 } 447 448 In the ``SparcRegisterInfo.td`` file, there are register definitions that 449 utilize these subclasses of ``Register``, such as: 450 451 .. code-block:: llvm 452 453 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>; 454 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; 455 ... 456 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>; 457 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>; 458 ... 459 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>; 460 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>; 461 462 The last two registers shown above (``D0`` and ``D1``) are double-precision 463 floating-point registers that are aliases for pairs of single-precision 464 floating-point sub-registers. In addition to aliases, the sub-register and 465 super-register relationships of the defined register are in fields of a 466 register's ``TargetRegisterDesc``. 467 468 Defining a Register Class 469 ------------------------- 470 471 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an 472 object that represents a group of related registers and also defines the 473 default allocation order of the registers. A target description file 474 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes 475 using the following class: 476 477 .. code-block:: llvm 478 479 class RegisterClass<string namespace, 480 list<ValueType> regTypes, int alignment, dag regList> { 481 string Namespace = namespace; 482 list<ValueType> RegTypes = regTypes; 483 int Size = 0; // spill size, in bits; zero lets tblgen pick the size 484 int Alignment = alignment; 485 486 // CopyCost is the cost of copying a value between two registers 487 // default value 1 means a single instruction 488 // A negative value means copying is extremely expensive or impossible 489 int CopyCost = 1; 490 dag MemberList = regList; 491 492 // for register classes that are subregisters of this class 493 list<RegisterClass> SubRegClassList = []; 494 495 code MethodProtos = [{}]; // to insert arbitrary code 496 code MethodBodies = [{}]; 497 } 498 499 To define a ``RegisterClass``, use the following 4 arguments: 500 501 * The first argument of the definition is the name of the namespace. 502 503 * The second argument is a list of ``ValueType`` register type values that are 504 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include 505 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean), 506 floating-point types (``f32``, ``f64``), and vector types (for example, 507 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass`` 508 must have the same ``ValueType``, but some registers may store vector data in 509 different configurations. For example a register that can process a 128-bit 510 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4 511 32-bit integers, and so on. 512 513 * The third argument of the ``RegisterClass`` definition specifies the 514 alignment required of the registers when they are stored or loaded to 515 memory. 516 517 * The final argument, ``regList``, specifies which registers are in this class. 518 If an alternative allocation order method is not specified, then ``regList`` 519 also defines the order of allocation used by the register allocator. Besides 520 simply listing registers with ``(add R0, R1, ...)``, more advanced set 521 operators are available. See ``include/llvm/Target/Target.td`` for more 522 information. 523 524 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined: 525 ``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the 526 first argument defines the namespace with the string "``SP``". ``FPRegs`` 527 defines a group of 32 single-precision floating-point registers (``F0`` to 528 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers 529 (``D0-D15``). 530 531 .. code-block:: llvm 532 533 // F0, F1, F2, ..., F31 534 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; 535 536 def DFPRegs : RegisterClass<"SP", [f64], 64, 537 (add D0, D1, D2, D3, D4, D5, D6, D7, D8, 538 D9, D10, D11, D12, D13, D14, D15)>; 539 540 def IntRegs : RegisterClass<"SP", [i32], 32, 541 (add L0, L1, L2, L3, L4, L5, L6, L7, 542 I0, I1, I2, I3, I4, I5, 543 O0, O1, O2, O3, O4, O5, O7, 544 G1, 545 // Non-allocatable regs: 546 G2, G3, G4, 547 O6, // stack ptr 548 I6, // frame ptr 549 I7, // return address 550 G0, // constant zero 551 G5, G6, G7 // reserved for kernel 552 )>; 553 554 Using ``SparcRegisterInfo.td`` with TableGen generates several output files 555 that are intended for inclusion in other source code that you write. 556 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should 557 be included in the header file for the implementation of the SPARC register 558 implementation that you write (``SparcRegisterInfo.h``). In 559 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called 560 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also 561 specifies types, based upon the defined register classes: ``DFPRegsClass``, 562 ``FPRegsClass``, and ``IntRegsClass``. 563 564 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is 565 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register 566 implementation. The code below shows only the generated integer registers and 567 associated register classes. The order of registers in ``IntRegs`` reflects 568 the order in the definition of ``IntRegs`` in the target description file. 569 570 .. code-block:: c++ 571 572 // IntRegs Register Class... 573 static const unsigned IntRegs[] = { 574 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, 575 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, 576 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, 577 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, 578 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, 579 SP::G6, SP::G7, 580 }; 581 582 // IntRegsVTs Register Class Value Types... 583 static const MVT::ValueType IntRegsVTs[] = { 584 MVT::i32, MVT::Other 585 }; 586 587 namespace SP { // Register class instances 588 DFPRegsClass DFPRegsRegClass; 589 FPRegsClass FPRegsRegClass; 590 IntRegsClass IntRegsRegClass; 591 ... 592 // IntRegs Sub-register Classess... 593 static const TargetRegisterClass* const IntRegsSubRegClasses [] = { 594 NULL 595 }; 596 ... 597 // IntRegs Super-register Classess... 598 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { 599 NULL 600 }; 601 ... 602 // IntRegs Register Class sub-classes... 603 static const TargetRegisterClass* const IntRegsSubclasses [] = { 604 NULL 605 }; 606 ... 607 // IntRegs Register Class super-classes... 608 static const TargetRegisterClass* const IntRegsSuperclasses [] = { 609 NULL 610 }; 611 612 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 613 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 614 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} 615 } 616 617 The register allocators will avoid using reserved registers, and callee saved 618 registers are not used until all the volatile registers have been used. That 619 is usually good enough, but in some cases it may be necessary to provide custom 620 allocation orders. 621 622 Implement a subclass of ``TargetRegisterInfo`` 623 ---------------------------------------------- 624 625 The final step is to hand code portions of ``XXXRegisterInfo``, which 626 implements the interface described in ``TargetRegisterInfo.h`` (see 627 :ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or 628 ``false``, unless overridden. Here is a list of functions that are overridden 629 for the SPARC implementation in ``SparcRegisterInfo.cpp``: 630 631 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the 632 order of the desired callee-save stack frame offset. 633 634 * ``getReservedRegs`` --- Returns a bitset indexed by physical register 635 numbers, indicating if a particular register is unavailable. 636 637 * ``hasFP`` --- Return a Boolean indicating if a function should have a 638 dedicated frame pointer register. 639 640 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo 641 instructions are used, this can be called to eliminate them. 642 643 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from 644 instructions that may use them. 645 646 * ``emitPrologue`` --- Insert prologue code into the function. 647 648 * ``emitEpilogue`` --- Insert epilogue code into the function. 649 650 .. _instruction-set: 651 652 Instruction Set 653 =============== 654 655 During the early stages of code generation, the LLVM IR code is converted to a 656 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class 657 containing target instructions. An ``SDNode`` has an opcode, operands, type 658 requirements, and operation properties. For example, is an operation 659 commutative, does an operation load from memory. The various operation node 660 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file 661 (values of the ``NodeType`` enum in the ``ISD`` namespace). 662 663 TableGen uses the following target description (``.td``) input files to 664 generate much of the code for instruction definition: 665 666 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and 667 other fundamental classes are defined. 668 669 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection 670 generators, contains ``SDTC*`` classes (selection DAG type constraint), 671 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``, 672 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``, 673 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``. 674 675 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific 676 instructions. 677 678 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates, 679 condition codes, and instructions of an instruction set. For architecture 680 modifications, a different file name may be used. For example, for Pentium 681 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with 682 MMX, this file is ``X86InstrMMX.td``. 683 684 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of 685 the target. The ``XXX.td`` file includes the other ``.td`` input files, but 686 its contents are only directly important for subtargets. 687 688 You should describe a concrete target-specific class ``XXXInstrInfo`` that 689 represents machine instructions supported by a target machine. 690 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of 691 which describes one instruction. An instruction descriptor defines: 692 693 * Opcode mnemonic 694 * Number of operands 695 * List of implicit register definitions and uses 696 * Target-independent properties (such as memory access, is commutable) 697 * Target-specific flags 698 699 The Instruction class (defined in ``Target.td``) is mostly used as a base for 700 more complex instruction classes. 701 702 .. code-block:: llvm 703 704 class Instruction { 705 string Namespace = ""; 706 dag OutOperandList; // A dag containing the MI def operand list. 707 dag InOperandList; // A dag containing the MI use operand list. 708 string AsmString = ""; // The .s format to print the instruction with. 709 list<dag> Pattern; // Set to the DAG pattern for this instruction. 710 list<Register> Uses = []; 711 list<Register> Defs = []; 712 list<Predicate> Predicates = []; // predicates turned into isel match code 713 ... remainder not shown for space ... 714 } 715 716 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a 717 target-specific instruction that is defined in ``XXXInstrInfo.td``. The 718 instruction objects should represent instructions from the architecture manual 719 of the target machine (such as the SPARC Architecture Manual for the SPARC 720 target). 721 722 A single instruction from the architecture manual is often modeled as multiple 723 target instructions, depending upon its operands. For example, a manual might 724 describe an add instruction that takes a register or an immediate operand. An 725 LLVM target could model this with two instructions named ``ADDri`` and 726 ``ADDrr``. 727 728 You should define a class for each instruction category and define each opcode 729 as a subclass of the category with appropriate parameters such as the fixed 730 binary encoding of opcodes and extended opcodes. You should map the register 731 bits to the bits of the instruction in which they are encoded (for the JIT). 732 Also you should specify how the instruction should be printed when the 733 automatic assembly printer is used. 734 735 As is described in the SPARC Architecture Manual, Version 8, there are three 736 major 32-bit formats for instructions. Format 1 is only for the ``CALL`` 737 instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high 738 bits of a register) instructions. Format 3 is for other instructions. 739 740 Each of these formats has corresponding classes in ``SparcInstrFormat.td``. 741 ``InstSP`` is a base class for other instruction classes. Additional base 742 classes are specified for more precise formats: for example in 743 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for 744 branches. There are three other base classes: ``F3_1`` for register/register 745 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for 746 floating-point operations. ``SparcInstrInfo.td`` also adds the base class 747 ``Pseudo`` for synthetic SPARC instructions. 748 749 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions 750 for the SPARC target. In ``SparcInstrInfo.td``, the following target 751 description file entry, ``LDrr``, defines the Load Integer instruction for a 752 Word (the ``LD`` SPARC opcode) from a memory address to a register. The first 753 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this 754 category of operation. The second parameter (``000000``\ :sub:`2`) is the 755 specific operation value for ``LD``/Load Word. The third parameter is the 756 output destination, which is a register operand and defined in the ``Register`` 757 target description file (``IntRegs``). 758 759 .. code-block:: llvm 760 761 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), 762 "ld [$addr], $dst", 763 [(set IntRegs:$dst, (load ADDRrr:$addr))]>; 764 765 The fourth parameter is the input source, which uses the address operand 766 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``: 767 768 .. code-block:: llvm 769 770 def MEMrr : Operand<i32> { 771 let PrintMethod = "printMemOperand"; 772 let MIOperandInfo = (ops IntRegs, IntRegs); 773 } 774 775 The fifth parameter is a string that is used by the assembly printer and can be 776 left as an empty string until the assembly printer interface is implemented. 777 The sixth and final parameter is the pattern used to match the instruction 778 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`. 779 This parameter is detailed in the next section, :ref:`instruction-selector`. 780 781 Instruction class definitions are not overloaded for different operand types, 782 so separate versions of instructions are needed for register, memory, or 783 immediate value operands. For example, to perform a Load Integer instruction 784 for a Word from an immediate operand to a register, the following instruction 785 class is defined: 786 787 .. code-block:: llvm 788 789 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), 790 "ld [$addr], $dst", 791 [(set IntRegs:$dst, (load ADDRri:$addr))]>; 792 793 Writing these definitions for so many similar instructions can involve a lot of 794 cut and paste. In ``.td`` files, the ``multiclass`` directive enables the 795 creation of templates to define several instruction classes at once (using the 796 ``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass`` 797 pattern ``F3_12`` is defined to create 2 instruction classes each time 798 ``F3_12`` is invoked: 799 800 .. code-block:: llvm 801 802 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { 803 def rr : F3_1 <2, Op3Val, 804 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 805 !strconcat(OpcStr, " $b, $c, $dst"), 806 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; 807 def ri : F3_2 <2, Op3Val, 808 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), 809 !strconcat(OpcStr, " $b, $c, $dst"), 810 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; 811 } 812 813 So when the ``defm`` directive is used for the ``XOR`` and ``ADD`` 814 instructions, as seen below, it creates four instruction objects: ``XORrr``, 815 ``XORri``, ``ADDrr``, and ``ADDri``. 816 817 .. code-block:: llvm 818 819 defm XOR : F3_12<"xor", 0b000011, xor>; 820 defm ADD : F3_12<"add", 0b000000, add>; 821 822 ``SparcInstrInfo.td`` also includes definitions for condition codes that are 823 referenced by branch instructions. The following definitions in 824 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code. 825 For example, the 10\ :sup:`th` bit represents the "greater than" condition for 826 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for 827 floats. 828 829 .. code-block:: llvm 830 831 def ICC_NE : ICC_VAL< 9>; // Not Equal 832 def ICC_E : ICC_VAL< 1>; // Equal 833 def ICC_G : ICC_VAL<10>; // Greater 834 ... 835 def FCC_U : FCC_VAL<23>; // Unordered 836 def FCC_G : FCC_VAL<22>; // Greater 837 def FCC_UG : FCC_VAL<21>; // Unordered or Greater 838 ... 839 840 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC 841 condition codes. Care must be taken to ensure the values in ``Sparc.h`` 842 correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``, 843 ``SPCC::FCC_U = 23`` and so on.) 844 845 Instruction Operand Mapping 846 --------------------------- 847 848 The code generator backend maps instruction operands to fields in the 849 instruction. Operands are assigned to unbound fields in the instruction in the 850 order they are defined. Fields are bound when they are assigned a value. For 851 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1`` 852 format instruction having three operands. 853 854 .. code-block:: llvm 855 856 def XNORrr : F3_1<2, 0b000111, 857 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 858 "xnor $b, $c, $dst", 859 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; 860 861 The instruction templates in ``SparcInstrFormats.td`` show the base class for 862 ``F3_1`` is ``InstSP``. 863 864 .. code-block:: llvm 865 866 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { 867 field bits<32> Inst; 868 let Namespace = "SP"; 869 bits<2> op; 870 let Inst{31-30} = op; 871 dag OutOperandList = outs; 872 dag InOperandList = ins; 873 let AsmString = asmstr; 874 let Pattern = pattern; 875 } 876 877 ``InstSP`` leaves the ``op`` field unbound. 878 879 .. code-block:: llvm 880 881 class F3<dag outs, dag ins, string asmstr, list<dag> pattern> 882 : InstSP<outs, ins, asmstr, pattern> { 883 bits<5> rd; 884 bits<6> op3; 885 bits<5> rs1; 886 let op{1} = 1; // Op = 2 or 3 887 let Inst{29-25} = rd; 888 let Inst{24-19} = op3; 889 let Inst{18-14} = rs1; 890 } 891 892 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1`` 893 fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and 894 ``rs1`` fields. 895 896 .. code-block:: llvm 897 898 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, 899 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { 900 bits<8> asi = 0; // asi not currently used 901 bits<5> rs2; 902 let op = opVal; 903 let op3 = op3val; 904 let Inst{13} = 0; // i field = 0 905 let Inst{12-5} = asi; // address space identifier 906 let Inst{4-0} = rs2; 907 } 908 909 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1`` 910 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2`` 911 fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``, 912 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively. 913 914 Instruction Relation Mapping 915 ---------------------------- 916 917 This TableGen feature is used to relate instructions with each other. It is 918 particularly useful when you have multiple instruction formats and need to 919 switch between them after instruction selection. This entire feature is driven 920 by relation models which can be defined in ``XXXInstrInfo.td`` files 921 according to the target-specific instruction set. Relation models are defined 922 using ``InstrMapping`` class as a base. TableGen parses all the models 923 and generates instruction relation maps using the specified information. 924 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file 925 along with the functions to query them. For the detailed information on how to 926 use this feature, please refer to :doc:`HowToUseInstrMappings`. 927 928 Implement a subclass of ``TargetInstrInfo`` 929 ------------------------------------------- 930 931 The final step is to hand code portions of ``XXXInstrInfo``, which implements 932 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`). 933 These functions return ``0`` or a Boolean or they assert, unless overridden. 934 Here's a list of functions that are overridden for the SPARC implementation in 935 ``SparcInstrInfo.cpp``: 936 937 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct 938 load from a stack slot, return the register number of the destination and the 939 ``FrameIndex`` of the stack slot. 940 941 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct 942 store to a stack slot, return the register number of the destination and the 943 ``FrameIndex`` of the stack slot. 944 945 * ``copyPhysReg`` --- Copy values between a pair of physical registers. 946 947 * ``storeRegToStackSlot`` --- Store a register value to a stack slot. 948 949 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot. 950 951 * ``storeRegToAddr`` --- Store a register value to memory. 952 953 * ``loadRegFromAddr`` --- Load a register value from memory. 954 955 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or 956 store instruction for the specified operand(s). 957 958 Branch Folding and If Conversion 959 -------------------------------- 960 961 Performance can be improved by combining instructions or by eliminating 962 instructions that are never reached. The ``AnalyzeBranch`` method in 963 ``XXXInstrInfo`` may be implemented to examine conditional instructions and 964 remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a 965 machine basic block (MBB) for opportunities for improvement, such as branch 966 folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine 967 function passes (see the source files ``BranchFolding.cpp`` and 968 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch`` 969 to improve the control flow graph that represents the instructions. 970 971 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be 972 examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC 973 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is 974 shown below. 975 976 ``AnalyzeBranch`` returns a Boolean value and takes four parameters: 977 978 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined. 979 980 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a 981 conditional branch that evaluates to true, ``TBB`` is the destination. 982 983 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to 984 false, ``FBB`` is returned as the destination. 985 986 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a 987 condition for a conditional branch. 988 989 In the simplest case, if a block ends without a branch, then it falls through 990 to the successor block. No destination blocks are specified for either ``TBB`` 991 or ``FBB``, so both parameters return ``NULL``. The start of the 992 ``AnalyzeBranch`` (see code below for the ARM target) shows the function 993 parameters and the code for the simplest case. 994 995 .. code-block:: c++ 996 997 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 998 MachineBasicBlock *&TBB, 999 MachineBasicBlock *&FBB, 1000 std::vector<MachineOperand> &Cond) const 1001 { 1002 MachineBasicBlock::iterator I = MBB.end(); 1003 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) 1004 return false; 1005 1006 If a block ends with a single unconditional branch instruction, then 1007 ``AnalyzeBranch`` (shown below) should return the destination of that branch in 1008 the ``TBB`` parameter. 1009 1010 .. code-block:: c++ 1011 1012 if (LastOpc == ARM::B || LastOpc == ARM::tB) { 1013 TBB = LastInst->getOperand(0).getMBB(); 1014 return false; 1015 } 1016 1017 If a block ends with two unconditional branches, then the second branch is 1018 never reached. In that situation, as shown below, remove the last branch 1019 instruction and return the penultimate branch in the ``TBB`` parameter. 1020 1021 .. code-block:: c++ 1022 1023 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) && 1024 (LastOpc == ARM::B || LastOpc == ARM::tB)) { 1025 TBB = SecondLastInst->getOperand(0).getMBB(); 1026 I = LastInst; 1027 I->eraseFromParent(); 1028 return false; 1029 } 1030 1031 A block may end with a single conditional branch instruction that falls through 1032 to successor block if the condition evaluates to false. In that case, 1033 ``AnalyzeBranch`` (shown below) should return the destination of that 1034 conditional branch in the ``TBB`` parameter and a list of operands in the 1035 ``Cond`` parameter to evaluate the condition. 1036 1037 .. code-block:: c++ 1038 1039 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { 1040 // Block ends with fall-through condbranch. 1041 TBB = LastInst->getOperand(0).getMBB(); 1042 Cond.push_back(LastInst->getOperand(1)); 1043 Cond.push_back(LastInst->getOperand(2)); 1044 return false; 1045 } 1046 1047 If a block ends with both a conditional branch and an ensuing unconditional 1048 branch, then ``AnalyzeBranch`` (shown below) should return the conditional 1049 branch destination (assuming it corresponds to a conditional evaluation of 1050 "``true``") in the ``TBB`` parameter and the unconditional branch destination 1051 in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A 1052 list of operands to evaluate the condition should be returned in the ``Cond`` 1053 parameter. 1054 1055 .. code-block:: c++ 1056 1057 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 1058 1059 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || 1060 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { 1061 TBB = SecondLastInst->getOperand(0).getMBB(); 1062 Cond.push_back(SecondLastInst->getOperand(1)); 1063 Cond.push_back(SecondLastInst->getOperand(2)); 1064 FBB = LastInst->getOperand(0).getMBB(); 1065 return false; 1066 } 1067 1068 For the last two cases (ending with a single conditional branch or ending with 1069 one conditional and one unconditional branch), the operands returned in the 1070 ``Cond`` parameter can be passed to methods of other instructions to create new 1071 branches or perform other operations. An implementation of ``AnalyzeBranch`` 1072 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage 1073 subsequent operations. 1074 1075 ``AnalyzeBranch`` should return false indicating success in most circumstances. 1076 ``AnalyzeBranch`` should only return true when the method is stumped about what 1077 to do, for example, if a block has three terminating branches. 1078 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot 1079 handle, such as an indirect branch. 1080 1081 .. _instruction-selector: 1082 1083 Instruction Selector 1084 ==================== 1085 1086 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of 1087 the ``SelectionDAG`` ideally represent native target instructions. During code 1088 generation, instruction selection passes are performed to convert non-native 1089 DAG instructions into native target-specific instructions. The pass described 1090 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG 1091 instruction selection. Optionally, a pass may be defined (in 1092 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch 1093 instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes 1094 operations and data types not supported natively (legalizes) in a 1095 ``SelectionDAG``. 1096 1097 TableGen generates code for instruction selection using the following target 1098 description input files: 1099 1100 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a 1101 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is 1102 included in ``XXXISelDAGToDAG.cpp``. 1103 1104 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions 1105 for the target architecture, and it generates ``XXXGenCallingConv.inc``, 1106 which is included in ``XXXISelLowering.cpp``. 1107 1108 The implementation of an instruction selection pass must include a header that 1109 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In 1110 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction 1111 selection pass into the queue of passes to run. 1112 1113 The LLVM static compiler (``llc``) is an excellent tool for visualizing the 1114 contents of DAGs. To display the ``SelectionDAG`` before or after specific 1115 processing phases, use the command line options for ``llc``, described at 1116 :ref:`SelectionDAG-Process`. 1117 1118 To describe instruction selector behavior, you should add patterns for lowering 1119 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction 1120 definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``, 1121 this entry defines a register store operation, and the last parameter describes 1122 a pattern with the store DAG operator. 1123 1124 .. code-block:: llvm 1125 1126 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), 1127 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>; 1128 1129 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``: 1130 1131 .. code-block:: llvm 1132 1133 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; 1134 1135 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function 1136 defined in an implementation of the Instructor Selector (such as 1137 ``SparcISelDAGToDAG.cpp``). 1138 1139 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined 1140 below: 1141 1142 .. code-block:: llvm 1143 1144 def store : PatFrag<(ops node:$val, node:$ptr), 1145 (st node:$val, node:$ptr), [{ 1146 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) 1147 return !ST->isTruncatingStore() && 1148 ST->getAddressingMode() == ISD::UNINDEXED; 1149 return false; 1150 }]>; 1151 1152 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the 1153 ``SelectCode`` method that is used to call the appropriate processing method 1154 for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE`` 1155 for the ``ISD::STORE`` opcode. 1156 1157 .. code-block:: c++ 1158 1159 SDNode *SelectCode(SDValue N) { 1160 ... 1161 MVT::ValueType NVT = N.getNode()->getValueType(0); 1162 switch (N.getOpcode()) { 1163 case ISD::STORE: { 1164 switch (NVT) { 1165 default: 1166 return Select_ISD_STORE(N); 1167 break; 1168 } 1169 break; 1170 } 1171 ... 1172 1173 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``, 1174 code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method 1175 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this 1176 instruction. 1177 1178 .. code-block:: c++ 1179 1180 SDNode *Select_ISD_STORE(const SDValue &N) { 1181 SDValue Chain = N.getOperand(0); 1182 if (Predicate_store(N.getNode())) { 1183 SDValue N1 = N.getOperand(1); 1184 SDValue N2 = N.getOperand(2); 1185 SDValue CPTmp0; 1186 SDValue CPTmp1; 1187 1188 // Pattern: (st:void IntRegs:i32:$src, 1189 // ADDRrr:i32:$addr)<<P:Predicate_store>> 1190 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) 1191 // Pattern complexity = 13 cost = 1 size = 0 1192 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && 1193 N1.getNode()->getValueType(0) == MVT::i32 && 1194 N2.getNode()->getValueType(0) == MVT::i32) { 1195 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); 1196 } 1197 ... 1198 1199 The SelectionDAG Legalize Phase 1200 ------------------------------- 1201 1202 The Legalize phase converts a DAG to use types and operations that are natively 1203 supported by the target. For natively unsupported types and operations, you 1204 need to add code to the target-specific ``XXXTargetLowering`` implementation to 1205 convert unsupported types and operations to supported ones. 1206 1207 In the constructor for the ``XXXTargetLowering`` class, first use the 1208 ``addRegisterClass`` method to specify which types are supported and which 1209 register classes are associated with them. The code for the register classes 1210 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in 1211 ``XXXGenRegisterInfo.h.inc``. For example, the implementation of the 1212 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``) 1213 starts with the following code: 1214 1215 .. code-block:: c++ 1216 1217 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); 1218 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); 1219 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 1220 1221 You should examine the node types in the ``ISD`` namespace 1222 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations 1223 the target natively supports. For operations that do **not** have native 1224 support, add a callback to the constructor for the ``XXXTargetLowering`` class, 1225 so the instruction selection process knows what to do. The ``TargetLowering`` 1226 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are: 1227 1228 * ``setOperationAction`` --- General operation. 1229 * ``setLoadExtAction`` --- Load with extension. 1230 * ``setTruncStoreAction`` --- Truncating store. 1231 * ``setIndexedLoadAction`` --- Indexed load. 1232 * ``setIndexedStoreAction`` --- Indexed store. 1233 * ``setConvertAction`` --- Type conversion. 1234 * ``setCondCodeAction`` --- Support for a given condition code. 1235 1236 Note: on older releases, ``setLoadXAction`` is used instead of 1237 ``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not 1238 be supported. Examine your release to see what methods are specifically 1239 supported. 1240 1241 These callbacks are used to determine that an operation does or does not work 1242 with a specified type (or types). And in all cases, the third parameter is a 1243 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or 1244 ``Legal``. ``SparcISelLowering.cpp`` contains examples of all four 1245 ``LegalAction`` values. 1246 1247 Promote 1248 ^^^^^^^ 1249 1250 For an operation without native support for a given type, the specified type 1251 may be promoted to a larger type that is supported. For example, SPARC does 1252 not support a sign-extending load for Boolean values (``i1`` type), so in 1253 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes 1254 ``i1`` type values to a large type before loading. 1255 1256 .. code-block:: c++ 1257 1258 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 1259 1260 Expand 1261 ^^^^^^ 1262 1263 For a type without native support, a value may need to be broken down further, 1264 rather than promoted. For an operation without native support, a combination 1265 of other operations may be used to similar effect. In SPARC, the 1266 floating-point sine and cosine trig operations are supported by expansion to 1267 other operations, as indicated by the third parameter, ``Expand``, to 1268 ``setOperationAction``: 1269 1270 .. code-block:: c++ 1271 1272 setOperationAction(ISD::FSIN, MVT::f32, Expand); 1273 setOperationAction(ISD::FCOS, MVT::f32, Expand); 1274 1275 Custom 1276 ^^^^^^ 1277 1278 For some operations, simple type promotion or operation expansion may be 1279 insufficient. In some cases, a special intrinsic function must be implemented. 1280 1281 For example, a constant value may require special treatment, or an operation 1282 may require spilling and restoring registers in the stack and working with 1283 register allocators. 1284 1285 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion 1286 from a floating point value to a signed integer, first the 1287 ``setOperationAction`` should be called with ``Custom`` as the third parameter: 1288 1289 .. code-block:: c++ 1290 1291 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1292 1293 In the ``LowerOperation`` method, for each ``Custom`` operation, a case 1294 statement should be added to indicate what function to call. In the following 1295 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method: 1296 1297 .. code-block:: c++ 1298 1299 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 1300 switch (Op.getOpcode()) { 1301 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1302 ... 1303 } 1304 } 1305 1306 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to 1307 convert the floating-point value to an integer. 1308 1309 .. code-block:: c++ 1310 1311 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 1312 assert(Op.getValueType() == MVT::i32); 1313 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); 1314 return DAG.getNode(ISD::BITCAST, MVT::i32, Op); 1315 } 1316 1317 Legal 1318 ^^^^^ 1319 1320 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation 1321 **is** natively supported. ``Legal`` represents the default condition, so it 1322 is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an 1323 operation to count the bits set in an integer) is natively supported only for 1324 SPARC v9. The following code enables the ``Expand`` conversion technique for 1325 non-v9 SPARC implementations. 1326 1327 .. code-block:: c++ 1328 1329 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1330 ... 1331 if (TM.getSubtarget<SparcSubtarget>().isV9()) 1332 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 1333 1334 Calling Conventions 1335 ------------------- 1336 1337 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses 1338 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in 1339 ``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor 1340 file ``XXXGenCallingConv.td`` and generate the header file 1341 ``XXXGenCallingConv.inc``, which is typically included in 1342 ``XXXISelLowering.cpp``. You can use the interfaces in 1343 ``TargetCallingConv.td`` to specify: 1344 1345 * The order of parameter allocation. 1346 1347 * Where parameters and return values are placed (that is, on the stack or in 1348 registers). 1349 1350 * Which registers may be used. 1351 1352 * Whether the caller or callee unwinds the stack. 1353 1354 The following example demonstrates the use of the ``CCIfType`` and 1355 ``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is, 1356 if the current argument is of type ``f32`` or ``f64``), then the action is 1357 performed. In this case, the ``CCAssignToReg`` action assigns the argument 1358 value to the first available register: either ``R0`` or ``R1``. 1359 1360 .. code-block:: llvm 1361 1362 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> 1363 1364 ``SparcCallingConv.td`` contains definitions for a target-specific return-value 1365 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention 1366 (``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates 1367 which registers are used for specified scalar return types. A single-precision 1368 float is returned to register ``F0``, and a double-precision float goes to 1369 register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``. 1370 1371 .. code-block:: llvm 1372 1373 def RetCC_Sparc32 : CallingConv<[ 1374 CCIfType<[i32], CCAssignToReg<[I0, I1]>>, 1375 CCIfType<[f32], CCAssignToReg<[F0]>>, 1376 CCIfType<[f64], CCAssignToReg<[D0]>> 1377 ]>; 1378 1379 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces 1380 ``CCAssignToStack``, which assigns the value to a stack slot with the specified 1381 size and alignment. In the example below, the first parameter, 4, indicates 1382 the size of the slot, and the second parameter, also 4, indicates the stack 1383 alignment along 4-byte units. (Special cases: if size is zero, then the ABI 1384 size is used; if alignment is zero, then the ABI alignment is used.) 1385 1386 .. code-block:: llvm 1387 1388 def CC_Sparc32 : CallingConv<[ 1389 // All arguments get passed in integer registers if there is space. 1390 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, 1391 CCAssignToStack<4, 4> 1392 ]>; 1393 1394 ``CCDelegateTo`` is another commonly used interface, which tries to find a 1395 specified sub-calling convention, and, if a match is found, it is invoked. In 1396 the following example (in ``X86CallingConv.td``), the definition of 1397 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is 1398 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is 1399 invoked. 1400 1401 .. code-block:: llvm 1402 1403 def RetCC_X86_32_C : CallingConv<[ 1404 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, 1405 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, 1406 CCDelegateTo<RetCC_X86Common> 1407 ]>; 1408 1409 ``CCIfCC`` is an interface that attempts to match the given name to the current 1410 calling convention. If the name identifies the current calling convention, 1411 then a specified action is invoked. In the following example (in 1412 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then 1413 ``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in 1414 use, then ``RetCC_X86_32_SSE`` is invoked. 1415 1416 .. code-block:: llvm 1417 1418 def RetCC_X86_32 : CallingConv<[ 1419 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 1420 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, 1421 CCDelegateTo<RetCC_X86_32_C> 1422 ]>; 1423 1424 Other calling convention interfaces include: 1425 1426 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action. 1427 1428 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``" 1429 attribute, then apply the action. 1430 1431 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``" 1432 attribute, then apply the action. 1433 1434 * ``CCIfNotVarArg <action>`` --- If the current function does not take a 1435 variable number of arguments, apply the action. 1436 1437 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to 1438 ``CCAssignToReg``, but with a shadow list of registers. 1439 1440 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the 1441 minimum specified size and alignment. 1442 1443 * ``CCPromoteToType <type>`` --- Promote the current value to the specified 1444 type. 1445 1446 * ``CallingConv <[actions]>`` --- Define each calling convention that is 1447 supported. 1448 1449 Assembly Printer 1450 ================ 1451 1452 During the code emission stage, the code generator may utilize an LLVM pass to 1453 produce assembly output. To do this, you want to implement the code for a 1454 printer that converts LLVM IR to a GAS-format assembly language for your target 1455 machine, using the following steps: 1456 1457 * Define all the assembly strings for your target, adding them to the 1458 instructions defined in the ``XXXInstrInfo.td`` file. (See 1459 :ref:`instruction-set`.) TableGen will produce an output file 1460 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction`` 1461 method for the ``XXXAsmPrinter`` class. 1462 1463 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of 1464 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``). 1465 1466 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for 1467 ``TargetAsmInfo`` properties and sometimes new implementations for methods. 1468 1469 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that 1470 performs the LLVM-to-assembly conversion. 1471 1472 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the 1473 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly, 1474 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo`` 1475 replacement values that override the default values in ``TargetAsmInfo.cpp``. 1476 For example in ``SparcTargetAsmInfo.cpp``: 1477 1478 .. code-block:: c++ 1479 1480 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { 1481 Data16bitsDirective = "\t.half\t"; 1482 Data32bitsDirective = "\t.word\t"; 1483 Data64bitsDirective = 0; // .xword is only supported by V9. 1484 ZeroDirective = "\t.skip\t"; 1485 CommentString = "!"; 1486 ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; 1487 } 1488 1489 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example 1490 where the target specific ``TargetAsmInfo`` class uses an overridden methods: 1491 ``ExpandInlineAsm``. 1492 1493 A target-specific implementation of ``AsmPrinter`` is written in 1494 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts 1495 the LLVM to printable assembly. The implementation must include the following 1496 headers that have declarations for the ``AsmPrinter`` and 1497 ``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of 1498 ``FunctionPass``. 1499 1500 .. code-block:: c++ 1501 1502 #include "llvm/CodeGen/AsmPrinter.h" 1503 #include "llvm/CodeGen/MachineFunctionPass.h" 1504 1505 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set 1506 up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is 1507 instantiated to process variable names. 1508 1509 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in 1510 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In 1511 ``MachineFunctionPass``, the ``runOnFunction`` method invokes 1512 ``runOnMachineFunction``. Target-specific implementations of 1513 ``runOnMachineFunction`` differ, but generally do the following to process each 1514 machine function: 1515 1516 * Call ``SetupMachineFunction`` to perform initialization. 1517 1518 * Call ``EmitConstantPool`` to print out (to the output stream) constants which 1519 have been spilled to memory. 1520 1521 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current 1522 function. 1523 1524 * Print out the label for the current function. 1525 1526 * Print out the code for the function, including basic block labels and the 1527 assembly for the instruction (using ``printInstruction``) 1528 1529 The ``XXXAsmPrinter`` implementation must also include the code generated by 1530 TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in 1531 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction`` 1532 method that may call these methods: 1533 1534 * ``printOperand`` 1535 * ``printMemOperand`` 1536 * ``printCCOperand`` (for conditional statements) 1537 * ``printDataDirective`` 1538 * ``printDeclare`` 1539 * ``printImplicitDef`` 1540 * ``printInlineAsm`` 1541 1542 The implementations of ``printDeclare``, ``printImplicitDef``, 1543 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally 1544 adequate for printing assembly and do not need to be overridden. 1545 1546 The ``printOperand`` method is implemented with a long ``switch``/``case`` 1547 statement for the type of operand: register, immediate, basic block, external 1548 symbol, global address, constant pool index, or jump table index. For an 1549 instruction with a memory address operand, the ``printMemOperand`` method 1550 should be implemented to generate the proper output. Similarly, 1551 ``printCCOperand`` should be used to print a conditional operand. 1552 1553 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be 1554 called to shut down the assembly printer. During ``doFinalization``, global 1555 variables and constants are printed to output. 1556 1557 Subtarget Support 1558 ================= 1559 1560 Subtarget support is used to inform the code generation process of instruction 1561 set variations for a given chip set. For example, the LLVM SPARC 1562 implementation provided covers three major versions of the SPARC microprocessor 1563 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 1564 64-bit architecture), and the UltraSPARC architecture. V8 has 16 1565 double-precision floating-point registers that are also usable as either 32 1566 single-precision or 8 quad-precision registers. V8 is also purely big-endian. 1567 V9 has 32 double-precision floating-point registers that are also usable as 16 1568 quad-precision registers, but cannot be used as single-precision registers. 1569 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set 1570 extensions. 1571 1572 If subtarget support is needed, you should implement a target-specific 1573 ``XXXSubtarget`` class for your architecture. This class should process the 1574 command-line options ``-mcpu=`` and ``-mattr=``. 1575 1576 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to 1577 generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the 1578 ``SubtargetFeature`` interface is defined. The first 4 string parameters of 1579 the ``SubtargetFeature`` interface are a feature name, an attribute set by the 1580 feature, the value of the attribute, and a description of the feature. (The 1581 fifth parameter is a list of features whose presence is implied, and its 1582 default value is an empty array.) 1583 1584 .. code-block:: llvm 1585 1586 class SubtargetFeature<string n, string a, string v, string d, 1587 list<SubtargetFeature> i = []> { 1588 string Name = n; 1589 string Attribute = a; 1590 string Value = v; 1591 string Desc = d; 1592 list<SubtargetFeature> Implies = i; 1593 } 1594 1595 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the 1596 following features. 1597 1598 .. code-block:: llvm 1599 1600 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", 1601 "Enable SPARC-V9 instructions">; 1602 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 1603 "V8DeprecatedInsts", "true", 1604 "Enable deprecated V8 instructions in V9 mode">; 1605 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", 1606 "Enable UltraSPARC Visual Instruction Set extensions">; 1607 1608 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to 1609 define particular SPARC processor subtypes that may have the previously 1610 described features. 1611 1612 .. code-block:: llvm 1613 1614 class Proc<string Name, list<SubtargetFeature> Features> 1615 : Processor<Name, NoItineraries, Features>; 1616 1617 def : Proc<"generic", []>; 1618 def : Proc<"v8", []>; 1619 def : Proc<"supersparc", []>; 1620 def : Proc<"sparclite", []>; 1621 def : Proc<"f934", []>; 1622 def : Proc<"hypersparc", []>; 1623 def : Proc<"sparclite86x", []>; 1624 def : Proc<"sparclet", []>; 1625 def : Proc<"tsc701", []>; 1626 def : Proc<"v9", [FeatureV9]>; 1627 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; 1628 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; 1629 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; 1630 1631 From ``Target.td`` and ``Sparc.td`` files, the resulting 1632 ``SparcGenSubtarget.inc`` specifies enum values to identify the features, 1633 arrays of constants to represent the CPU features and CPU subtypes, and the 1634 ``ParseSubtargetFeatures`` method that parses the features string that sets 1635 specified subtarget options. The generated ``SparcGenSubtarget.inc`` file 1636 should be included in the ``SparcSubtarget.cpp``. The target-specific 1637 implementation of the ``XXXSubtarget`` method should follow this pseudocode: 1638 1639 .. code-block:: c++ 1640 1641 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { 1642 // Set the default features 1643 // Determine default and user specified characteristics of the CPU 1644 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string 1645 // Perform any additional operations 1646 } 1647 1648 JIT Support 1649 =========== 1650 1651 The implementation of a target machine optionally includes a Just-In-Time (JIT) 1652 code generator that emits machine code and auxiliary structures as binary 1653 output that can be written directly to memory. To do this, implement JIT code 1654 generation by performing the following steps: 1655 1656 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass 1657 that transforms target-machine instructions into relocatable machine 1658 code. 1659 1660 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for 1661 target-specific code-generation activities, such as emitting machine code and 1662 stubs. 1663 1664 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object 1665 through its ``getJITInfo`` method. 1666 1667 There are several different approaches to writing the JIT support code. For 1668 instance, TableGen and target descriptor files may be used for creating a JIT 1669 code generator, but are not mandatory. For the Alpha and PowerPC target 1670 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which 1671 contains the binary coding of machine instructions and the 1672 ``getBinaryCodeForInstr`` method to access those codes. Other JIT 1673 implementations do not. 1674 1675 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the 1676 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the 1677 ``MachineCodeEmitter`` class containing code for several callback functions 1678 that write data (in bytes, words, strings, etc.) to the output stream. 1679 1680 Machine Code Emitter 1681 -------------------- 1682 1683 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is 1684 implemented as a function pass (subclass of ``MachineFunctionPass``). The 1685 target-specific implementation of ``runOnMachineFunction`` (invoked by 1686 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the 1687 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and 1688 emit binary code. ``emitInstruction`` is largely implemented with case 1689 statements on the instruction types defined in ``XXXInstrInfo.h``. For 1690 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built 1691 around the following ``switch``/``case`` statements: 1692 1693 .. code-block:: c++ 1694 1695 switch (Desc->TSFlags & X86::FormMask) { 1696 case X86II::Pseudo: // for not yet implemented instructions 1697 ... // or pseudo-instructions 1698 break; 1699 case X86II::RawFrm: // for instructions with a fixed opcode value 1700 ... 1701 break; 1702 case X86II::AddRegFrm: // for instructions that have one register operand 1703 ... // added to their opcode 1704 break; 1705 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte 1706 ... // to specify a destination (register) 1707 break; 1708 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte 1709 ... // to specify a destination (memory) 1710 break; 1711 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte 1712 ... // to specify a source (register) 1713 break; 1714 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte 1715 ... // to specify a source (memory) 1716 break; 1717 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on 1718 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and 1719 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field 1720 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data 1721 ... 1722 break; 1723 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on 1724 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and 1725 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field 1726 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data 1727 ... 1728 break; 1729 case X86II::MRMInitReg: // for instructions whose source and 1730 ... // destination are the same register 1731 break; 1732 } 1733 1734 The implementations of these case statements often first emit the opcode and 1735 then get the operand(s). Then depending upon the operand, helper methods may 1736 be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``, 1737 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is 1738 the opcode added to the register operand. Then an object representing the 1739 machine operand, ``MO1``, is extracted. The helper methods such as 1740 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``, 1741 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type. 1742 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``, 1743 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``, 1744 and ``emitJumpTableAddress`` that emit the data into the output stream.) 1745 1746 .. code-block:: c++ 1747 1748 case X86II::AddRegFrm: 1749 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); 1750 1751 if (CurOp != NumOps) { 1752 const MachineOperand &MO1 = MI.getOperand(CurOp++); 1753 unsigned Size = X86InstrInfo::sizeOfImm(Desc); 1754 if (MO1.isImmediate()) 1755 emitConstant(MO1.getImm(), Size); 1756 else { 1757 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word 1758 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); 1759 if (Opcode == X86::MOV64ri) 1760 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? 1761 if (MO1.isGlobalAddress()) { 1762 bool NeedStub = isa<Function>(MO1.getGlobal()); 1763 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); 1764 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, 1765 NeedStub, isLazy); 1766 } else if (MO1.isExternalSymbol()) 1767 emitExternalSymbolAddress(MO1.getSymbolName(), rt); 1768 else if (MO1.isConstantPoolIndex()) 1769 emitConstPoolAddress(MO1.getIndex(), rt); 1770 else if (MO1.isJumpTableIndex()) 1771 emitJumpTableAddress(MO1.getIndex(), rt); 1772 } 1773 } 1774 break; 1775 1776 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which 1777 is a ``RelocationType`` enum that may be used to relocate addresses (for 1778 example, a global address with a PIC base offset). The ``RelocationType`` enum 1779 for that target is defined in the short target-specific ``XXXRelocations.h`` 1780 file. The ``RelocationType`` is used by the ``relocate`` method defined in 1781 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols. 1782 1783 For example, ``X86Relocations.h`` specifies the following relocation types for 1784 the X86 addresses. In all four cases, the relocated value is added to the 1785 value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``, 1786 there is an additional initial adjustment. 1787 1788 .. code-block:: c++ 1789 1790 enum RelocationType { 1791 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc 1792 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base 1793 reloc_absolute_word = 2, // absolute relocation; no additional adjustment 1794 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment 1795 }; 1796 1797 Target JIT Info 1798 --------------- 1799 1800 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific 1801 code-generation activities, such as emitting machine code and stubs. At 1802 minimum, a target-specific version of ``XXXJITInfo`` implements the following: 1803 1804 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a 1805 function that is used for compilation. 1806 1807 * ``emitFunctionStub`` --- Returns a native function with a specified address 1808 for a callback function. 1809 1810 * ``relocate`` --- Changes the addresses of referenced globals, based on 1811 relocation types. 1812 1813 * Callback function that are wrappers to a function stub that is used when the 1814 real target is not initially known. 1815 1816 ``getLazyResolverFunction`` is generally trivial to implement. It makes the 1817 incoming parameter as the global ``JITCompilerFunction`` and returns the 1818 callback function that will be used a function wrapper. For the Alpha target 1819 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is 1820 simply: 1821 1822 .. code-block:: c++ 1823 1824 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( 1825 JITCompilerFn F) { 1826 JITCompilerFunction = F; 1827 return AlphaCompilationCallback; 1828 } 1829 1830 For the X86 target, the ``getLazyResolverFunction`` implementation is a little 1831 more complicated, because it returns a different callback function for 1832 processors with SSE instructions and XMM registers. 1833 1834 The callback function initially saves and later restores the callee register 1835 values, incoming arguments, and frame and return address. The callback 1836 function needs low-level access to the registers or stack, so it is typically 1837 implemented with assembler. 1838 1839