Home | History | Annotate | Download | only in IPA
      1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inline cost analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "inline-cost"
     15 #include "llvm/Analysis/InlineCost.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/IR/CallingConv.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/InstVisitor.h"
     30 #include "llvm/Support/CallSite.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/GetElementPtrTypeIterator.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 
     35 using namespace llvm;
     36 
     37 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
     38 
     39 namespace {
     40 
     41 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
     42   typedef InstVisitor<CallAnalyzer, bool> Base;
     43   friend class InstVisitor<CallAnalyzer, bool>;
     44 
     45   // DataLayout if available, or null.
     46   const DataLayout *const TD;
     47 
     48   /// The TargetTransformInfo available for this compilation.
     49   const TargetTransformInfo &TTI;
     50 
     51   // The called function.
     52   Function &F;
     53 
     54   int Threshold;
     55   int Cost;
     56 
     57   bool IsCallerRecursive;
     58   bool IsRecursiveCall;
     59   bool ExposesReturnsTwice;
     60   bool HasDynamicAlloca;
     61   bool ContainsNoDuplicateCall;
     62 
     63   /// Number of bytes allocated statically by the callee.
     64   uint64_t AllocatedSize;
     65   unsigned NumInstructions, NumVectorInstructions;
     66   int FiftyPercentVectorBonus, TenPercentVectorBonus;
     67   int VectorBonus;
     68 
     69   // While we walk the potentially-inlined instructions, we build up and
     70   // maintain a mapping of simplified values specific to this callsite. The
     71   // idea is to propagate any special information we have about arguments to
     72   // this call through the inlinable section of the function, and account for
     73   // likely simplifications post-inlining. The most important aspect we track
     74   // is CFG altering simplifications -- when we prove a basic block dead, that
     75   // can cause dramatic shifts in the cost of inlining a function.
     76   DenseMap<Value *, Constant *> SimplifiedValues;
     77 
     78   // Keep track of the values which map back (through function arguments) to
     79   // allocas on the caller stack which could be simplified through SROA.
     80   DenseMap<Value *, Value *> SROAArgValues;
     81 
     82   // The mapping of caller Alloca values to their accumulated cost savings. If
     83   // we have to disable SROA for one of the allocas, this tells us how much
     84   // cost must be added.
     85   DenseMap<Value *, int> SROAArgCosts;
     86 
     87   // Keep track of values which map to a pointer base and constant offset.
     88   DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
     89 
     90   // Custom simplification helper routines.
     91   bool isAllocaDerivedArg(Value *V);
     92   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
     93                             DenseMap<Value *, int>::iterator &CostIt);
     94   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
     95   void disableSROA(Value *V);
     96   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
     97                           int InstructionCost);
     98   bool handleSROACandidate(bool IsSROAValid,
     99                            DenseMap<Value *, int>::iterator CostIt,
    100                            int InstructionCost);
    101   bool isGEPOffsetConstant(GetElementPtrInst &GEP);
    102   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
    103   bool simplifyCallSite(Function *F, CallSite CS);
    104   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
    105 
    106   // Custom analysis routines.
    107   bool analyzeBlock(BasicBlock *BB);
    108 
    109   // Disable several entry points to the visitor so we don't accidentally use
    110   // them by declaring but not defining them here.
    111   void visit(Module *);     void visit(Module &);
    112   void visit(Function *);   void visit(Function &);
    113   void visit(BasicBlock *); void visit(BasicBlock &);
    114 
    115   // Provide base case for our instruction visit.
    116   bool visitInstruction(Instruction &I);
    117 
    118   // Our visit overrides.
    119   bool visitAlloca(AllocaInst &I);
    120   bool visitPHI(PHINode &I);
    121   bool visitGetElementPtr(GetElementPtrInst &I);
    122   bool visitBitCast(BitCastInst &I);
    123   bool visitPtrToInt(PtrToIntInst &I);
    124   bool visitIntToPtr(IntToPtrInst &I);
    125   bool visitCastInst(CastInst &I);
    126   bool visitUnaryInstruction(UnaryInstruction &I);
    127   bool visitICmp(ICmpInst &I);
    128   bool visitSub(BinaryOperator &I);
    129   bool visitBinaryOperator(BinaryOperator &I);
    130   bool visitLoad(LoadInst &I);
    131   bool visitStore(StoreInst &I);
    132   bool visitExtractValue(ExtractValueInst &I);
    133   bool visitInsertValue(InsertValueInst &I);
    134   bool visitCallSite(CallSite CS);
    135 
    136 public:
    137   CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
    138                Function &Callee, int Threshold)
    139       : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
    140         IsCallerRecursive(false), IsRecursiveCall(false),
    141         ExposesReturnsTwice(false), HasDynamicAlloca(false),
    142         ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
    143         NumVectorInstructions(0), FiftyPercentVectorBonus(0),
    144         TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
    145         NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
    146         NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
    147         SROACostSavings(0), SROACostSavingsLost(0) {}
    148 
    149   bool analyzeCall(CallSite CS);
    150 
    151   int getThreshold() { return Threshold; }
    152   int getCost() { return Cost; }
    153 
    154   // Keep a bunch of stats about the cost savings found so we can print them
    155   // out when debugging.
    156   unsigned NumConstantArgs;
    157   unsigned NumConstantOffsetPtrArgs;
    158   unsigned NumAllocaArgs;
    159   unsigned NumConstantPtrCmps;
    160   unsigned NumConstantPtrDiffs;
    161   unsigned NumInstructionsSimplified;
    162   unsigned SROACostSavings;
    163   unsigned SROACostSavingsLost;
    164 
    165   void dump();
    166 };
    167 
    168 } // namespace
    169 
    170 /// \brief Test whether the given value is an Alloca-derived function argument.
    171 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
    172   return SROAArgValues.count(V);
    173 }
    174 
    175 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
    176 /// Returns false if V does not map to a SROA-candidate.
    177 bool CallAnalyzer::lookupSROAArgAndCost(
    178     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
    179   if (SROAArgValues.empty() || SROAArgCosts.empty())
    180     return false;
    181 
    182   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
    183   if (ArgIt == SROAArgValues.end())
    184     return false;
    185 
    186   Arg = ArgIt->second;
    187   CostIt = SROAArgCosts.find(Arg);
    188   return CostIt != SROAArgCosts.end();
    189 }
    190 
    191 /// \brief Disable SROA for the candidate marked by this cost iterator.
    192 ///
    193 /// This marks the candidate as no longer viable for SROA, and adds the cost
    194 /// savings associated with it back into the inline cost measurement.
    195 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
    196   // If we're no longer able to perform SROA we need to undo its cost savings
    197   // and prevent subsequent analysis.
    198   Cost += CostIt->second;
    199   SROACostSavings -= CostIt->second;
    200   SROACostSavingsLost += CostIt->second;
    201   SROAArgCosts.erase(CostIt);
    202 }
    203 
    204 /// \brief If 'V' maps to a SROA candidate, disable SROA for it.
    205 void CallAnalyzer::disableSROA(Value *V) {
    206   Value *SROAArg;
    207   DenseMap<Value *, int>::iterator CostIt;
    208   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
    209     disableSROA(CostIt);
    210 }
    211 
    212 /// \brief Accumulate the given cost for a particular SROA candidate.
    213 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
    214                                       int InstructionCost) {
    215   CostIt->second += InstructionCost;
    216   SROACostSavings += InstructionCost;
    217 }
    218 
    219 /// \brief Helper for the common pattern of handling a SROA candidate.
    220 /// Either accumulates the cost savings if the SROA remains valid, or disables
    221 /// SROA for the candidate.
    222 bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
    223                                        DenseMap<Value *, int>::iterator CostIt,
    224                                        int InstructionCost) {
    225   if (IsSROAValid) {
    226     accumulateSROACost(CostIt, InstructionCost);
    227     return true;
    228   }
    229 
    230   disableSROA(CostIt);
    231   return false;
    232 }
    233 
    234 /// \brief Check whether a GEP's indices are all constant.
    235 ///
    236 /// Respects any simplified values known during the analysis of this callsite.
    237 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
    238   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
    239     if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
    240       return false;
    241 
    242   return true;
    243 }
    244 
    245 /// \brief Accumulate a constant GEP offset into an APInt if possible.
    246 ///
    247 /// Returns false if unable to compute the offset for any reason. Respects any
    248 /// simplified values known during the analysis of this callsite.
    249 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
    250   if (!TD)
    251     return false;
    252 
    253   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    254   assert(IntPtrWidth == Offset.getBitWidth());
    255 
    256   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
    257        GTI != GTE; ++GTI) {
    258     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    259     if (!OpC)
    260       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
    261         OpC = dyn_cast<ConstantInt>(SimpleOp);
    262     if (!OpC)
    263       return false;
    264     if (OpC->isZero()) continue;
    265 
    266     // Handle a struct index, which adds its field offset to the pointer.
    267     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    268       unsigned ElementIdx = OpC->getZExtValue();
    269       const StructLayout *SL = TD->getStructLayout(STy);
    270       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
    271       continue;
    272     }
    273 
    274     APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
    275     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
    276   }
    277   return true;
    278 }
    279 
    280 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
    281   // FIXME: Check whether inlining will turn a dynamic alloca into a static
    282   // alloca, and handle that case.
    283 
    284   // Accumulate the allocated size.
    285   if (I.isStaticAlloca()) {
    286     Type *Ty = I.getAllocatedType();
    287     AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
    288                       Ty->getPrimitiveSizeInBits());
    289   }
    290 
    291   // We will happily inline static alloca instructions.
    292   if (I.isStaticAlloca())
    293     return Base::visitAlloca(I);
    294 
    295   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
    296   // a variety of reasons, and so we would like to not inline them into
    297   // functions which don't currently have a dynamic alloca. This simply
    298   // disables inlining altogether in the presence of a dynamic alloca.
    299   HasDynamicAlloca = true;
    300   return false;
    301 }
    302 
    303 bool CallAnalyzer::visitPHI(PHINode &I) {
    304   // FIXME: We should potentially be tracking values through phi nodes,
    305   // especially when they collapse to a single value due to deleted CFG edges
    306   // during inlining.
    307 
    308   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
    309   // though we don't want to propagate it's bonuses. The idea is to disable
    310   // SROA if it *might* be used in an inappropriate manner.
    311 
    312   // Phi nodes are always zero-cost.
    313   return true;
    314 }
    315 
    316 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
    317   Value *SROAArg;
    318   DenseMap<Value *, int>::iterator CostIt;
    319   bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
    320                                             SROAArg, CostIt);
    321 
    322   // Try to fold GEPs of constant-offset call site argument pointers. This
    323   // requires target data and inbounds GEPs.
    324   if (TD && I.isInBounds()) {
    325     // Check if we have a base + offset for the pointer.
    326     Value *Ptr = I.getPointerOperand();
    327     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
    328     if (BaseAndOffset.first) {
    329       // Check if the offset of this GEP is constant, and if so accumulate it
    330       // into Offset.
    331       if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
    332         // Non-constant GEPs aren't folded, and disable SROA.
    333         if (SROACandidate)
    334           disableSROA(CostIt);
    335         return false;
    336       }
    337 
    338       // Add the result as a new mapping to Base + Offset.
    339       ConstantOffsetPtrs[&I] = BaseAndOffset;
    340 
    341       // Also handle SROA candidates here, we already know that the GEP is
    342       // all-constant indexed.
    343       if (SROACandidate)
    344         SROAArgValues[&I] = SROAArg;
    345 
    346       return true;
    347     }
    348   }
    349 
    350   if (isGEPOffsetConstant(I)) {
    351     if (SROACandidate)
    352       SROAArgValues[&I] = SROAArg;
    353 
    354     // Constant GEPs are modeled as free.
    355     return true;
    356   }
    357 
    358   // Variable GEPs will require math and will disable SROA.
    359   if (SROACandidate)
    360     disableSROA(CostIt);
    361   return false;
    362 }
    363 
    364 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
    365   // Propagate constants through bitcasts.
    366   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    367   if (!COp)
    368     COp = SimplifiedValues.lookup(I.getOperand(0));
    369   if (COp)
    370     if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
    371       SimplifiedValues[&I] = C;
    372       return true;
    373     }
    374 
    375   // Track base/offsets through casts
    376   std::pair<Value *, APInt> BaseAndOffset
    377     = ConstantOffsetPtrs.lookup(I.getOperand(0));
    378   // Casts don't change the offset, just wrap it up.
    379   if (BaseAndOffset.first)
    380     ConstantOffsetPtrs[&I] = BaseAndOffset;
    381 
    382   // Also look for SROA candidates here.
    383   Value *SROAArg;
    384   DenseMap<Value *, int>::iterator CostIt;
    385   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    386     SROAArgValues[&I] = SROAArg;
    387 
    388   // Bitcasts are always zero cost.
    389   return true;
    390 }
    391 
    392 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
    393   // Propagate constants through ptrtoint.
    394   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    395   if (!COp)
    396     COp = SimplifiedValues.lookup(I.getOperand(0));
    397   if (COp)
    398     if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
    399       SimplifiedValues[&I] = C;
    400       return true;
    401     }
    402 
    403   // Track base/offset pairs when converted to a plain integer provided the
    404   // integer is large enough to represent the pointer.
    405   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
    406   if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
    407     std::pair<Value *, APInt> BaseAndOffset
    408       = ConstantOffsetPtrs.lookup(I.getOperand(0));
    409     if (BaseAndOffset.first)
    410       ConstantOffsetPtrs[&I] = BaseAndOffset;
    411   }
    412 
    413   // This is really weird. Technically, ptrtoint will disable SROA. However,
    414   // unless that ptrtoint is *used* somewhere in the live basic blocks after
    415   // inlining, it will be nuked, and SROA should proceed. All of the uses which
    416   // would block SROA would also block SROA if applied directly to a pointer,
    417   // and so we can just add the integer in here. The only places where SROA is
    418   // preserved either cannot fire on an integer, or won't in-and-of themselves
    419   // disable SROA (ext) w/o some later use that we would see and disable.
    420   Value *SROAArg;
    421   DenseMap<Value *, int>::iterator CostIt;
    422   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    423     SROAArgValues[&I] = SROAArg;
    424 
    425   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    426 }
    427 
    428 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
    429   // Propagate constants through ptrtoint.
    430   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    431   if (!COp)
    432     COp = SimplifiedValues.lookup(I.getOperand(0));
    433   if (COp)
    434     if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
    435       SimplifiedValues[&I] = C;
    436       return true;
    437     }
    438 
    439   // Track base/offset pairs when round-tripped through a pointer without
    440   // modifications provided the integer is not too large.
    441   Value *Op = I.getOperand(0);
    442   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
    443   if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
    444     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    445     if (BaseAndOffset.first)
    446       ConstantOffsetPtrs[&I] = BaseAndOffset;
    447   }
    448 
    449   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
    450   Value *SROAArg;
    451   DenseMap<Value *, int>::iterator CostIt;
    452   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
    453     SROAArgValues[&I] = SROAArg;
    454 
    455   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    456 }
    457 
    458 bool CallAnalyzer::visitCastInst(CastInst &I) {
    459   // Propagate constants through ptrtoint.
    460   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    461   if (!COp)
    462     COp = SimplifiedValues.lookup(I.getOperand(0));
    463   if (COp)
    464     if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
    465       SimplifiedValues[&I] = C;
    466       return true;
    467     }
    468 
    469   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
    470   disableSROA(I.getOperand(0));
    471 
    472   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    473 }
    474 
    475 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
    476   Value *Operand = I.getOperand(0);
    477   Constant *COp = dyn_cast<Constant>(Operand);
    478   if (!COp)
    479     COp = SimplifiedValues.lookup(Operand);
    480   if (COp)
    481     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
    482                                                COp, TD)) {
    483       SimplifiedValues[&I] = C;
    484       return true;
    485     }
    486 
    487   // Disable any SROA on the argument to arbitrary unary operators.
    488   disableSROA(Operand);
    489 
    490   return false;
    491 }
    492 
    493 bool CallAnalyzer::visitICmp(ICmpInst &I) {
    494   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    495   // First try to handle simplified comparisons.
    496   if (!isa<Constant>(LHS))
    497     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    498       LHS = SimpleLHS;
    499   if (!isa<Constant>(RHS))
    500     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    501       RHS = SimpleRHS;
    502   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    503     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    504       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    505         SimplifiedValues[&I] = C;
    506         return true;
    507       }
    508 
    509   // Otherwise look for a comparison between constant offset pointers with
    510   // a common base.
    511   Value *LHSBase, *RHSBase;
    512   APInt LHSOffset, RHSOffset;
    513   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    514   if (LHSBase) {
    515     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    516     if (RHSBase && LHSBase == RHSBase) {
    517       // We have common bases, fold the icmp to a constant based on the
    518       // offsets.
    519       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    520       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    521       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    522         SimplifiedValues[&I] = C;
    523         ++NumConstantPtrCmps;
    524         return true;
    525       }
    526     }
    527   }
    528 
    529   // If the comparison is an equality comparison with null, we can simplify it
    530   // for any alloca-derived argument.
    531   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
    532     if (isAllocaDerivedArg(I.getOperand(0))) {
    533       // We can actually predict the result of comparisons between an
    534       // alloca-derived value and null. Note that this fires regardless of
    535       // SROA firing.
    536       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    537       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
    538                                         : ConstantInt::getFalse(I.getType());
    539       return true;
    540     }
    541 
    542   // Finally check for SROA candidates in comparisons.
    543   Value *SROAArg;
    544   DenseMap<Value *, int>::iterator CostIt;
    545   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    546     if (isa<ConstantPointerNull>(I.getOperand(1))) {
    547       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    548       return true;
    549     }
    550 
    551     disableSROA(CostIt);
    552   }
    553 
    554   return false;
    555 }
    556 
    557 bool CallAnalyzer::visitSub(BinaryOperator &I) {
    558   // Try to handle a special case: we can fold computing the difference of two
    559   // constant-related pointers.
    560   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    561   Value *LHSBase, *RHSBase;
    562   APInt LHSOffset, RHSOffset;
    563   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    564   if (LHSBase) {
    565     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    566     if (RHSBase && LHSBase == RHSBase) {
    567       // We have common bases, fold the subtract to a constant based on the
    568       // offsets.
    569       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    570       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    571       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
    572         SimplifiedValues[&I] = C;
    573         ++NumConstantPtrDiffs;
    574         return true;
    575       }
    576     }
    577   }
    578 
    579   // Otherwise, fall back to the generic logic for simplifying and handling
    580   // instructions.
    581   return Base::visitSub(I);
    582 }
    583 
    584 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
    585   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    586   if (!isa<Constant>(LHS))
    587     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    588       LHS = SimpleLHS;
    589   if (!isa<Constant>(RHS))
    590     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    591       RHS = SimpleRHS;
    592   Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
    593   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
    594     SimplifiedValues[&I] = C;
    595     return true;
    596   }
    597 
    598   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
    599   disableSROA(LHS);
    600   disableSROA(RHS);
    601 
    602   return false;
    603 }
    604 
    605 bool CallAnalyzer::visitLoad(LoadInst &I) {
    606   Value *SROAArg;
    607   DenseMap<Value *, int>::iterator CostIt;
    608   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    609     if (I.isSimple()) {
    610       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    611       return true;
    612     }
    613 
    614     disableSROA(CostIt);
    615   }
    616 
    617   return false;
    618 }
    619 
    620 bool CallAnalyzer::visitStore(StoreInst &I) {
    621   Value *SROAArg;
    622   DenseMap<Value *, int>::iterator CostIt;
    623   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    624     if (I.isSimple()) {
    625       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    626       return true;
    627     }
    628 
    629     disableSROA(CostIt);
    630   }
    631 
    632   return false;
    633 }
    634 
    635 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
    636   // Constant folding for extract value is trivial.
    637   Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
    638   if (!C)
    639     C = SimplifiedValues.lookup(I.getAggregateOperand());
    640   if (C) {
    641     SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
    642     return true;
    643   }
    644 
    645   // SROA can look through these but give them a cost.
    646   return false;
    647 }
    648 
    649 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
    650   // Constant folding for insert value is trivial.
    651   Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
    652   if (!AggC)
    653     AggC = SimplifiedValues.lookup(I.getAggregateOperand());
    654   Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
    655   if (!InsertedC)
    656     InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
    657   if (AggC && InsertedC) {
    658     SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
    659                                                         I.getIndices());
    660     return true;
    661   }
    662 
    663   // SROA can look through these but give them a cost.
    664   return false;
    665 }
    666 
    667 /// \brief Try to simplify a call site.
    668 ///
    669 /// Takes a concrete function and callsite and tries to actually simplify it by
    670 /// analyzing the arguments and call itself with instsimplify. Returns true if
    671 /// it has simplified the callsite to some other entity (a constant), making it
    672 /// free.
    673 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
    674   // FIXME: Using the instsimplify logic directly for this is inefficient
    675   // because we have to continually rebuild the argument list even when no
    676   // simplifications can be performed. Until that is fixed with remapping
    677   // inside of instsimplify, directly constant fold calls here.
    678   if (!canConstantFoldCallTo(F))
    679     return false;
    680 
    681   // Try to re-map the arguments to constants.
    682   SmallVector<Constant *, 4> ConstantArgs;
    683   ConstantArgs.reserve(CS.arg_size());
    684   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
    685        I != E; ++I) {
    686     Constant *C = dyn_cast<Constant>(*I);
    687     if (!C)
    688       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
    689     if (!C)
    690       return false; // This argument doesn't map to a constant.
    691 
    692     ConstantArgs.push_back(C);
    693   }
    694   if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
    695     SimplifiedValues[CS.getInstruction()] = C;
    696     return true;
    697   }
    698 
    699   return false;
    700 }
    701 
    702 bool CallAnalyzer::visitCallSite(CallSite CS) {
    703   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
    704       !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    705                                       Attribute::ReturnsTwice)) {
    706     // This aborts the entire analysis.
    707     ExposesReturnsTwice = true;
    708     return false;
    709   }
    710   if (CS.isCall() &&
    711       cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
    712     ContainsNoDuplicateCall = true;
    713 
    714   if (Function *F = CS.getCalledFunction()) {
    715     // When we have a concrete function, first try to simplify it directly.
    716     if (simplifyCallSite(F, CS))
    717       return true;
    718 
    719     // Next check if it is an intrinsic we know about.
    720     // FIXME: Lift this into part of the InstVisitor.
    721     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
    722       switch (II->getIntrinsicID()) {
    723       default:
    724         return Base::visitCallSite(CS);
    725 
    726       case Intrinsic::memset:
    727       case Intrinsic::memcpy:
    728       case Intrinsic::memmove:
    729         // SROA can usually chew through these intrinsics, but they aren't free.
    730         return false;
    731       }
    732     }
    733 
    734     if (F == CS.getInstruction()->getParent()->getParent()) {
    735       // This flag will fully abort the analysis, so don't bother with anything
    736       // else.
    737       IsRecursiveCall = true;
    738       return false;
    739     }
    740 
    741     if (TTI.isLoweredToCall(F)) {
    742       // We account for the average 1 instruction per call argument setup
    743       // here.
    744       Cost += CS.arg_size() * InlineConstants::InstrCost;
    745 
    746       // Everything other than inline ASM will also have a significant cost
    747       // merely from making the call.
    748       if (!isa<InlineAsm>(CS.getCalledValue()))
    749         Cost += InlineConstants::CallPenalty;
    750     }
    751 
    752     return Base::visitCallSite(CS);
    753   }
    754 
    755   // Otherwise we're in a very special case -- an indirect function call. See
    756   // if we can be particularly clever about this.
    757   Value *Callee = CS.getCalledValue();
    758 
    759   // First, pay the price of the argument setup. We account for the average
    760   // 1 instruction per call argument setup here.
    761   Cost += CS.arg_size() * InlineConstants::InstrCost;
    762 
    763   // Next, check if this happens to be an indirect function call to a known
    764   // function in this inline context. If not, we've done all we can.
    765   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    766   if (!F)
    767     return Base::visitCallSite(CS);
    768 
    769   // If we have a constant that we are calling as a function, we can peer
    770   // through it and see the function target. This happens not infrequently
    771   // during devirtualization and so we want to give it a hefty bonus for
    772   // inlining, but cap that bonus in the event that inlining wouldn't pan
    773   // out. Pretend to inline the function, with a custom threshold.
    774   CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
    775   if (CA.analyzeCall(CS)) {
    776     // We were able to inline the indirect call! Subtract the cost from the
    777     // bonus we want to apply, but don't go below zero.
    778     Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
    779   }
    780 
    781   return Base::visitCallSite(CS);
    782 }
    783 
    784 bool CallAnalyzer::visitInstruction(Instruction &I) {
    785   // Some instructions are free. All of the free intrinsics can also be
    786   // handled by SROA, etc.
    787   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
    788     return true;
    789 
    790   // We found something we don't understand or can't handle. Mark any SROA-able
    791   // values in the operand list as no longer viable.
    792   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    793     disableSROA(*OI);
    794 
    795   return false;
    796 }
    797 
    798 
    799 /// \brief Analyze a basic block for its contribution to the inline cost.
    800 ///
    801 /// This method walks the analyzer over every instruction in the given basic
    802 /// block and accounts for their cost during inlining at this callsite. It
    803 /// aborts early if the threshold has been exceeded or an impossible to inline
    804 /// construct has been detected. It returns false if inlining is no longer
    805 /// viable, and true if inlining remains viable.
    806 bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
    807   for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
    808        I != E; ++I) {
    809     ++NumInstructions;
    810     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
    811       ++NumVectorInstructions;
    812 
    813     // If the instruction simplified to a constant, there is no cost to this
    814     // instruction. Visit the instructions using our InstVisitor to account for
    815     // all of the per-instruction logic. The visit tree returns true if we
    816     // consumed the instruction in any way, and false if the instruction's base
    817     // cost should count against inlining.
    818     if (Base::visit(I))
    819       ++NumInstructionsSimplified;
    820     else
    821       Cost += InlineConstants::InstrCost;
    822 
    823     // If the visit this instruction detected an uninlinable pattern, abort.
    824     if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
    825       return false;
    826 
    827     // If the caller is a recursive function then we don't want to inline
    828     // functions which allocate a lot of stack space because it would increase
    829     // the caller stack usage dramatically.
    830     if (IsCallerRecursive &&
    831         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
    832       return false;
    833 
    834     if (NumVectorInstructions > NumInstructions/2)
    835       VectorBonus = FiftyPercentVectorBonus;
    836     else if (NumVectorInstructions > NumInstructions/10)
    837       VectorBonus = TenPercentVectorBonus;
    838     else
    839       VectorBonus = 0;
    840 
    841     // Check if we've past the threshold so we don't spin in huge basic
    842     // blocks that will never inline.
    843     if (Cost > (Threshold + VectorBonus))
    844       return false;
    845   }
    846 
    847   return true;
    848 }
    849 
    850 /// \brief Compute the base pointer and cumulative constant offsets for V.
    851 ///
    852 /// This strips all constant offsets off of V, leaving it the base pointer, and
    853 /// accumulates the total constant offset applied in the returned constant. It
    854 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    855 /// no constant offsets applied.
    856 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
    857   if (!TD || !V->getType()->isPointerTy())
    858     return 0;
    859 
    860   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    861   APInt Offset = APInt::getNullValue(IntPtrWidth);
    862 
    863   // Even though we don't look through PHI nodes, we could be called on an
    864   // instruction in an unreachable block, which may be on a cycle.
    865   SmallPtrSet<Value *, 4> Visited;
    866   Visited.insert(V);
    867   do {
    868     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    869       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
    870         return 0;
    871       V = GEP->getPointerOperand();
    872     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    873       V = cast<Operator>(V)->getOperand(0);
    874     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    875       if (GA->mayBeOverridden())
    876         break;
    877       V = GA->getAliasee();
    878     } else {
    879       break;
    880     }
    881     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    882   } while (Visited.insert(V));
    883 
    884   Type *IntPtrTy = TD->getIntPtrType(V->getContext());
    885   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
    886 }
    887 
    888 /// \brief Analyze a call site for potential inlining.
    889 ///
    890 /// Returns true if inlining this call is viable, and false if it is not
    891 /// viable. It computes the cost and adjusts the threshold based on numerous
    892 /// factors and heuristics. If this method returns false but the computed cost
    893 /// is below the computed threshold, then inlining was forcibly disabled by
    894 /// some artifact of the routine.
    895 bool CallAnalyzer::analyzeCall(CallSite CS) {
    896   ++NumCallsAnalyzed;
    897 
    898   // Track whether the post-inlining function would have more than one basic
    899   // block. A single basic block is often intended for inlining. Balloon the
    900   // threshold by 50% until we pass the single-BB phase.
    901   bool SingleBB = true;
    902   int SingleBBBonus = Threshold / 2;
    903   Threshold += SingleBBBonus;
    904 
    905   // Perform some tweaks to the cost and threshold based on the direct
    906   // callsite information.
    907 
    908   // We want to more aggressively inline vector-dense kernels, so up the
    909   // threshold, and we'll lower it if the % of vector instructions gets too
    910   // low.
    911   assert(NumInstructions == 0);
    912   assert(NumVectorInstructions == 0);
    913   FiftyPercentVectorBonus = Threshold;
    914   TenPercentVectorBonus = Threshold / 2;
    915 
    916   // Give out bonuses per argument, as the instructions setting them up will
    917   // be gone after inlining.
    918   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
    919     if (TD && CS.isByValArgument(I)) {
    920       // We approximate the number of loads and stores needed by dividing the
    921       // size of the byval type by the target's pointer size.
    922       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
    923       unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
    924       unsigned PointerSize = TD->getPointerSizeInBits();
    925       // Ceiling division.
    926       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
    927 
    928       // If it generates more than 8 stores it is likely to be expanded as an
    929       // inline memcpy so we take that as an upper bound. Otherwise we assume
    930       // one load and one store per word copied.
    931       // FIXME: The maxStoresPerMemcpy setting from the target should be used
    932       // here instead of a magic number of 8, but it's not available via
    933       // DataLayout.
    934       NumStores = std::min(NumStores, 8U);
    935 
    936       Cost -= 2 * NumStores * InlineConstants::InstrCost;
    937     } else {
    938       // For non-byval arguments subtract off one instruction per call
    939       // argument.
    940       Cost -= InlineConstants::InstrCost;
    941     }
    942   }
    943 
    944   // If there is only one call of the function, and it has internal linkage,
    945   // the cost of inlining it drops dramatically.
    946   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
    947     &F == CS.getCalledFunction();
    948   if (OnlyOneCallAndLocalLinkage)
    949     Cost += InlineConstants::LastCallToStaticBonus;
    950 
    951   // If the instruction after the call, or if the normal destination of the
    952   // invoke is an unreachable instruction, the function is noreturn. As such,
    953   // there is little point in inlining this unless there is literally zero
    954   // cost.
    955   Instruction *Instr = CS.getInstruction();
    956   if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
    957     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
    958       Threshold = 1;
    959   } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
    960     Threshold = 1;
    961 
    962   // If this function uses the coldcc calling convention, prefer not to inline
    963   // it.
    964   if (F.getCallingConv() == CallingConv::Cold)
    965     Cost += InlineConstants::ColdccPenalty;
    966 
    967   // Check if we're done. This can happen due to bonuses and penalties.
    968   if (Cost > Threshold)
    969     return false;
    970 
    971   if (F.empty())
    972     return true;
    973 
    974   Function *Caller = CS.getInstruction()->getParent()->getParent();
    975   // Check if the caller function is recursive itself.
    976   for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
    977        U != E; ++U) {
    978     CallSite Site(cast<Value>(*U));
    979     if (!Site)
    980       continue;
    981     Instruction *I = Site.getInstruction();
    982     if (I->getParent()->getParent() == Caller) {
    983       IsCallerRecursive = true;
    984       break;
    985     }
    986   }
    987 
    988   // Track whether we've seen a return instruction. The first return
    989   // instruction is free, as at least one will usually disappear in inlining.
    990   bool HasReturn = false;
    991 
    992   // Populate our simplified values by mapping from function arguments to call
    993   // arguments with known important simplifications.
    994   CallSite::arg_iterator CAI = CS.arg_begin();
    995   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
    996        FAI != FAE; ++FAI, ++CAI) {
    997     assert(CAI != CS.arg_end());
    998     if (Constant *C = dyn_cast<Constant>(CAI))
    999       SimplifiedValues[FAI] = C;
   1000 
   1001     Value *PtrArg = *CAI;
   1002     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
   1003       ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
   1004 
   1005       // We can SROA any pointer arguments derived from alloca instructions.
   1006       if (isa<AllocaInst>(PtrArg)) {
   1007         SROAArgValues[FAI] = PtrArg;
   1008         SROAArgCosts[PtrArg] = 0;
   1009       }
   1010     }
   1011   }
   1012   NumConstantArgs = SimplifiedValues.size();
   1013   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
   1014   NumAllocaArgs = SROAArgValues.size();
   1015 
   1016   // The worklist of live basic blocks in the callee *after* inlining. We avoid
   1017   // adding basic blocks of the callee which can be proven to be dead for this
   1018   // particular call site in order to get more accurate cost estimates. This
   1019   // requires a somewhat heavyweight iteration pattern: we need to walk the
   1020   // basic blocks in a breadth-first order as we insert live successors. To
   1021   // accomplish this, prioritizing for small iterations because we exit after
   1022   // crossing our threshold, we use a small-size optimized SetVector.
   1023   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
   1024                                   SmallPtrSet<BasicBlock *, 16> > BBSetVector;
   1025   BBSetVector BBWorklist;
   1026   BBWorklist.insert(&F.getEntryBlock());
   1027   // Note that we *must not* cache the size, this loop grows the worklist.
   1028   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
   1029     // Bail out the moment we cross the threshold. This means we'll under-count
   1030     // the cost, but only when undercounting doesn't matter.
   1031     if (Cost > (Threshold + VectorBonus))
   1032       break;
   1033 
   1034     BasicBlock *BB = BBWorklist[Idx];
   1035     if (BB->empty())
   1036       continue;
   1037 
   1038     // Handle the terminator cost here where we can track returns and other
   1039     // function-wide constructs.
   1040     TerminatorInst *TI = BB->getTerminator();
   1041 
   1042     // We never want to inline functions that contain an indirectbr.  This is
   1043     // incorrect because all the blockaddress's (in static global initializers
   1044     // for example) would be referring to the original function, and this
   1045     // indirect jump would jump from the inlined copy of the function into the
   1046     // original function which is extremely undefined behavior.
   1047     // FIXME: This logic isn't really right; we can safely inline functions
   1048     // with indirectbr's as long as no other function or global references the
   1049     // blockaddress of a block within the current function.  And as a QOI issue,
   1050     // if someone is using a blockaddress without an indirectbr, and that
   1051     // reference somehow ends up in another function or global, we probably
   1052     // don't want to inline this function.
   1053     if (isa<IndirectBrInst>(TI))
   1054       return false;
   1055 
   1056     if (!HasReturn && isa<ReturnInst>(TI))
   1057       HasReturn = true;
   1058     else
   1059       Cost += InlineConstants::InstrCost;
   1060 
   1061     // Analyze the cost of this block. If we blow through the threshold, this
   1062     // returns false, and we can bail on out.
   1063     if (!analyzeBlock(BB)) {
   1064       if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
   1065         return false;
   1066 
   1067       // If the caller is a recursive function then we don't want to inline
   1068       // functions which allocate a lot of stack space because it would increase
   1069       // the caller stack usage dramatically.
   1070       if (IsCallerRecursive &&
   1071           AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
   1072         return false;
   1073 
   1074       break;
   1075     }
   1076 
   1077     // Add in the live successors by first checking whether we have terminator
   1078     // that may be simplified based on the values simplified by this call.
   1079     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1080       if (BI->isConditional()) {
   1081         Value *Cond = BI->getCondition();
   1082         if (ConstantInt *SimpleCond
   1083               = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
   1084           BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
   1085           continue;
   1086         }
   1087       }
   1088     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1089       Value *Cond = SI->getCondition();
   1090       if (ConstantInt *SimpleCond
   1091             = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
   1092         BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
   1093         continue;
   1094       }
   1095     }
   1096 
   1097     // If we're unable to select a particular successor, just count all of
   1098     // them.
   1099     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
   1100          ++TIdx)
   1101       BBWorklist.insert(TI->getSuccessor(TIdx));
   1102 
   1103     // If we had any successors at this point, than post-inlining is likely to
   1104     // have them as well. Note that we assume any basic blocks which existed
   1105     // due to branches or switches which folded above will also fold after
   1106     // inlining.
   1107     if (SingleBB && TI->getNumSuccessors() > 1) {
   1108       // Take off the bonus we applied to the threshold.
   1109       Threshold -= SingleBBBonus;
   1110       SingleBB = false;
   1111     }
   1112   }
   1113 
   1114   // If this is a noduplicate call, we can still inline as long as
   1115   // inlining this would cause the removal of the caller (so the instruction
   1116   // is not actually duplicated, just moved).
   1117   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
   1118     return false;
   1119 
   1120   Threshold += VectorBonus;
   1121 
   1122   return Cost < Threshold;
   1123 }
   1124 
   1125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1126 /// \brief Dump stats about this call's analysis.
   1127 void CallAnalyzer::dump() {
   1128 #define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
   1129   DEBUG_PRINT_STAT(NumConstantArgs);
   1130   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
   1131   DEBUG_PRINT_STAT(NumAllocaArgs);
   1132   DEBUG_PRINT_STAT(NumConstantPtrCmps);
   1133   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
   1134   DEBUG_PRINT_STAT(NumInstructionsSimplified);
   1135   DEBUG_PRINT_STAT(SROACostSavings);
   1136   DEBUG_PRINT_STAT(SROACostSavingsLost);
   1137   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
   1138 #undef DEBUG_PRINT_STAT
   1139 }
   1140 #endif
   1141 
   1142 INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
   1143                       true, true)
   1144 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   1145 INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
   1146                     true, true)
   1147 
   1148 char InlineCostAnalysis::ID = 0;
   1149 
   1150 InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
   1151 
   1152 InlineCostAnalysis::~InlineCostAnalysis() {}
   1153 
   1154 void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
   1155   AU.setPreservesAll();
   1156   AU.addRequired<TargetTransformInfo>();
   1157   CallGraphSCCPass::getAnalysisUsage(AU);
   1158 }
   1159 
   1160 bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
   1161   TD = getAnalysisIfAvailable<DataLayout>();
   1162   TTI = &getAnalysis<TargetTransformInfo>();
   1163   return false;
   1164 }
   1165 
   1166 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
   1167   return getInlineCost(CS, CS.getCalledFunction(), Threshold);
   1168 }
   1169 
   1170 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
   1171                                              int Threshold) {
   1172   // Cannot inline indirect calls.
   1173   if (!Callee)
   1174     return llvm::InlineCost::getNever();
   1175 
   1176   // Calls to functions with always-inline attributes should be inlined
   1177   // whenever possible.
   1178   if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1179                                            Attribute::AlwaysInline)) {
   1180     if (isInlineViable(*Callee))
   1181       return llvm::InlineCost::getAlways();
   1182     return llvm::InlineCost::getNever();
   1183   }
   1184 
   1185   // Don't inline functions which can be redefined at link-time to mean
   1186   // something else.  Don't inline functions marked noinline or call sites
   1187   // marked noinline.
   1188   if (Callee->mayBeOverridden() ||
   1189       Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1190                                            Attribute::NoInline) ||
   1191       CS.isNoInline())
   1192     return llvm::InlineCost::getNever();
   1193 
   1194   DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
   1195         << "...\n");
   1196 
   1197   CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
   1198   bool ShouldInline = CA.analyzeCall(CS);
   1199 
   1200   DEBUG(CA.dump());
   1201 
   1202   // Check if there was a reason to force inlining or no inlining.
   1203   if (!ShouldInline && CA.getCost() < CA.getThreshold())
   1204     return InlineCost::getNever();
   1205   if (ShouldInline && CA.getCost() >= CA.getThreshold())
   1206     return InlineCost::getAlways();
   1207 
   1208   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
   1209 }
   1210 
   1211 bool InlineCostAnalysis::isInlineViable(Function &F) {
   1212   bool ReturnsTwice =
   1213     F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1214                                    Attribute::ReturnsTwice);
   1215   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1216     // Disallow inlining of functions which contain an indirect branch.
   1217     if (isa<IndirectBrInst>(BI->getTerminator()))
   1218       return false;
   1219 
   1220     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
   1221          ++II) {
   1222       CallSite CS(II);
   1223       if (!CS)
   1224         continue;
   1225 
   1226       // Disallow recursive calls.
   1227       if (&F == CS.getCalledFunction())
   1228         return false;
   1229 
   1230       // Disallow calls which expose returns-twice to a function not previously
   1231       // attributed as such.
   1232       if (!ReturnsTwice && CS.isCall() &&
   1233           cast<CallInst>(CS.getInstruction())->canReturnTwice())
   1234         return false;
   1235     }
   1236   }
   1237 
   1238   return true;
   1239 }
   1240