Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineFunction.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect native machine code information for a function.  This allows
     11 // target-specific information about the generated code to be stored with each
     12 // function.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/CodeGen/MachineConstantPool.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/DebugInfo.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/MC/MCAsmInfo.h"
     32 #include "llvm/MC/MCContext.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/GraphWriter.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetFrameLowering.h"
     37 #include "llvm/Target/TargetLowering.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 using namespace llvm;
     40 
     41 //===----------------------------------------------------------------------===//
     42 // MachineFunction implementation
     43 //===----------------------------------------------------------------------===//
     44 
     45 // Out of line virtual method.
     46 MachineFunctionInfo::~MachineFunctionInfo() {}
     47 
     48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
     49   MBB->getParent()->DeleteMachineBasicBlock(MBB);
     50 }
     51 
     52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
     53                                  unsigned FunctionNum, MachineModuleInfo &mmi,
     54                                  GCModuleInfo* gmi)
     55   : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) {
     56   if (TM.getRegisterInfo())
     57     RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo());
     58   else
     59     RegInfo = 0;
     60   MFInfo = 0;
     61   FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(),
     62                                                TM.Options.RealignStack);
     63   if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
     64                                        Attribute::StackAlignment))
     65     FrameInfo->ensureMaxAlignment(Fn->getAttributes().
     66                                 getStackAlignment(AttributeSet::FunctionIndex));
     67   ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout());
     68   Alignment = TM.getTargetLowering()->getMinFunctionAlignment();
     69   // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
     70   if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
     71                                         Attribute::OptimizeForSize))
     72     Alignment = std::max(Alignment,
     73                          TM.getTargetLowering()->getPrefFunctionAlignment());
     74   FunctionNumber = FunctionNum;
     75   JumpTableInfo = 0;
     76 }
     77 
     78 MachineFunction::~MachineFunction() {
     79   // Don't call destructors on MachineInstr and MachineOperand. All of their
     80   // memory comes from the BumpPtrAllocator which is about to be purged.
     81   //
     82   // Do call MachineBasicBlock destructors, it contains std::vectors.
     83   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
     84     I->Insts.clearAndLeakNodesUnsafely();
     85 
     86   InstructionRecycler.clear(Allocator);
     87   OperandRecycler.clear(Allocator);
     88   BasicBlockRecycler.clear(Allocator);
     89   if (RegInfo) {
     90     RegInfo->~MachineRegisterInfo();
     91     Allocator.Deallocate(RegInfo);
     92   }
     93   if (MFInfo) {
     94     MFInfo->~MachineFunctionInfo();
     95     Allocator.Deallocate(MFInfo);
     96   }
     97 
     98   FrameInfo->~MachineFrameInfo();
     99   Allocator.Deallocate(FrameInfo);
    100 
    101   ConstantPool->~MachineConstantPool();
    102   Allocator.Deallocate(ConstantPool);
    103 
    104   if (JumpTableInfo) {
    105     JumpTableInfo->~MachineJumpTableInfo();
    106     Allocator.Deallocate(JumpTableInfo);
    107   }
    108 }
    109 
    110 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
    111 /// does already exist, allocate one.
    112 MachineJumpTableInfo *MachineFunction::
    113 getOrCreateJumpTableInfo(unsigned EntryKind) {
    114   if (JumpTableInfo) return JumpTableInfo;
    115 
    116   JumpTableInfo = new (Allocator)
    117     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
    118   return JumpTableInfo;
    119 }
    120 
    121 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
    122 /// recomputes them.  This guarantees that the MBB numbers are sequential,
    123 /// dense, and match the ordering of the blocks within the function.  If a
    124 /// specific MachineBasicBlock is specified, only that block and those after
    125 /// it are renumbered.
    126 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
    127   if (empty()) { MBBNumbering.clear(); return; }
    128   MachineFunction::iterator MBBI, E = end();
    129   if (MBB == 0)
    130     MBBI = begin();
    131   else
    132     MBBI = MBB;
    133 
    134   // Figure out the block number this should have.
    135   unsigned BlockNo = 0;
    136   if (MBBI != begin())
    137     BlockNo = prior(MBBI)->getNumber()+1;
    138 
    139   for (; MBBI != E; ++MBBI, ++BlockNo) {
    140     if (MBBI->getNumber() != (int)BlockNo) {
    141       // Remove use of the old number.
    142       if (MBBI->getNumber() != -1) {
    143         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
    144                "MBB number mismatch!");
    145         MBBNumbering[MBBI->getNumber()] = 0;
    146       }
    147 
    148       // If BlockNo is already taken, set that block's number to -1.
    149       if (MBBNumbering[BlockNo])
    150         MBBNumbering[BlockNo]->setNumber(-1);
    151 
    152       MBBNumbering[BlockNo] = MBBI;
    153       MBBI->setNumber(BlockNo);
    154     }
    155   }
    156 
    157   // Okay, all the blocks are renumbered.  If we have compactified the block
    158   // numbering, shrink MBBNumbering now.
    159   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
    160   MBBNumbering.resize(BlockNo);
    161 }
    162 
    163 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
    164 /// of `new MachineInstr'.
    165 ///
    166 MachineInstr *
    167 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
    168                                     DebugLoc DL, bool NoImp) {
    169   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
    170     MachineInstr(*this, MCID, DL, NoImp);
    171 }
    172 
    173 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the
    174 /// 'Orig' instruction, identical in all ways except the instruction
    175 /// has no parent, prev, or next.
    176 ///
    177 MachineInstr *
    178 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
    179   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
    180              MachineInstr(*this, *Orig);
    181 }
    182 
    183 /// DeleteMachineInstr - Delete the given MachineInstr.
    184 ///
    185 /// This function also serves as the MachineInstr destructor - the real
    186 /// ~MachineInstr() destructor must be empty.
    187 void
    188 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
    189   // Strip it for parts. The operand array and the MI object itself are
    190   // independently recyclable.
    191   if (MI->Operands)
    192     deallocateOperandArray(MI->CapOperands, MI->Operands);
    193   // Don't call ~MachineInstr() which must be trivial anyway because
    194   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
    195   // destructors.
    196   InstructionRecycler.Deallocate(Allocator, MI);
    197 }
    198 
    199 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
    200 /// instead of `new MachineBasicBlock'.
    201 ///
    202 MachineBasicBlock *
    203 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
    204   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
    205              MachineBasicBlock(*this, bb);
    206 }
    207 
    208 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
    209 ///
    210 void
    211 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
    212   assert(MBB->getParent() == this && "MBB parent mismatch!");
    213   MBB->~MachineBasicBlock();
    214   BasicBlockRecycler.Deallocate(Allocator, MBB);
    215 }
    216 
    217 MachineMemOperand *
    218 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f,
    219                                       uint64_t s, unsigned base_alignment,
    220                                       const MDNode *TBAAInfo,
    221                                       const MDNode *Ranges) {
    222   return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment,
    223                                            TBAAInfo, Ranges);
    224 }
    225 
    226 MachineMemOperand *
    227 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
    228                                       int64_t Offset, uint64_t Size) {
    229   return new (Allocator)
    230              MachineMemOperand(MachinePointerInfo(MMO->getValue(),
    231                                                   MMO->getOffset()+Offset),
    232                                MMO->getFlags(), Size,
    233                                MMO->getBaseAlignment(), 0);
    234 }
    235 
    236 MachineInstr::mmo_iterator
    237 MachineFunction::allocateMemRefsArray(unsigned long Num) {
    238   return Allocator.Allocate<MachineMemOperand *>(Num);
    239 }
    240 
    241 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
    242 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
    243                                     MachineInstr::mmo_iterator End) {
    244   // Count the number of load mem refs.
    245   unsigned Num = 0;
    246   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
    247     if ((*I)->isLoad())
    248       ++Num;
    249 
    250   // Allocate a new array and populate it with the load information.
    251   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
    252   unsigned Index = 0;
    253   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
    254     if ((*I)->isLoad()) {
    255       if (!(*I)->isStore())
    256         // Reuse the MMO.
    257         Result[Index] = *I;
    258       else {
    259         // Clone the MMO and unset the store flag.
    260         MachineMemOperand *JustLoad =
    261           getMachineMemOperand((*I)->getPointerInfo(),
    262                                (*I)->getFlags() & ~MachineMemOperand::MOStore,
    263                                (*I)->getSize(), (*I)->getBaseAlignment(),
    264                                (*I)->getTBAAInfo());
    265         Result[Index] = JustLoad;
    266       }
    267       ++Index;
    268     }
    269   }
    270   return std::make_pair(Result, Result + Num);
    271 }
    272 
    273 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
    274 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
    275                                      MachineInstr::mmo_iterator End) {
    276   // Count the number of load mem refs.
    277   unsigned Num = 0;
    278   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
    279     if ((*I)->isStore())
    280       ++Num;
    281 
    282   // Allocate a new array and populate it with the store information.
    283   MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
    284   unsigned Index = 0;
    285   for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
    286     if ((*I)->isStore()) {
    287       if (!(*I)->isLoad())
    288         // Reuse the MMO.
    289         Result[Index] = *I;
    290       else {
    291         // Clone the MMO and unset the load flag.
    292         MachineMemOperand *JustStore =
    293           getMachineMemOperand((*I)->getPointerInfo(),
    294                                (*I)->getFlags() & ~MachineMemOperand::MOLoad,
    295                                (*I)->getSize(), (*I)->getBaseAlignment(),
    296                                (*I)->getTBAAInfo());
    297         Result[Index] = JustStore;
    298       }
    299       ++Index;
    300     }
    301   }
    302   return std::make_pair(Result, Result + Num);
    303 }
    304 
    305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    306 void MachineFunction::dump() const {
    307   print(dbgs());
    308 }
    309 #endif
    310 
    311 StringRef MachineFunction::getName() const {
    312   assert(getFunction() && "No function!");
    313   return getFunction()->getName();
    314 }
    315 
    316 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const {
    317   OS << "# Machine code for function " << getName() << ": ";
    318   if (RegInfo) {
    319     OS << (RegInfo->isSSA() ? "SSA" : "Post SSA");
    320     if (!RegInfo->tracksLiveness())
    321       OS << ", not tracking liveness";
    322   }
    323   OS << '\n';
    324 
    325   // Print Frame Information
    326   FrameInfo->print(*this, OS);
    327 
    328   // Print JumpTable Information
    329   if (JumpTableInfo)
    330     JumpTableInfo->print(OS);
    331 
    332   // Print Constant Pool
    333   ConstantPool->print(OS);
    334 
    335   const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
    336 
    337   if (RegInfo && !RegInfo->livein_empty()) {
    338     OS << "Function Live Ins: ";
    339     for (MachineRegisterInfo::livein_iterator
    340          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
    341       OS << PrintReg(I->first, TRI);
    342       if (I->second)
    343         OS << " in " << PrintReg(I->second, TRI);
    344       if (llvm::next(I) != E)
    345         OS << ", ";
    346     }
    347     OS << '\n';
    348   }
    349 
    350   for (const_iterator BB = begin(), E = end(); BB != E; ++BB) {
    351     OS << '\n';
    352     BB->print(OS, Indexes);
    353   }
    354 
    355   OS << "\n# End machine code for function " << getName() << ".\n\n";
    356 }
    357 
    358 namespace llvm {
    359   template<>
    360   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
    361 
    362   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
    363 
    364     static std::string getGraphName(const MachineFunction *F) {
    365       return "CFG for '" + F->getName().str() + "' function";
    366     }
    367 
    368     std::string getNodeLabel(const MachineBasicBlock *Node,
    369                              const MachineFunction *Graph) {
    370       std::string OutStr;
    371       {
    372         raw_string_ostream OSS(OutStr);
    373 
    374         if (isSimple()) {
    375           OSS << "BB#" << Node->getNumber();
    376           if (const BasicBlock *BB = Node->getBasicBlock())
    377             OSS << ": " << BB->getName();
    378         } else
    379           Node->print(OSS);
    380       }
    381 
    382       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
    383 
    384       // Process string output to make it nicer...
    385       for (unsigned i = 0; i != OutStr.length(); ++i)
    386         if (OutStr[i] == '\n') {                            // Left justify
    387           OutStr[i] = '\\';
    388           OutStr.insert(OutStr.begin()+i+1, 'l');
    389         }
    390       return OutStr;
    391     }
    392   };
    393 }
    394 
    395 void MachineFunction::viewCFG() const
    396 {
    397 #ifndef NDEBUG
    398   ViewGraph(this, "mf" + getName());
    399 #else
    400   errs() << "MachineFunction::viewCFG is only available in debug builds on "
    401          << "systems with Graphviz or gv!\n";
    402 #endif // NDEBUG
    403 }
    404 
    405 void MachineFunction::viewCFGOnly() const
    406 {
    407 #ifndef NDEBUG
    408   ViewGraph(this, "mf" + getName(), true);
    409 #else
    410   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
    411          << "systems with Graphviz or gv!\n";
    412 #endif // NDEBUG
    413 }
    414 
    415 /// addLiveIn - Add the specified physical register as a live-in value and
    416 /// create a corresponding virtual register for it.
    417 unsigned MachineFunction::addLiveIn(unsigned PReg,
    418                                     const TargetRegisterClass *RC) {
    419   MachineRegisterInfo &MRI = getRegInfo();
    420   unsigned VReg = MRI.getLiveInVirtReg(PReg);
    421   if (VReg) {
    422     assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!");
    423     return VReg;
    424   }
    425   VReg = MRI.createVirtualRegister(RC);
    426   MRI.addLiveIn(PReg, VReg);
    427   return VReg;
    428 }
    429 
    430 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
    431 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
    432 /// normal 'L' label is returned.
    433 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
    434                                         bool isLinkerPrivate) const {
    435   assert(JumpTableInfo && "No jump tables");
    436   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
    437   const MCAsmInfo &MAI = *getTarget().getMCAsmInfo();
    438 
    439   const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() :
    440                                          MAI.getPrivateGlobalPrefix();
    441   SmallString<60> Name;
    442   raw_svector_ostream(Name)
    443     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
    444   return Ctx.GetOrCreateSymbol(Name.str());
    445 }
    446 
    447 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
    448 /// base.
    449 MCSymbol *MachineFunction::getPICBaseSymbol() const {
    450   const MCAsmInfo &MAI = *Target.getMCAsmInfo();
    451   return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
    452                                Twine(getFunctionNumber())+"$pb");
    453 }
    454 
    455 //===----------------------------------------------------------------------===//
    456 //  MachineFrameInfo implementation
    457 //===----------------------------------------------------------------------===//
    458 
    459 /// ensureMaxAlignment - Make sure the function is at least Align bytes
    460 /// aligned.
    461 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
    462   if (!TFI.isStackRealignable() || !RealignOption)
    463     assert(Align <= TFI.getStackAlignment() &&
    464            "For targets without stack realignment, Align is out of limit!");
    465   if (MaxAlignment < Align) MaxAlignment = Align;
    466 }
    467 
    468 /// clampStackAlignment - Clamp the alignment if requested and emit a warning.
    469 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
    470                                            unsigned StackAlign) {
    471   if (!ShouldClamp || Align <= StackAlign)
    472     return Align;
    473   DEBUG(dbgs() << "Warning: requested alignment " << Align
    474                << " exceeds the stack alignment " << StackAlign
    475                << " when stack realignment is off" << '\n');
    476   return StackAlign;
    477 }
    478 
    479 /// CreateStackObject - Create a new statically sized stack object, returning
    480 /// a nonnegative identifier to represent it.
    481 ///
    482 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
    483                       bool isSS, bool MayNeedSP, const AllocaInst *Alloca) {
    484   assert(Size != 0 && "Cannot allocate zero size stack objects!");
    485   Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
    486                                   Alignment, TFI.getStackAlignment());
    487   Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP,
    488                                 Alloca));
    489   int Index = (int)Objects.size() - NumFixedObjects - 1;
    490   assert(Index >= 0 && "Bad frame index!");
    491   ensureMaxAlignment(Alignment);
    492   return Index;
    493 }
    494 
    495 /// CreateSpillStackObject - Create a new statically sized stack object that
    496 /// represents a spill slot, returning a nonnegative identifier to represent
    497 /// it.
    498 ///
    499 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
    500                                              unsigned Alignment) {
    501   Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
    502                                   Alignment, TFI.getStackAlignment());
    503   CreateStackObject(Size, Alignment, true, false);
    504   int Index = (int)Objects.size() - NumFixedObjects - 1;
    505   ensureMaxAlignment(Alignment);
    506   return Index;
    507 }
    508 
    509 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
    510 /// variable sized object has been created.  This must be created whenever a
    511 /// variable sized object is created, whether or not the index returned is
    512 /// actually used.
    513 ///
    514 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) {
    515   HasVarSizedObjects = true;
    516   Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
    517                                   Alignment, TFI.getStackAlignment());
    518   Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0));
    519   ensureMaxAlignment(Alignment);
    520   return (int)Objects.size()-NumFixedObjects-1;
    521 }
    522 
    523 /// CreateFixedObject - Create a new object at a fixed location on the stack.
    524 /// All fixed objects should be created before other objects are created for
    525 /// efficiency. By default, fixed objects are immutable. This returns an
    526 /// index with a negative value.
    527 ///
    528 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
    529                                         bool Immutable) {
    530   assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
    531   // The alignment of the frame index can be determined from its offset from
    532   // the incoming frame position.  If the frame object is at offset 32 and
    533   // the stack is guaranteed to be 16-byte aligned, then we know that the
    534   // object is 16-byte aligned.
    535   unsigned StackAlign = TFI.getStackAlignment();
    536   unsigned Align = MinAlign(SPOffset, StackAlign);
    537   Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption,
    538                               Align, TFI.getStackAlignment());
    539   Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
    540                                               /*isSS*/   false,
    541                                               /*NeedSP*/ false,
    542                                               /*Alloca*/ 0));
    543   return -++NumFixedObjects;
    544 }
    545 
    546 
    547 BitVector
    548 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
    549   assert(MBB && "MBB must be valid");
    550   const MachineFunction *MF = MBB->getParent();
    551   assert(MF && "MBB must be part of a MachineFunction");
    552   const TargetMachine &TM = MF->getTarget();
    553   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    554   BitVector BV(TRI->getNumRegs());
    555 
    556   // Before CSI is calculated, no registers are considered pristine. They can be
    557   // freely used and PEI will make sure they are saved.
    558   if (!isCalleeSavedInfoValid())
    559     return BV;
    560 
    561   for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR)
    562     BV.set(*CSR);
    563 
    564   // The entry MBB always has all CSRs pristine.
    565   if (MBB == &MF->front())
    566     return BV;
    567 
    568   // On other MBBs the saved CSRs are not pristine.
    569   const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo();
    570   for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
    571          E = CSI.end(); I != E; ++I)
    572     BV.reset(I->getReg());
    573 
    574   return BV;
    575 }
    576 
    577 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
    578   const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
    579   const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
    580   unsigned MaxAlign = getMaxAlignment();
    581   int Offset = 0;
    582 
    583   // This code is very, very similar to PEI::calculateFrameObjectOffsets().
    584   // It really should be refactored to share code. Until then, changes
    585   // should keep in mind that there's tight coupling between the two.
    586 
    587   for (int i = getObjectIndexBegin(); i != 0; ++i) {
    588     int FixedOff = -getObjectOffset(i);
    589     if (FixedOff > Offset) Offset = FixedOff;
    590   }
    591   for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) {
    592     if (isDeadObjectIndex(i))
    593       continue;
    594     Offset += getObjectSize(i);
    595     unsigned Align = getObjectAlignment(i);
    596     // Adjust to alignment boundary
    597     Offset = (Offset+Align-1)/Align*Align;
    598 
    599     MaxAlign = std::max(Align, MaxAlign);
    600   }
    601 
    602   if (adjustsStack() && TFI->hasReservedCallFrame(MF))
    603     Offset += getMaxCallFrameSize();
    604 
    605   // Round up the size to a multiple of the alignment.  If the function has
    606   // any calls or alloca's, align to the target's StackAlignment value to
    607   // ensure that the callee's frame or the alloca data is suitably aligned;
    608   // otherwise, for leaf functions, align to the TransientStackAlignment
    609   // value.
    610   unsigned StackAlign;
    611   if (adjustsStack() || hasVarSizedObjects() ||
    612       (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0))
    613     StackAlign = TFI->getStackAlignment();
    614   else
    615     StackAlign = TFI->getTransientStackAlignment();
    616 
    617   // If the frame pointer is eliminated, all frame offsets will be relative to
    618   // SP not FP. Align to MaxAlign so this works.
    619   StackAlign = std::max(StackAlign, MaxAlign);
    620   unsigned AlignMask = StackAlign - 1;
    621   Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
    622 
    623   return (unsigned)Offset;
    624 }
    625 
    626 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
    627   if (Objects.empty()) return;
    628 
    629   const TargetFrameLowering *FI = MF.getTarget().getFrameLowering();
    630   int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
    631 
    632   OS << "Frame Objects:\n";
    633 
    634   for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
    635     const StackObject &SO = Objects[i];
    636     OS << "  fi#" << (int)(i-NumFixedObjects) << ": ";
    637     if (SO.Size == ~0ULL) {
    638       OS << "dead\n";
    639       continue;
    640     }
    641     if (SO.Size == 0)
    642       OS << "variable sized";
    643     else
    644       OS << "size=" << SO.Size;
    645     OS << ", align=" << SO.Alignment;
    646 
    647     if (i < NumFixedObjects)
    648       OS << ", fixed";
    649     if (i < NumFixedObjects || SO.SPOffset != -1) {
    650       int64_t Off = SO.SPOffset - ValOffset;
    651       OS << ", at location [SP";
    652       if (Off > 0)
    653         OS << "+" << Off;
    654       else if (Off < 0)
    655         OS << Off;
    656       OS << "]";
    657     }
    658     OS << "\n";
    659   }
    660 }
    661 
    662 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    663 void MachineFrameInfo::dump(const MachineFunction &MF) const {
    664   print(MF, dbgs());
    665 }
    666 #endif
    667 
    668 //===----------------------------------------------------------------------===//
    669 //  MachineJumpTableInfo implementation
    670 //===----------------------------------------------------------------------===//
    671 
    672 /// getEntrySize - Return the size of each entry in the jump table.
    673 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
    674   // The size of a jump table entry is 4 bytes unless the entry is just the
    675   // address of a block, in which case it is the pointer size.
    676   switch (getEntryKind()) {
    677   case MachineJumpTableInfo::EK_BlockAddress:
    678     return TD.getPointerSize();
    679   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    680     return 8;
    681   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
    682   case MachineJumpTableInfo::EK_LabelDifference32:
    683   case MachineJumpTableInfo::EK_Custom32:
    684     return 4;
    685   case MachineJumpTableInfo::EK_Inline:
    686     return 0;
    687   }
    688   llvm_unreachable("Unknown jump table encoding!");
    689 }
    690 
    691 /// getEntryAlignment - Return the alignment of each entry in the jump table.
    692 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
    693   // The alignment of a jump table entry is the alignment of int32 unless the
    694   // entry is just the address of a block, in which case it is the pointer
    695   // alignment.
    696   switch (getEntryKind()) {
    697   case MachineJumpTableInfo::EK_BlockAddress:
    698     return TD.getPointerABIAlignment();
    699   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    700     return TD.getABIIntegerTypeAlignment(64);
    701   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
    702   case MachineJumpTableInfo::EK_LabelDifference32:
    703   case MachineJumpTableInfo::EK_Custom32:
    704     return TD.getABIIntegerTypeAlignment(32);
    705   case MachineJumpTableInfo::EK_Inline:
    706     return 1;
    707   }
    708   llvm_unreachable("Unknown jump table encoding!");
    709 }
    710 
    711 /// createJumpTableIndex - Create a new jump table entry in the jump table info.
    712 ///
    713 unsigned MachineJumpTableInfo::createJumpTableIndex(
    714                                const std::vector<MachineBasicBlock*> &DestBBs) {
    715   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
    716   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
    717   return JumpTables.size()-1;
    718 }
    719 
    720 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update
    721 /// the jump tables to branch to New instead.
    722 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
    723                                                   MachineBasicBlock *New) {
    724   assert(Old != New && "Not making a change?");
    725   bool MadeChange = false;
    726   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
    727     ReplaceMBBInJumpTable(i, Old, New);
    728   return MadeChange;
    729 }
    730 
    731 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update
    732 /// the jump table to branch to New instead.
    733 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
    734                                                  MachineBasicBlock *Old,
    735                                                  MachineBasicBlock *New) {
    736   assert(Old != New && "Not making a change?");
    737   bool MadeChange = false;
    738   MachineJumpTableEntry &JTE = JumpTables[Idx];
    739   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
    740     if (JTE.MBBs[j] == Old) {
    741       JTE.MBBs[j] = New;
    742       MadeChange = true;
    743     }
    744   return MadeChange;
    745 }
    746 
    747 void MachineJumpTableInfo::print(raw_ostream &OS) const {
    748   if (JumpTables.empty()) return;
    749 
    750   OS << "Jump Tables:\n";
    751 
    752   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
    753     OS << "  jt#" << i << ": ";
    754     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
    755       OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
    756   }
    757 
    758   OS << '\n';
    759 }
    760 
    761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    762 void MachineJumpTableInfo::dump() const { print(dbgs()); }
    763 #endif
    764 
    765 
    766 //===----------------------------------------------------------------------===//
    767 //  MachineConstantPool implementation
    768 //===----------------------------------------------------------------------===//
    769 
    770 void MachineConstantPoolValue::anchor() { }
    771 
    772 Type *MachineConstantPoolEntry::getType() const {
    773   if (isMachineConstantPoolEntry())
    774     return Val.MachineCPVal->getType();
    775   return Val.ConstVal->getType();
    776 }
    777 
    778 
    779 unsigned MachineConstantPoolEntry::getRelocationInfo() const {
    780   if (isMachineConstantPoolEntry())
    781     return Val.MachineCPVal->getRelocationInfo();
    782   return Val.ConstVal->getRelocationInfo();
    783 }
    784 
    785 MachineConstantPool::~MachineConstantPool() {
    786   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    787     if (Constants[i].isMachineConstantPoolEntry())
    788       delete Constants[i].Val.MachineCPVal;
    789   for (DenseSet<MachineConstantPoolValue*>::iterator I =
    790        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
    791        I != E; ++I)
    792     delete *I;
    793 }
    794 
    795 /// CanShareConstantPoolEntry - Test whether the given two constants
    796 /// can be allocated the same constant pool entry.
    797 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
    798                                       const DataLayout *TD) {
    799   // Handle the trivial case quickly.
    800   if (A == B) return true;
    801 
    802   // If they have the same type but weren't the same constant, quickly
    803   // reject them.
    804   if (A->getType() == B->getType()) return false;
    805 
    806   // We can't handle structs or arrays.
    807   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
    808       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
    809     return false;
    810 
    811   // For now, only support constants with the same size.
    812   uint64_t StoreSize = TD->getTypeStoreSize(A->getType());
    813   if (StoreSize != TD->getTypeStoreSize(B->getType()) ||
    814       StoreSize > 128)
    815     return false;
    816 
    817   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
    818 
    819   // Try constant folding a bitcast of both instructions to an integer.  If we
    820   // get two identical ConstantInt's, then we are good to share them.  We use
    821   // the constant folding APIs to do this so that we get the benefit of
    822   // DataLayout.
    823   if (isa<PointerType>(A->getType()))
    824     A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
    825                                  const_cast<Constant*>(A), TD);
    826   else if (A->getType() != IntTy)
    827     A = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
    828                                  const_cast<Constant*>(A), TD);
    829   if (isa<PointerType>(B->getType()))
    830     B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy,
    831                                  const_cast<Constant*>(B), TD);
    832   else if (B->getType() != IntTy)
    833     B = ConstantFoldInstOperands(Instruction::BitCast, IntTy,
    834                                  const_cast<Constant*>(B), TD);
    835 
    836   return A == B;
    837 }
    838 
    839 /// getConstantPoolIndex - Create a new entry in the constant pool or return
    840 /// an existing one.  User must specify the log2 of the minimum required
    841 /// alignment for the object.
    842 ///
    843 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
    844                                                    unsigned Alignment) {
    845   assert(Alignment && "Alignment must be specified!");
    846   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
    847 
    848   // Check to see if we already have this constant.
    849   //
    850   // FIXME, this could be made much more efficient for large constant pools.
    851   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    852     if (!Constants[i].isMachineConstantPoolEntry() &&
    853         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) {
    854       if ((unsigned)Constants[i].getAlignment() < Alignment)
    855         Constants[i].Alignment = Alignment;
    856       return i;
    857     }
    858 
    859   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
    860   return Constants.size()-1;
    861 }
    862 
    863 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
    864                                                    unsigned Alignment) {
    865   assert(Alignment && "Alignment must be specified!");
    866   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
    867 
    868   // Check to see if we already have this constant.
    869   //
    870   // FIXME, this could be made much more efficient for large constant pools.
    871   int Idx = V->getExistingMachineCPValue(this, Alignment);
    872   if (Idx != -1) {
    873     MachineCPVsSharingEntries.insert(V);
    874     return (unsigned)Idx;
    875   }
    876 
    877   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
    878   return Constants.size()-1;
    879 }
    880 
    881 void MachineConstantPool::print(raw_ostream &OS) const {
    882   if (Constants.empty()) return;
    883 
    884   OS << "Constant Pool:\n";
    885   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    886     OS << "  cp#" << i << ": ";
    887     if (Constants[i].isMachineConstantPoolEntry())
    888       Constants[i].Val.MachineCPVal->print(OS);
    889     else
    890       OS << *(const Value*)Constants[i].Val.ConstVal;
    891     OS << ", align=" << Constants[i].getAlignment();
    892     OS << "\n";
    893   }
    894 }
    895 
    896 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    897 void MachineConstantPool::dump() const { print(dbgs()); }
    898 #endif
    899