1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/DebugInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/GraphWriter.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetFrameLowering.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // MachineFunction implementation 43 //===----------------------------------------------------------------------===// 44 45 // Out of line virtual method. 46 MachineFunctionInfo::~MachineFunctionInfo() {} 47 48 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 49 MBB->getParent()->DeleteMachineBasicBlock(MBB); 50 } 51 52 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 53 unsigned FunctionNum, MachineModuleInfo &mmi, 54 GCModuleInfo* gmi) 55 : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameLowering(), 62 TM.Options.RealignStack); 63 if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 64 Attribute::StackAlignment)) 65 FrameInfo->ensureMaxAlignment(Fn->getAttributes(). 66 getStackAlignment(AttributeSet::FunctionIndex)); 67 ConstantPool = new (Allocator) MachineConstantPool(TM.getDataLayout()); 68 Alignment = TM.getTargetLowering()->getMinFunctionAlignment(); 69 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 70 if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 71 Attribute::OptimizeForSize)) 72 Alignment = std::max(Alignment, 73 TM.getTargetLowering()->getPrefFunctionAlignment()); 74 FunctionNumber = FunctionNum; 75 JumpTableInfo = 0; 76 } 77 78 MachineFunction::~MachineFunction() { 79 // Don't call destructors on MachineInstr and MachineOperand. All of their 80 // memory comes from the BumpPtrAllocator which is about to be purged. 81 // 82 // Do call MachineBasicBlock destructors, it contains std::vectors. 83 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 84 I->Insts.clearAndLeakNodesUnsafely(); 85 86 InstructionRecycler.clear(Allocator); 87 OperandRecycler.clear(Allocator); 88 BasicBlockRecycler.clear(Allocator); 89 if (RegInfo) { 90 RegInfo->~MachineRegisterInfo(); 91 Allocator.Deallocate(RegInfo); 92 } 93 if (MFInfo) { 94 MFInfo->~MachineFunctionInfo(); 95 Allocator.Deallocate(MFInfo); 96 } 97 98 FrameInfo->~MachineFrameInfo(); 99 Allocator.Deallocate(FrameInfo); 100 101 ConstantPool->~MachineConstantPool(); 102 Allocator.Deallocate(ConstantPool); 103 104 if (JumpTableInfo) { 105 JumpTableInfo->~MachineJumpTableInfo(); 106 Allocator.Deallocate(JumpTableInfo); 107 } 108 } 109 110 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 111 /// does already exist, allocate one. 112 MachineJumpTableInfo *MachineFunction:: 113 getOrCreateJumpTableInfo(unsigned EntryKind) { 114 if (JumpTableInfo) return JumpTableInfo; 115 116 JumpTableInfo = new (Allocator) 117 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 118 return JumpTableInfo; 119 } 120 121 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 122 /// recomputes them. This guarantees that the MBB numbers are sequential, 123 /// dense, and match the ordering of the blocks within the function. If a 124 /// specific MachineBasicBlock is specified, only that block and those after 125 /// it are renumbered. 126 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 127 if (empty()) { MBBNumbering.clear(); return; } 128 MachineFunction::iterator MBBI, E = end(); 129 if (MBB == 0) 130 MBBI = begin(); 131 else 132 MBBI = MBB; 133 134 // Figure out the block number this should have. 135 unsigned BlockNo = 0; 136 if (MBBI != begin()) 137 BlockNo = prior(MBBI)->getNumber()+1; 138 139 for (; MBBI != E; ++MBBI, ++BlockNo) { 140 if (MBBI->getNumber() != (int)BlockNo) { 141 // Remove use of the old number. 142 if (MBBI->getNumber() != -1) { 143 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 144 "MBB number mismatch!"); 145 MBBNumbering[MBBI->getNumber()] = 0; 146 } 147 148 // If BlockNo is already taken, set that block's number to -1. 149 if (MBBNumbering[BlockNo]) 150 MBBNumbering[BlockNo]->setNumber(-1); 151 152 MBBNumbering[BlockNo] = MBBI; 153 MBBI->setNumber(BlockNo); 154 } 155 } 156 157 // Okay, all the blocks are renumbered. If we have compactified the block 158 // numbering, shrink MBBNumbering now. 159 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 160 MBBNumbering.resize(BlockNo); 161 } 162 163 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 164 /// of `new MachineInstr'. 165 /// 166 MachineInstr * 167 MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 168 DebugLoc DL, bool NoImp) { 169 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 170 MachineInstr(*this, MCID, DL, NoImp); 171 } 172 173 /// CloneMachineInstr - Create a new MachineInstr which is a copy of the 174 /// 'Orig' instruction, identical in all ways except the instruction 175 /// has no parent, prev, or next. 176 /// 177 MachineInstr * 178 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 179 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 180 MachineInstr(*this, *Orig); 181 } 182 183 /// DeleteMachineInstr - Delete the given MachineInstr. 184 /// 185 /// This function also serves as the MachineInstr destructor - the real 186 /// ~MachineInstr() destructor must be empty. 187 void 188 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 189 // Strip it for parts. The operand array and the MI object itself are 190 // independently recyclable. 191 if (MI->Operands) 192 deallocateOperandArray(MI->CapOperands, MI->Operands); 193 // Don't call ~MachineInstr() which must be trivial anyway because 194 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 195 // destructors. 196 InstructionRecycler.Deallocate(Allocator, MI); 197 } 198 199 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 200 /// instead of `new MachineBasicBlock'. 201 /// 202 MachineBasicBlock * 203 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 204 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 205 MachineBasicBlock(*this, bb); 206 } 207 208 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 209 /// 210 void 211 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 212 assert(MBB->getParent() == this && "MBB parent mismatch!"); 213 MBB->~MachineBasicBlock(); 214 BasicBlockRecycler.Deallocate(Allocator, MBB); 215 } 216 217 MachineMemOperand * 218 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 219 uint64_t s, unsigned base_alignment, 220 const MDNode *TBAAInfo, 221 const MDNode *Ranges) { 222 return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment, 223 TBAAInfo, Ranges); 224 } 225 226 MachineMemOperand * 227 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 228 int64_t Offset, uint64_t Size) { 229 return new (Allocator) 230 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 231 MMO->getOffset()+Offset), 232 MMO->getFlags(), Size, 233 MMO->getBaseAlignment(), 0); 234 } 235 236 MachineInstr::mmo_iterator 237 MachineFunction::allocateMemRefsArray(unsigned long Num) { 238 return Allocator.Allocate<MachineMemOperand *>(Num); 239 } 240 241 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 242 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 243 MachineInstr::mmo_iterator End) { 244 // Count the number of load mem refs. 245 unsigned Num = 0; 246 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 247 if ((*I)->isLoad()) 248 ++Num; 249 250 // Allocate a new array and populate it with the load information. 251 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 252 unsigned Index = 0; 253 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 254 if ((*I)->isLoad()) { 255 if (!(*I)->isStore()) 256 // Reuse the MMO. 257 Result[Index] = *I; 258 else { 259 // Clone the MMO and unset the store flag. 260 MachineMemOperand *JustLoad = 261 getMachineMemOperand((*I)->getPointerInfo(), 262 (*I)->getFlags() & ~MachineMemOperand::MOStore, 263 (*I)->getSize(), (*I)->getBaseAlignment(), 264 (*I)->getTBAAInfo()); 265 Result[Index] = JustLoad; 266 } 267 ++Index; 268 } 269 } 270 return std::make_pair(Result, Result + Num); 271 } 272 273 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 274 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 275 MachineInstr::mmo_iterator End) { 276 // Count the number of load mem refs. 277 unsigned Num = 0; 278 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 279 if ((*I)->isStore()) 280 ++Num; 281 282 // Allocate a new array and populate it with the store information. 283 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 284 unsigned Index = 0; 285 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 286 if ((*I)->isStore()) { 287 if (!(*I)->isLoad()) 288 // Reuse the MMO. 289 Result[Index] = *I; 290 else { 291 // Clone the MMO and unset the load flag. 292 MachineMemOperand *JustStore = 293 getMachineMemOperand((*I)->getPointerInfo(), 294 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 295 (*I)->getSize(), (*I)->getBaseAlignment(), 296 (*I)->getTBAAInfo()); 297 Result[Index] = JustStore; 298 } 299 ++Index; 300 } 301 } 302 return std::make_pair(Result, Result + Num); 303 } 304 305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 306 void MachineFunction::dump() const { 307 print(dbgs()); 308 } 309 #endif 310 311 StringRef MachineFunction::getName() const { 312 assert(getFunction() && "No function!"); 313 return getFunction()->getName(); 314 } 315 316 void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const { 317 OS << "# Machine code for function " << getName() << ": "; 318 if (RegInfo) { 319 OS << (RegInfo->isSSA() ? "SSA" : "Post SSA"); 320 if (!RegInfo->tracksLiveness()) 321 OS << ", not tracking liveness"; 322 } 323 OS << '\n'; 324 325 // Print Frame Information 326 FrameInfo->print(*this, OS); 327 328 // Print JumpTable Information 329 if (JumpTableInfo) 330 JumpTableInfo->print(OS); 331 332 // Print Constant Pool 333 ConstantPool->print(OS); 334 335 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 336 337 if (RegInfo && !RegInfo->livein_empty()) { 338 OS << "Function Live Ins: "; 339 for (MachineRegisterInfo::livein_iterator 340 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 341 OS << PrintReg(I->first, TRI); 342 if (I->second) 343 OS << " in " << PrintReg(I->second, TRI); 344 if (llvm::next(I) != E) 345 OS << ", "; 346 } 347 OS << '\n'; 348 } 349 350 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 351 OS << '\n'; 352 BB->print(OS, Indexes); 353 } 354 355 OS << "\n# End machine code for function " << getName() << ".\n\n"; 356 } 357 358 namespace llvm { 359 template<> 360 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 361 362 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 363 364 static std::string getGraphName(const MachineFunction *F) { 365 return "CFG for '" + F->getName().str() + "' function"; 366 } 367 368 std::string getNodeLabel(const MachineBasicBlock *Node, 369 const MachineFunction *Graph) { 370 std::string OutStr; 371 { 372 raw_string_ostream OSS(OutStr); 373 374 if (isSimple()) { 375 OSS << "BB#" << Node->getNumber(); 376 if (const BasicBlock *BB = Node->getBasicBlock()) 377 OSS << ": " << BB->getName(); 378 } else 379 Node->print(OSS); 380 } 381 382 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 383 384 // Process string output to make it nicer... 385 for (unsigned i = 0; i != OutStr.length(); ++i) 386 if (OutStr[i] == '\n') { // Left justify 387 OutStr[i] = '\\'; 388 OutStr.insert(OutStr.begin()+i+1, 'l'); 389 } 390 return OutStr; 391 } 392 }; 393 } 394 395 void MachineFunction::viewCFG() const 396 { 397 #ifndef NDEBUG 398 ViewGraph(this, "mf" + getName()); 399 #else 400 errs() << "MachineFunction::viewCFG is only available in debug builds on " 401 << "systems with Graphviz or gv!\n"; 402 #endif // NDEBUG 403 } 404 405 void MachineFunction::viewCFGOnly() const 406 { 407 #ifndef NDEBUG 408 ViewGraph(this, "mf" + getName(), true); 409 #else 410 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 411 << "systems with Graphviz or gv!\n"; 412 #endif // NDEBUG 413 } 414 415 /// addLiveIn - Add the specified physical register as a live-in value and 416 /// create a corresponding virtual register for it. 417 unsigned MachineFunction::addLiveIn(unsigned PReg, 418 const TargetRegisterClass *RC) { 419 MachineRegisterInfo &MRI = getRegInfo(); 420 unsigned VReg = MRI.getLiveInVirtReg(PReg); 421 if (VReg) { 422 assert(MRI.getRegClass(VReg) == RC && "Register class mismatch!"); 423 return VReg; 424 } 425 VReg = MRI.createVirtualRegister(RC); 426 MRI.addLiveIn(PReg, VReg); 427 return VReg; 428 } 429 430 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 431 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 432 /// normal 'L' label is returned. 433 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 434 bool isLinkerPrivate) const { 435 assert(JumpTableInfo && "No jump tables"); 436 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 437 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 438 439 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 440 MAI.getPrivateGlobalPrefix(); 441 SmallString<60> Name; 442 raw_svector_ostream(Name) 443 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 444 return Ctx.GetOrCreateSymbol(Name.str()); 445 } 446 447 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 448 /// base. 449 MCSymbol *MachineFunction::getPICBaseSymbol() const { 450 const MCAsmInfo &MAI = *Target.getMCAsmInfo(); 451 return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ 452 Twine(getFunctionNumber())+"$pb"); 453 } 454 455 //===----------------------------------------------------------------------===// 456 // MachineFrameInfo implementation 457 //===----------------------------------------------------------------------===// 458 459 /// ensureMaxAlignment - Make sure the function is at least Align bytes 460 /// aligned. 461 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 462 if (!TFI.isStackRealignable() || !RealignOption) 463 assert(Align <= TFI.getStackAlignment() && 464 "For targets without stack realignment, Align is out of limit!"); 465 if (MaxAlignment < Align) MaxAlignment = Align; 466 } 467 468 /// clampStackAlignment - Clamp the alignment if requested and emit a warning. 469 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 470 unsigned StackAlign) { 471 if (!ShouldClamp || Align <= StackAlign) 472 return Align; 473 DEBUG(dbgs() << "Warning: requested alignment " << Align 474 << " exceeds the stack alignment " << StackAlign 475 << " when stack realignment is off" << '\n'); 476 return StackAlign; 477 } 478 479 /// CreateStackObject - Create a new statically sized stack object, returning 480 /// a nonnegative identifier to represent it. 481 /// 482 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 483 bool isSS, bool MayNeedSP, const AllocaInst *Alloca) { 484 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 485 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 486 Alignment, TFI.getStackAlignment()); 487 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, MayNeedSP, 488 Alloca)); 489 int Index = (int)Objects.size() - NumFixedObjects - 1; 490 assert(Index >= 0 && "Bad frame index!"); 491 ensureMaxAlignment(Alignment); 492 return Index; 493 } 494 495 /// CreateSpillStackObject - Create a new statically sized stack object that 496 /// represents a spill slot, returning a nonnegative identifier to represent 497 /// it. 498 /// 499 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 500 unsigned Alignment) { 501 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 502 Alignment, TFI.getStackAlignment()); 503 CreateStackObject(Size, Alignment, true, false); 504 int Index = (int)Objects.size() - NumFixedObjects - 1; 505 ensureMaxAlignment(Alignment); 506 return Index; 507 } 508 509 /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a 510 /// variable sized object has been created. This must be created whenever a 511 /// variable sized object is created, whether or not the index returned is 512 /// actually used. 513 /// 514 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment) { 515 HasVarSizedObjects = true; 516 Alignment = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 517 Alignment, TFI.getStackAlignment()); 518 Objects.push_back(StackObject(0, Alignment, 0, false, false, true, 0)); 519 ensureMaxAlignment(Alignment); 520 return (int)Objects.size()-NumFixedObjects-1; 521 } 522 523 /// CreateFixedObject - Create a new object at a fixed location on the stack. 524 /// All fixed objects should be created before other objects are created for 525 /// efficiency. By default, fixed objects are immutable. This returns an 526 /// index with a negative value. 527 /// 528 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 529 bool Immutable) { 530 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 531 // The alignment of the frame index can be determined from its offset from 532 // the incoming frame position. If the frame object is at offset 32 and 533 // the stack is guaranteed to be 16-byte aligned, then we know that the 534 // object is 16-byte aligned. 535 unsigned StackAlign = TFI.getStackAlignment(); 536 unsigned Align = MinAlign(SPOffset, StackAlign); 537 Align = clampStackAlignment(!TFI.isStackRealignable() || !RealignOption, 538 Align, TFI.getStackAlignment()); 539 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 540 /*isSS*/ false, 541 /*NeedSP*/ false, 542 /*Alloca*/ 0)); 543 return -++NumFixedObjects; 544 } 545 546 547 BitVector 548 MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 549 assert(MBB && "MBB must be valid"); 550 const MachineFunction *MF = MBB->getParent(); 551 assert(MF && "MBB must be part of a MachineFunction"); 552 const TargetMachine &TM = MF->getTarget(); 553 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 554 BitVector BV(TRI->getNumRegs()); 555 556 // Before CSI is calculated, no registers are considered pristine. They can be 557 // freely used and PEI will make sure they are saved. 558 if (!isCalleeSavedInfoValid()) 559 return BV; 560 561 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 562 BV.set(*CSR); 563 564 // The entry MBB always has all CSRs pristine. 565 if (MBB == &MF->front()) 566 return BV; 567 568 // On other MBBs the saved CSRs are not pristine. 569 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 570 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 571 E = CSI.end(); I != E; ++I) 572 BV.reset(I->getReg()); 573 574 return BV; 575 } 576 577 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 578 const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); 579 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 580 unsigned MaxAlign = getMaxAlignment(); 581 int Offset = 0; 582 583 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 584 // It really should be refactored to share code. Until then, changes 585 // should keep in mind that there's tight coupling between the two. 586 587 for (int i = getObjectIndexBegin(); i != 0; ++i) { 588 int FixedOff = -getObjectOffset(i); 589 if (FixedOff > Offset) Offset = FixedOff; 590 } 591 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 592 if (isDeadObjectIndex(i)) 593 continue; 594 Offset += getObjectSize(i); 595 unsigned Align = getObjectAlignment(i); 596 // Adjust to alignment boundary 597 Offset = (Offset+Align-1)/Align*Align; 598 599 MaxAlign = std::max(Align, MaxAlign); 600 } 601 602 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 603 Offset += getMaxCallFrameSize(); 604 605 // Round up the size to a multiple of the alignment. If the function has 606 // any calls or alloca's, align to the target's StackAlignment value to 607 // ensure that the callee's frame or the alloca data is suitably aligned; 608 // otherwise, for leaf functions, align to the TransientStackAlignment 609 // value. 610 unsigned StackAlign; 611 if (adjustsStack() || hasVarSizedObjects() || 612 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 613 StackAlign = TFI->getStackAlignment(); 614 else 615 StackAlign = TFI->getTransientStackAlignment(); 616 617 // If the frame pointer is eliminated, all frame offsets will be relative to 618 // SP not FP. Align to MaxAlign so this works. 619 StackAlign = std::max(StackAlign, MaxAlign); 620 unsigned AlignMask = StackAlign - 1; 621 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 622 623 return (unsigned)Offset; 624 } 625 626 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 627 if (Objects.empty()) return; 628 629 const TargetFrameLowering *FI = MF.getTarget().getFrameLowering(); 630 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 631 632 OS << "Frame Objects:\n"; 633 634 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 635 const StackObject &SO = Objects[i]; 636 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 637 if (SO.Size == ~0ULL) { 638 OS << "dead\n"; 639 continue; 640 } 641 if (SO.Size == 0) 642 OS << "variable sized"; 643 else 644 OS << "size=" << SO.Size; 645 OS << ", align=" << SO.Alignment; 646 647 if (i < NumFixedObjects) 648 OS << ", fixed"; 649 if (i < NumFixedObjects || SO.SPOffset != -1) { 650 int64_t Off = SO.SPOffset - ValOffset; 651 OS << ", at location [SP"; 652 if (Off > 0) 653 OS << "+" << Off; 654 else if (Off < 0) 655 OS << Off; 656 OS << "]"; 657 } 658 OS << "\n"; 659 } 660 } 661 662 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 663 void MachineFrameInfo::dump(const MachineFunction &MF) const { 664 print(MF, dbgs()); 665 } 666 #endif 667 668 //===----------------------------------------------------------------------===// 669 // MachineJumpTableInfo implementation 670 //===----------------------------------------------------------------------===// 671 672 /// getEntrySize - Return the size of each entry in the jump table. 673 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 674 // The size of a jump table entry is 4 bytes unless the entry is just the 675 // address of a block, in which case it is the pointer size. 676 switch (getEntryKind()) { 677 case MachineJumpTableInfo::EK_BlockAddress: 678 return TD.getPointerSize(); 679 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 680 return 8; 681 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 682 case MachineJumpTableInfo::EK_LabelDifference32: 683 case MachineJumpTableInfo::EK_Custom32: 684 return 4; 685 case MachineJumpTableInfo::EK_Inline: 686 return 0; 687 } 688 llvm_unreachable("Unknown jump table encoding!"); 689 } 690 691 /// getEntryAlignment - Return the alignment of each entry in the jump table. 692 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 693 // The alignment of a jump table entry is the alignment of int32 unless the 694 // entry is just the address of a block, in which case it is the pointer 695 // alignment. 696 switch (getEntryKind()) { 697 case MachineJumpTableInfo::EK_BlockAddress: 698 return TD.getPointerABIAlignment(); 699 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 700 return TD.getABIIntegerTypeAlignment(64); 701 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 702 case MachineJumpTableInfo::EK_LabelDifference32: 703 case MachineJumpTableInfo::EK_Custom32: 704 return TD.getABIIntegerTypeAlignment(32); 705 case MachineJumpTableInfo::EK_Inline: 706 return 1; 707 } 708 llvm_unreachable("Unknown jump table encoding!"); 709 } 710 711 /// createJumpTableIndex - Create a new jump table entry in the jump table info. 712 /// 713 unsigned MachineJumpTableInfo::createJumpTableIndex( 714 const std::vector<MachineBasicBlock*> &DestBBs) { 715 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 716 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 717 return JumpTables.size()-1; 718 } 719 720 /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 721 /// the jump tables to branch to New instead. 722 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 723 MachineBasicBlock *New) { 724 assert(Old != New && "Not making a change?"); 725 bool MadeChange = false; 726 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 727 ReplaceMBBInJumpTable(i, Old, New); 728 return MadeChange; 729 } 730 731 /// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 732 /// the jump table to branch to New instead. 733 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 734 MachineBasicBlock *Old, 735 MachineBasicBlock *New) { 736 assert(Old != New && "Not making a change?"); 737 bool MadeChange = false; 738 MachineJumpTableEntry &JTE = JumpTables[Idx]; 739 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 740 if (JTE.MBBs[j] == Old) { 741 JTE.MBBs[j] = New; 742 MadeChange = true; 743 } 744 return MadeChange; 745 } 746 747 void MachineJumpTableInfo::print(raw_ostream &OS) const { 748 if (JumpTables.empty()) return; 749 750 OS << "Jump Tables:\n"; 751 752 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 753 OS << " jt#" << i << ": "; 754 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 755 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 756 } 757 758 OS << '\n'; 759 } 760 761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 762 void MachineJumpTableInfo::dump() const { print(dbgs()); } 763 #endif 764 765 766 //===----------------------------------------------------------------------===// 767 // MachineConstantPool implementation 768 //===----------------------------------------------------------------------===// 769 770 void MachineConstantPoolValue::anchor() { } 771 772 Type *MachineConstantPoolEntry::getType() const { 773 if (isMachineConstantPoolEntry()) 774 return Val.MachineCPVal->getType(); 775 return Val.ConstVal->getType(); 776 } 777 778 779 unsigned MachineConstantPoolEntry::getRelocationInfo() const { 780 if (isMachineConstantPoolEntry()) 781 return Val.MachineCPVal->getRelocationInfo(); 782 return Val.ConstVal->getRelocationInfo(); 783 } 784 785 MachineConstantPool::~MachineConstantPool() { 786 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 787 if (Constants[i].isMachineConstantPoolEntry()) 788 delete Constants[i].Val.MachineCPVal; 789 for (DenseSet<MachineConstantPoolValue*>::iterator I = 790 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 791 I != E; ++I) 792 delete *I; 793 } 794 795 /// CanShareConstantPoolEntry - Test whether the given two constants 796 /// can be allocated the same constant pool entry. 797 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 798 const DataLayout *TD) { 799 // Handle the trivial case quickly. 800 if (A == B) return true; 801 802 // If they have the same type but weren't the same constant, quickly 803 // reject them. 804 if (A->getType() == B->getType()) return false; 805 806 // We can't handle structs or arrays. 807 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 808 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 809 return false; 810 811 // For now, only support constants with the same size. 812 uint64_t StoreSize = TD->getTypeStoreSize(A->getType()); 813 if (StoreSize != TD->getTypeStoreSize(B->getType()) || 814 StoreSize > 128) 815 return false; 816 817 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 818 819 // Try constant folding a bitcast of both instructions to an integer. If we 820 // get two identical ConstantInt's, then we are good to share them. We use 821 // the constant folding APIs to do this so that we get the benefit of 822 // DataLayout. 823 if (isa<PointerType>(A->getType())) 824 A = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 825 const_cast<Constant*>(A), TD); 826 else if (A->getType() != IntTy) 827 A = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 828 const_cast<Constant*>(A), TD); 829 if (isa<PointerType>(B->getType())) 830 B = ConstantFoldInstOperands(Instruction::PtrToInt, IntTy, 831 const_cast<Constant*>(B), TD); 832 else if (B->getType() != IntTy) 833 B = ConstantFoldInstOperands(Instruction::BitCast, IntTy, 834 const_cast<Constant*>(B), TD); 835 836 return A == B; 837 } 838 839 /// getConstantPoolIndex - Create a new entry in the constant pool or return 840 /// an existing one. User must specify the log2 of the minimum required 841 /// alignment for the object. 842 /// 843 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 844 unsigned Alignment) { 845 assert(Alignment && "Alignment must be specified!"); 846 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 847 848 // Check to see if we already have this constant. 849 // 850 // FIXME, this could be made much more efficient for large constant pools. 851 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 852 if (!Constants[i].isMachineConstantPoolEntry() && 853 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 854 if ((unsigned)Constants[i].getAlignment() < Alignment) 855 Constants[i].Alignment = Alignment; 856 return i; 857 } 858 859 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 860 return Constants.size()-1; 861 } 862 863 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 864 unsigned Alignment) { 865 assert(Alignment && "Alignment must be specified!"); 866 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 867 868 // Check to see if we already have this constant. 869 // 870 // FIXME, this could be made much more efficient for large constant pools. 871 int Idx = V->getExistingMachineCPValue(this, Alignment); 872 if (Idx != -1) { 873 MachineCPVsSharingEntries.insert(V); 874 return (unsigned)Idx; 875 } 876 877 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 878 return Constants.size()-1; 879 } 880 881 void MachineConstantPool::print(raw_ostream &OS) const { 882 if (Constants.empty()) return; 883 884 OS << "Constant Pool:\n"; 885 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 886 OS << " cp#" << i << ": "; 887 if (Constants[i].isMachineConstantPoolEntry()) 888 Constants[i].Val.MachineCPVal->print(OS); 889 else 890 OS << *(const Value*)Constants[i].Val.ConstVal; 891 OS << ", align=" << Constants[i].getAlignment(); 892 OS << "\n"; 893 } 894 } 895 896 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 897 void MachineConstantPool::dump() const { print(dbgs()); } 898 #endif 899