Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #define DEBUG_TYPE "hexagon_cfg"
     10 #include "Hexagon.h"
     11 #include "HexagonMachineFunctionInfo.h"
     12 #include "HexagonSubtarget.h"
     13 #include "HexagonTargetMachine.h"
     14 #include "llvm/CodeGen/MachineDominators.h"
     15 #include "llvm/CodeGen/MachineFunctionPass.h"
     16 #include "llvm/CodeGen/MachineInstrBuilder.h"
     17 #include "llvm/CodeGen/MachineLoopInfo.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetMachine.h"
     25 #include "llvm/Target/TargetRegisterInfo.h"
     26 
     27 using namespace llvm;
     28 
     29 namespace {
     30 
     31 class HexagonCFGOptimizer : public MachineFunctionPass {
     32 
     33 private:
     34   HexagonTargetMachine& QTM;
     35   const HexagonSubtarget &QST;
     36 
     37   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
     38 
     39  public:
     40   static char ID;
     41   HexagonCFGOptimizer(HexagonTargetMachine& TM) : MachineFunctionPass(ID),
     42                                                   QTM(TM),
     43                                                   QST(*TM.getSubtargetImpl()) {}
     44 
     45   const char *getPassName() const {
     46     return "Hexagon CFG Optimizer";
     47   }
     48   bool runOnMachineFunction(MachineFunction &Fn);
     49 };
     50 
     51 
     52 char HexagonCFGOptimizer::ID = 0;
     53 
     54 static bool IsConditionalBranch(int Opc) {
     55   return (Opc == Hexagon::JMP_c) || (Opc == Hexagon::JMP_cNot)
     56     || (Opc == Hexagon::JMP_cdnPt) || (Opc == Hexagon::JMP_cdnNotPt);
     57 }
     58 
     59 
     60 static bool IsUnconditionalJump(int Opc) {
     61   return (Opc == Hexagon::JMP);
     62 }
     63 
     64 
     65 void
     66 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
     67                                                MachineBasicBlock* NewTarget) {
     68   const HexagonInstrInfo *QII = QTM.getInstrInfo();
     69   int NewOpcode = 0;
     70   switch(MI->getOpcode()) {
     71   case Hexagon::JMP_c:
     72     NewOpcode = Hexagon::JMP_cNot;
     73     break;
     74 
     75   case Hexagon::JMP_cNot:
     76     NewOpcode = Hexagon::JMP_c;
     77     break;
     78 
     79   case Hexagon::JMP_cdnPt:
     80     NewOpcode = Hexagon::JMP_cdnNotPt;
     81     break;
     82 
     83   case Hexagon::JMP_cdnNotPt:
     84     NewOpcode = Hexagon::JMP_cdnPt;
     85     break;
     86 
     87   default:
     88     llvm_unreachable("Cannot handle this case");
     89   }
     90 
     91   MI->setDesc(QII->get(NewOpcode));
     92   MI->getOperand(1).setMBB(NewTarget);
     93 }
     94 
     95 
     96 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
     97 
     98   // Loop over all of the basic blocks.
     99   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    100        MBBb != MBBe; ++MBBb) {
    101     MachineBasicBlock* MBB = MBBb;
    102 
    103     // Traverse the basic block.
    104     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    105     if (MII != MBB->end()) {
    106       MachineInstr *MI = MII;
    107       int Opc = MI->getOpcode();
    108       if (IsConditionalBranch(Opc)) {
    109 
    110         //
    111         // (Case 1) Transform the code if the following condition occurs:
    112         //   BB1: if (p0) jump BB3
    113         //   ...falls-through to BB2 ...
    114         //   BB2: jump BB4
    115         //   ...next block in layout is BB3...
    116         //   BB3: ...
    117         //
    118         //  Transform this to:
    119         //  BB1: if (!p0) jump BB4
    120         //  Remove BB2
    121         //  BB3: ...
    122         //
    123         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    124         //   BB1: if (p0) jump BB3
    125         //   ...falls-through to BB2 ...
    126         //   BB2: jump BB4
    127         //   ...other basic blocks ...
    128         //   BB4:
    129         //   ...not a fall-thru
    130         //   BB3: ...
    131         //     jump BB4
    132         //
    133         // Transform this to:
    134         //   BB1: if (!p0) jump BB4
    135         //   Remove BB2
    136         //   BB3: ...
    137         //   BB4: ...
    138         //
    139         unsigned NumSuccs = MBB->succ_size();
    140         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    141         MachineBasicBlock* FirstSucc = *SI;
    142         MachineBasicBlock* SecondSucc = *(++SI);
    143         MachineBasicBlock* LayoutSucc = NULL;
    144         MachineBasicBlock* JumpAroundTarget = NULL;
    145 
    146         if (MBB->isLayoutSuccessor(FirstSucc)) {
    147           LayoutSucc = FirstSucc;
    148           JumpAroundTarget = SecondSucc;
    149         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    150           LayoutSucc = SecondSucc;
    151           JumpAroundTarget = FirstSucc;
    152         } else {
    153           // Odd case...cannot handle.
    154         }
    155 
    156         // The target of the unconditional branch must be JumpAroundTarget.
    157         // TODO: If not, we should not invert the unconditional branch.
    158         MachineBasicBlock* CondBranchTarget = NULL;
    159         if ((MI->getOpcode() == Hexagon::JMP_c) ||
    160             (MI->getOpcode() == Hexagon::JMP_cNot)) {
    161           CondBranchTarget = MI->getOperand(1).getMBB();
    162         }
    163 
    164         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    165           continue;
    166         }
    167 
    168         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    169 
    170           // Ensure that BB2 has one instruction -- an unconditional jump.
    171           if ((LayoutSucc->size() == 1) &&
    172               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    173             MachineBasicBlock* UncondTarget =
    174               LayoutSucc->front().getOperand(0).getMBB();
    175             // Check if the layout successor of BB2 is BB3.
    176             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    177             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    178               JumpAroundTarget->size() >= 1 &&
    179               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    180               JumpAroundTarget->pred_size() == 1 &&
    181               JumpAroundTarget->succ_size() == 1;
    182 
    183             if (case1 || case2) {
    184               InvertAndChangeJumpTarget(MI, UncondTarget);
    185               MBB->removeSuccessor(JumpAroundTarget);
    186               MBB->addSuccessor(UncondTarget);
    187 
    188               // Remove the unconditional branch in LayoutSucc.
    189               LayoutSucc->erase(LayoutSucc->begin());
    190               LayoutSucc->removeSuccessor(UncondTarget);
    191               LayoutSucc->addSuccessor(JumpAroundTarget);
    192 
    193               // This code performs the conversion for case 2, which moves
    194               // the block to the fall-thru case (BB3 in the code above).
    195               if (case2 && !case1) {
    196                 JumpAroundTarget->moveAfter(LayoutSucc);
    197                 // only move a block if it doesn't have a fall-thru. otherwise
    198                 // the CFG will be incorrect.
    199                 if (!UncondTarget->canFallThrough()) {
    200                   UncondTarget->moveAfter(JumpAroundTarget);
    201                 }
    202               }
    203 
    204               //
    205               // Correct live-in information. Is used by post-RA scheduler
    206               // The live-in to LayoutSucc is now all values live-in to
    207               // JumpAroundTarget.
    208               //
    209               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
    210                                                LayoutSucc->livein_end());
    211               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
    212                                               JumpAroundTarget->livein_end());
    213               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
    214                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
    215               }
    216               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
    217                 LayoutSucc->addLiveIn(NewLiveIn[i]);
    218               }
    219             }
    220           }
    221         }
    222       }
    223     }
    224   }
    225   return true;
    226 }
    227 }
    228 
    229 
    230 //===----------------------------------------------------------------------===//
    231 //                         Public Constructor Functions
    232 //===----------------------------------------------------------------------===//
    233 
    234 FunctionPass *llvm::createHexagonCFGOptimizer(HexagonTargetMachine &TM) {
    235   return new HexagonCFGOptimizer(TM);
    236 }
    237