Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "inline"
     17 #include "llvm/Transforms/IPO/InlinerPass.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/CallGraph.h"
     21 #include "llvm/Analysis/InlineCost.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/Support/CallSite.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetLibraryInfo.h"
     31 #include "llvm/Transforms/Utils/Cloning.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 using namespace llvm;
     34 
     35 STATISTIC(NumInlined, "Number of functions inlined");
     36 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     37 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     38 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     39 
     40 // This weirdly named statistic tracks the number of times that, when attempting
     41 // to inline a function A into B, we analyze the callers of B in order to see
     42 // if those would be more profitable and blocked inline steps.
     43 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     44 
     45 static cl::opt<int>
     46 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
     47         cl::desc("Control the amount of inlining to perform (default = 225)"));
     48 
     49 static cl::opt<int>
     50 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
     51               cl::desc("Threshold for inlining functions with inline hint"));
     52 
     53 // Threshold to use when optsize is specified (and there is no -inline-limit).
     54 const int OptSizeThreshold = 75;
     55 
     56 Inliner::Inliner(char &ID)
     57   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
     58 
     59 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
     60   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
     61                                           InlineLimit : Threshold),
     62     InsertLifetime(InsertLifetime) {}
     63 
     64 /// getAnalysisUsage - For this class, we declare that we require and preserve
     65 /// the call graph.  If the derived class implements this method, it should
     66 /// always explicitly call the implementation here.
     67 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
     68   CallGraphSCCPass::getAnalysisUsage(AU);
     69 }
     70 
     71 
     72 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
     73 InlinedArrayAllocasTy;
     74 
     75 /// \brief If the inlined function had a higher stack protection level than the
     76 /// calling function, then bump up the caller's stack protection level.
     77 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
     78   // If upgrading the SSP attribute, clear out the old SSP Attributes first.
     79   // Having multiple SSP attributes doesn't actually hurt, but it adds useless
     80   // clutter to the IR.
     81   AttrBuilder B;
     82   B.addAttribute(Attribute::StackProtect)
     83     .addAttribute(Attribute::StackProtectStrong);
     84   AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
     85                                               AttributeSet::FunctionIndex,
     86                                               B);
     87   AttributeSet CallerAttr = Caller->getAttributes(),
     88                CalleeAttr = Callee->getAttributes();
     89 
     90   if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
     91                               Attribute::StackProtectReq)) {
     92     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
     93     Caller->addFnAttr(Attribute::StackProtectReq);
     94   } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
     95                                      Attribute::StackProtectStrong) &&
     96              !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
     97                                       Attribute::StackProtectReq)) {
     98     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
     99     Caller->addFnAttr(Attribute::StackProtectStrong);
    100   } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
    101                                      Attribute::StackProtect) &&
    102            !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
    103                                     Attribute::StackProtectReq) &&
    104            !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
    105                                     Attribute::StackProtectStrong))
    106     Caller->addFnAttr(Attribute::StackProtect);
    107 }
    108 
    109 /// InlineCallIfPossible - If it is possible to inline the specified call site,
    110 /// do so and update the CallGraph for this operation.
    111 ///
    112 /// This function also does some basic book-keeping to update the IR.  The
    113 /// InlinedArrayAllocas map keeps track of any allocas that are already
    114 /// available from other  functions inlined into the caller.  If we are able to
    115 /// inline this call site we attempt to reuse already available allocas or add
    116 /// any new allocas to the set if not possible.
    117 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
    118                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
    119                                  int InlineHistory, bool InsertLifetime) {
    120   Function *Callee = CS.getCalledFunction();
    121   Function *Caller = CS.getCaller();
    122 
    123   // Try to inline the function.  Get the list of static allocas that were
    124   // inlined.
    125   if (!InlineFunction(CS, IFI, InsertLifetime))
    126     return false;
    127 
    128   AdjustCallerSSPLevel(Caller, Callee);
    129 
    130   // Look at all of the allocas that we inlined through this call site.  If we
    131   // have already inlined other allocas through other calls into this function,
    132   // then we know that they have disjoint lifetimes and that we can merge them.
    133   //
    134   // There are many heuristics possible for merging these allocas, and the
    135   // different options have different tradeoffs.  One thing that we *really*
    136   // don't want to hurt is SRoA: once inlining happens, often allocas are no
    137   // longer address taken and so they can be promoted.
    138   //
    139   // Our "solution" for that is to only merge allocas whose outermost type is an
    140   // array type.  These are usually not promoted because someone is using a
    141   // variable index into them.  These are also often the most important ones to
    142   // merge.
    143   //
    144   // A better solution would be to have real memory lifetime markers in the IR
    145   // and not have the inliner do any merging of allocas at all.  This would
    146   // allow the backend to do proper stack slot coloring of all allocas that
    147   // *actually make it to the backend*, which is really what we want.
    148   //
    149   // Because we don't have this information, we do this simple and useful hack.
    150   //
    151   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
    152 
    153   // When processing our SCC, check to see if CS was inlined from some other
    154   // call site.  For example, if we're processing "A" in this code:
    155   //   A() { B() }
    156   //   B() { x = alloca ... C() }
    157   //   C() { y = alloca ... }
    158   // Assume that C was not inlined into B initially, and so we're processing A
    159   // and decide to inline B into A.  Doing this makes an alloca available for
    160   // reuse and makes a callsite (C) available for inlining.  When we process
    161   // the C call site we don't want to do any alloca merging between X and Y
    162   // because their scopes are not disjoint.  We could make this smarter by
    163   // keeping track of the inline history for each alloca in the
    164   // InlinedArrayAllocas but this isn't likely to be a significant win.
    165   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
    166     return true;
    167 
    168   // Loop over all the allocas we have so far and see if they can be merged with
    169   // a previously inlined alloca.  If not, remember that we had it.
    170   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
    171        AllocaNo != e; ++AllocaNo) {
    172     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    173 
    174     // Don't bother trying to merge array allocations (they will usually be
    175     // canonicalized to be an allocation *of* an array), or allocations whose
    176     // type is not itself an array (because we're afraid of pessimizing SRoA).
    177     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    178     if (ATy == 0 || AI->isArrayAllocation())
    179       continue;
    180 
    181     // Get the list of all available allocas for this array type.
    182     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
    183 
    184     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    185     // that we have to be careful not to reuse the same "available" alloca for
    186     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    187     // set to keep track of which "available" allocas are being used by this
    188     // function.  Also, AllocasForType can be empty of course!
    189     bool MergedAwayAlloca = false;
    190     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
    191       AllocaInst *AvailableAlloca = AllocasForType[i];
    192 
    193       // The available alloca has to be in the right function, not in some other
    194       // function in this SCC.
    195       if (AvailableAlloca->getParent() != AI->getParent())
    196         continue;
    197 
    198       // If the inlined function already uses this alloca then we can't reuse
    199       // it.
    200       if (!UsedAllocas.insert(AvailableAlloca))
    201         continue;
    202 
    203       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    204       // success!
    205       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
    206                    << *AvailableAlloca << '\n');
    207 
    208       AI->replaceAllUsesWith(AvailableAlloca);
    209       AI->eraseFromParent();
    210       MergedAwayAlloca = true;
    211       ++NumMergedAllocas;
    212       IFI.StaticAllocas[AllocaNo] = 0;
    213       break;
    214     }
    215 
    216     // If we already nuked the alloca, we're done with it.
    217     if (MergedAwayAlloca)
    218       continue;
    219 
    220     // If we were unable to merge away the alloca either because there are no
    221     // allocas of the right type available or because we reused them all
    222     // already, remember that this alloca came from an inlined function and mark
    223     // it used so we don't reuse it for other allocas from this inline
    224     // operation.
    225     AllocasForType.push_back(AI);
    226     UsedAllocas.insert(AI);
    227   }
    228 
    229   return true;
    230 }
    231 
    232 unsigned Inliner::getInlineThreshold(CallSite CS) const {
    233   int thres = InlineThreshold; // -inline-threshold or else selected by
    234                                // overall opt level
    235 
    236   // If -inline-threshold is not given, listen to the optsize attribute when it
    237   // would decrease the threshold.
    238   Function *Caller = CS.getCaller();
    239   bool OptSize = Caller && !Caller->isDeclaration() &&
    240     Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    241                                          Attribute::OptimizeForSize);
    242   if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
    243       OptSizeThreshold < thres)
    244     thres = OptSizeThreshold;
    245 
    246   // Listen to the inlinehint attribute when it would increase the threshold
    247   // and the caller does not need to minimize its size.
    248   Function *Callee = CS.getCalledFunction();
    249   bool InlineHint = Callee && !Callee->isDeclaration() &&
    250     Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    251                                          Attribute::InlineHint);
    252   if (InlineHint && HintThreshold > thres
    253       && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    254                                                Attribute::MinSize))
    255     thres = HintThreshold;
    256 
    257   return thres;
    258 }
    259 
    260 /// shouldInline - Return true if the inliner should attempt to inline
    261 /// at the given CallSite.
    262 bool Inliner::shouldInline(CallSite CS) {
    263   InlineCost IC = getInlineCost(CS);
    264 
    265   if (IC.isAlways()) {
    266     DEBUG(dbgs() << "    Inlining: cost=always"
    267           << ", Call: " << *CS.getInstruction() << "\n");
    268     return true;
    269   }
    270 
    271   if (IC.isNever()) {
    272     DEBUG(dbgs() << "    NOT Inlining: cost=never"
    273           << ", Call: " << *CS.getInstruction() << "\n");
    274     return false;
    275   }
    276 
    277   Function *Caller = CS.getCaller();
    278   if (!IC) {
    279     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    280           << ", thres=" << (IC.getCostDelta() + IC.getCost())
    281           << ", Call: " << *CS.getInstruction() << "\n");
    282     return false;
    283   }
    284 
    285   // Try to detect the case where the current inlining candidate caller (call
    286   // it B) is a static or linkonce-ODR function and is an inlining candidate
    287   // elsewhere, and the current candidate callee (call it C) is large enough
    288   // that inlining it into B would make B too big to inline later. In these
    289   // circumstances it may be best not to inline C into B, but to inline B into
    290   // its callers.
    291   //
    292   // This only applies to static and linkonce-ODR functions because those are
    293   // expected to be available for inlining in the translation units where they
    294   // are used. Thus we will always have the opportunity to make local inlining
    295   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    296   // and templates in C++.
    297   //
    298   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    299   // the internal implementation of the inline cost metrics rather than
    300   // treating them as truly abstract units etc.
    301   if (Caller->hasLocalLinkage() ||
    302       Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
    303     int TotalSecondaryCost = 0;
    304     // The candidate cost to be imposed upon the current function.
    305     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
    306     // This bool tracks what happens if we do NOT inline C into B.
    307     bool callerWillBeRemoved = Caller->hasLocalLinkage();
    308     // This bool tracks what happens if we DO inline C into B.
    309     bool inliningPreventsSomeOuterInline = false;
    310     for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
    311          I != E; ++I) {
    312       CallSite CS2(*I);
    313 
    314       // If this isn't a call to Caller (it could be some other sort
    315       // of reference) skip it.  Such references will prevent the caller
    316       // from being removed.
    317       if (!CS2 || CS2.getCalledFunction() != Caller) {
    318         callerWillBeRemoved = false;
    319         continue;
    320       }
    321 
    322       InlineCost IC2 = getInlineCost(CS2);
    323       ++NumCallerCallersAnalyzed;
    324       if (!IC2) {
    325         callerWillBeRemoved = false;
    326         continue;
    327       }
    328       if (IC2.isAlways())
    329         continue;
    330 
    331       // See if inlining or original callsite would erase the cost delta of
    332       // this callsite. We subtract off the penalty for the call instruction,
    333       // which we would be deleting.
    334       if (IC2.getCostDelta() <= CandidateCost) {
    335         inliningPreventsSomeOuterInline = true;
    336         TotalSecondaryCost += IC2.getCost();
    337       }
    338     }
    339     // If all outer calls to Caller would get inlined, the cost for the last
    340     // one is set very low by getInlineCost, in anticipation that Caller will
    341     // be removed entirely.  We did not account for this above unless there
    342     // is only one caller of Caller.
    343     if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
    344       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
    345 
    346     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
    347       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
    348            " Cost = " << IC.getCost() <<
    349            ", outer Cost = " << TotalSecondaryCost << '\n');
    350       return false;
    351     }
    352   }
    353 
    354   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    355         << ", thres=" << (IC.getCostDelta() + IC.getCost())
    356         << ", Call: " << *CS.getInstruction() << '\n');
    357   return true;
    358 }
    359 
    360 /// InlineHistoryIncludes - Return true if the specified inline history ID
    361 /// indicates an inline history that includes the specified function.
    362 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
    363             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
    364   while (InlineHistoryID != -1) {
    365     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    366            "Invalid inline history ID");
    367     if (InlineHistory[InlineHistoryID].first == F)
    368       return true;
    369     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    370   }
    371   return false;
    372 }
    373 
    374 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
    375   CallGraph &CG = getAnalysis<CallGraph>();
    376   const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
    377   const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
    378 
    379   SmallPtrSet<Function*, 8> SCCFunctions;
    380   DEBUG(dbgs() << "Inliner visiting SCC:");
    381   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    382     Function *F = (*I)->getFunction();
    383     if (F) SCCFunctions.insert(F);
    384     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    385   }
    386 
    387   // Scan through and identify all call sites ahead of time so that we only
    388   // inline call sites in the original functions, not call sites that result
    389   // from inlining other functions.
    390   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    391 
    392   // When inlining a callee produces new call sites, we want to keep track of
    393   // the fact that they were inlined from the callee.  This allows us to avoid
    394   // infinite inlining in some obscure cases.  To represent this, we use an
    395   // index into the InlineHistory vector.
    396   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
    397 
    398   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    399     Function *F = (*I)->getFunction();
    400     if (!F) continue;
    401 
    402     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    403       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    404         CallSite CS(cast<Value>(I));
    405         // If this isn't a call, or it is a call to an intrinsic, it can
    406         // never be inlined.
    407         if (!CS || isa<IntrinsicInst>(I))
    408           continue;
    409 
    410         // If this is a direct call to an external function, we can never inline
    411         // it.  If it is an indirect call, inlining may resolve it to be a
    412         // direct call, so we keep it.
    413         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
    414           continue;
    415 
    416         CallSites.push_back(std::make_pair(CS, -1));
    417       }
    418   }
    419 
    420   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    421 
    422   // If there are no calls in this function, exit early.
    423   if (CallSites.empty())
    424     return false;
    425 
    426   // Now that we have all of the call sites, move the ones to functions in the
    427   // current SCC to the end of the list.
    428   unsigned FirstCallInSCC = CallSites.size();
    429   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    430     if (Function *F = CallSites[i].first.getCalledFunction())
    431       if (SCCFunctions.count(F))
    432         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    433 
    434 
    435   InlinedArrayAllocasTy InlinedArrayAllocas;
    436   InlineFunctionInfo InlineInfo(&CG, TD);
    437 
    438   // Now that we have all of the call sites, loop over them and inline them if
    439   // it looks profitable to do so.
    440   bool Changed = false;
    441   bool LocalChange;
    442   do {
    443     LocalChange = false;
    444     // Iterate over the outer loop because inlining functions can cause indirect
    445     // calls to become direct calls.
    446     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    447       CallSite CS = CallSites[CSi].first;
    448 
    449       Function *Caller = CS.getCaller();
    450       Function *Callee = CS.getCalledFunction();
    451 
    452       // If this call site is dead and it is to a readonly function, we should
    453       // just delete the call instead of trying to inline it, regardless of
    454       // size.  This happens because IPSCCP propagates the result out of the
    455       // call and then we're left with the dead call.
    456       if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
    457         DEBUG(dbgs() << "    -> Deleting dead call: "
    458                      << *CS.getInstruction() << "\n");
    459         // Update the call graph by deleting the edge from Callee to Caller.
    460         CG[Caller]->removeCallEdgeFor(CS);
    461         CS.getInstruction()->eraseFromParent();
    462         ++NumCallsDeleted;
    463       } else {
    464         // We can only inline direct calls to non-declarations.
    465         if (Callee == 0 || Callee->isDeclaration()) continue;
    466 
    467         // If this call site was obtained by inlining another function, verify
    468         // that the include path for the function did not include the callee
    469         // itself.  If so, we'd be recursively inlining the same function,
    470         // which would provide the same callsites, which would cause us to
    471         // infinitely inline.
    472         int InlineHistoryID = CallSites[CSi].second;
    473         if (InlineHistoryID != -1 &&
    474             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    475           continue;
    476 
    477 
    478         // If the policy determines that we should inline this function,
    479         // try to do so.
    480         if (!shouldInline(CS))
    481           continue;
    482 
    483         // Attempt to inline the function.
    484         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
    485                                   InlineHistoryID, InsertLifetime))
    486           continue;
    487         ++NumInlined;
    488 
    489         // If inlining this function gave us any new call sites, throw them
    490         // onto our worklist to process.  They are useful inline candidates.
    491         if (!InlineInfo.InlinedCalls.empty()) {
    492           // Create a new inline history entry for this, so that we remember
    493           // that these new callsites came about due to inlining Callee.
    494           int NewHistoryID = InlineHistory.size();
    495           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    496 
    497           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
    498                i != e; ++i) {
    499             Value *Ptr = InlineInfo.InlinedCalls[i];
    500             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    501           }
    502         }
    503       }
    504 
    505       // If we inlined or deleted the last possible call site to the function,
    506       // delete the function body now.
    507       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    508           // TODO: Can remove if in SCC now.
    509           !SCCFunctions.count(Callee) &&
    510 
    511           // The function may be apparently dead, but if there are indirect
    512           // callgraph references to the node, we cannot delete it yet, this
    513           // could invalidate the CGSCC iterator.
    514           CG[Callee]->getNumReferences() == 0) {
    515         DEBUG(dbgs() << "    -> Deleting dead function: "
    516               << Callee->getName() << "\n");
    517         CallGraphNode *CalleeNode = CG[Callee];
    518 
    519         // Remove any call graph edges from the callee to its callees.
    520         CalleeNode->removeAllCalledFunctions();
    521 
    522         // Removing the node for callee from the call graph and delete it.
    523         delete CG.removeFunctionFromModule(CalleeNode);
    524         ++NumDeleted;
    525       }
    526 
    527       // Remove this call site from the list.  If possible, use
    528       // swap/pop_back for efficiency, but do not use it if doing so would
    529       // move a call site to a function in this SCC before the
    530       // 'FirstCallInSCC' barrier.
    531       if (SCC.isSingular()) {
    532         CallSites[CSi] = CallSites.back();
    533         CallSites.pop_back();
    534       } else {
    535         CallSites.erase(CallSites.begin()+CSi);
    536       }
    537       --CSi;
    538 
    539       Changed = true;
    540       LocalChange = true;
    541     }
    542   } while (LocalChange);
    543 
    544   return Changed;
    545 }
    546 
    547 // doFinalization - Remove now-dead linkonce functions at the end of
    548 // processing to avoid breaking the SCC traversal.
    549 bool Inliner::doFinalization(CallGraph &CG) {
    550   return removeDeadFunctions(CG);
    551 }
    552 
    553 /// removeDeadFunctions - Remove dead functions that are not included in
    554 /// DNR (Do Not Remove) list.
    555 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
    556   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
    557 
    558   // Scan for all of the functions, looking for ones that should now be removed
    559   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    560   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
    561     CallGraphNode *CGN = I->second;
    562     Function *F = CGN->getFunction();
    563     if (!F || F->isDeclaration())
    564       continue;
    565 
    566     // Handle the case when this function is called and we only want to care
    567     // about always-inline functions. This is a bit of a hack to share code
    568     // between here and the InlineAlways pass.
    569     if (AlwaysInlineOnly &&
    570         !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    571                                          Attribute::AlwaysInline))
    572       continue;
    573 
    574     // If the only remaining users of the function are dead constants, remove
    575     // them.
    576     F->removeDeadConstantUsers();
    577 
    578     if (!F->isDefTriviallyDead())
    579       continue;
    580 
    581     // Remove any call graph edges from the function to its callees.
    582     CGN->removeAllCalledFunctions();
    583 
    584     // Remove any edges from the external node to the function's call graph
    585     // node.  These edges might have been made irrelegant due to
    586     // optimization of the program.
    587     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    588 
    589     // Removing the node for callee from the call graph and delete it.
    590     FunctionsToRemove.push_back(CGN);
    591   }
    592   if (FunctionsToRemove.empty())
    593     return false;
    594 
    595   // Now that we know which functions to delete, do so.  We didn't want to do
    596   // this inline, because that would invalidate our CallGraph::iterator
    597   // objects. :(
    598   //
    599   // Note that it doesn't matter that we are iterating over a non-stable order
    600   // here to do this, it doesn't matter which order the functions are deleted
    601   // in.
    602   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    603   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
    604                                       FunctionsToRemove.end()),
    605                           FunctionsToRemove.end());
    606   for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
    607                                                   E = FunctionsToRemove.end();
    608        I != E; ++I) {
    609     delete CG.removeFunctionFromModule(*I);
    610     ++NumDeleted;
    611   }
    612   return true;
    613 }
    614