Home | History | Annotate | Download | only in Utils
      1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
     11 // inserting a dummy basic block.  This pass may be "required" by passes that
     12 // cannot deal with critical edges.  For this usage, the structure type is
     13 // forward declared.  This pass obviously invalidates the CFG, but can update
     14 // dominator trees.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "break-crit-edges"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/Dominators.h"
     23 #include "llvm/Analysis/LoopInfo.h"
     24 #include "llvm/Analysis/ProfileInfo.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Type.h"
     28 #include "llvm/Support/CFG.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     31 using namespace llvm;
     32 
     33 STATISTIC(NumBroken, "Number of blocks inserted");
     34 
     35 namespace {
     36   struct BreakCriticalEdges : public FunctionPass {
     37     static char ID; // Pass identification, replacement for typeid
     38     BreakCriticalEdges() : FunctionPass(ID) {
     39       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
     40     }
     41 
     42     virtual bool runOnFunction(Function &F);
     43 
     44     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     45       AU.addPreserved<DominatorTree>();
     46       AU.addPreserved<LoopInfo>();
     47       AU.addPreserved<ProfileInfo>();
     48 
     49       // No loop canonicalization guarantees are broken by this pass.
     50       AU.addPreservedID(LoopSimplifyID);
     51     }
     52   };
     53 }
     54 
     55 char BreakCriticalEdges::ID = 0;
     56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
     57                 "Break critical edges in CFG", false, false)
     58 
     59 // Publicly exposed interface to pass...
     60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
     61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
     62   return new BreakCriticalEdges();
     63 }
     64 
     65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
     66 // edges as they are found.
     67 //
     68 bool BreakCriticalEdges::runOnFunction(Function &F) {
     69   bool Changed = false;
     70   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
     71     TerminatorInst *TI = I->getTerminator();
     72     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
     73       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
     74         if (SplitCriticalEdge(TI, i, this)) {
     75           ++NumBroken;
     76           Changed = true;
     77         }
     78   }
     79 
     80   return Changed;
     81 }
     82 
     83 //===----------------------------------------------------------------------===//
     84 //    Implementation of the external critical edge manipulation functions
     85 //===----------------------------------------------------------------------===//
     86 
     87 // isCriticalEdge - Return true if the specified edge is a critical edge.
     88 // Critical edges are edges from a block with multiple successors to a block
     89 // with multiple predecessors.
     90 //
     91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
     92                           bool AllowIdenticalEdges) {
     93   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
     94   if (TI->getNumSuccessors() == 1) return false;
     95 
     96   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
     97   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
     98 
     99   // If there is more than one predecessor, this is a critical edge...
    100   assert(I != E && "No preds, but we have an edge to the block?");
    101   const BasicBlock *FirstPred = *I;
    102   ++I;        // Skip one edge due to the incoming arc from TI.
    103   if (!AllowIdenticalEdges)
    104     return I != E;
    105 
    106   // If AllowIdenticalEdges is true, then we allow this edge to be considered
    107   // non-critical iff all preds come from TI's block.
    108   while (I != E) {
    109     const BasicBlock *P = *I;
    110     if (P != FirstPred)
    111       return true;
    112     // Note: leave this as is until no one ever compiles with either gcc 4.0.1
    113     // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
    114     E = pred_end(P);
    115     ++I;
    116   }
    117   return false;
    118 }
    119 
    120 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
    121 /// may require new PHIs in the new exit block. This function inserts the
    122 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
    123 /// is the new loop exit block, and DestBB is the old loop exit, now the
    124 /// successor of SplitBB.
    125 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
    126                                        BasicBlock *SplitBB,
    127                                        BasicBlock *DestBB) {
    128   // SplitBB shouldn't have anything non-trivial in it yet.
    129   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
    130           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
    131 
    132   // For each PHI in the destination block.
    133   for (BasicBlock::iterator I = DestBB->begin();
    134        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    135     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
    136     Value *V = PN->getIncomingValue(Idx);
    137 
    138     // If the input is a PHI which already satisfies LCSSA, don't create
    139     // a new one.
    140     if (const PHINode *VP = dyn_cast<PHINode>(V))
    141       if (VP->getParent() == SplitBB)
    142         continue;
    143 
    144     // Otherwise a new PHI is needed. Create one and populate it.
    145     PHINode *NewPN =
    146       PHINode::Create(PN->getType(), Preds.size(), "split",
    147                       SplitBB->isLandingPad() ?
    148                       SplitBB->begin() : SplitBB->getTerminator());
    149     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
    150       NewPN->addIncoming(V, Preds[i]);
    151 
    152     // Update the original PHI.
    153     PN->setIncomingValue(Idx, NewPN);
    154   }
    155 }
    156 
    157 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
    158 /// split the critical edge.  This will update DominatorTree information if it
    159 /// is available, thus calling this pass will not invalidate either of them.
    160 /// This returns the new block if the edge was split, null otherwise.
    161 ///
    162 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
    163 /// specified successor will be merged into the same critical edge block.
    164 /// This is most commonly interesting with switch instructions, which may
    165 /// have many edges to any one destination.  This ensures that all edges to that
    166 /// dest go to one block instead of each going to a different block, but isn't
    167 /// the standard definition of a "critical edge".
    168 ///
    169 /// It is invalid to call this function on a critical edge that starts at an
    170 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
    171 /// program because the address of the new block won't be the one that is jumped
    172 /// to.
    173 ///
    174 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
    175                                     Pass *P, bool MergeIdenticalEdges,
    176                                     bool DontDeleteUselessPhis,
    177                                     bool SplitLandingPads) {
    178   if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
    179 
    180   assert(!isa<IndirectBrInst>(TI) &&
    181          "Cannot split critical edge from IndirectBrInst");
    182 
    183   BasicBlock *TIBB = TI->getParent();
    184   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
    185 
    186   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
    187   // it in this generic function.
    188   if (DestBB->isLandingPad()) return 0;
    189 
    190   // Create a new basic block, linking it into the CFG.
    191   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
    192                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
    193   // Create our unconditional branch.
    194   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
    195   NewBI->setDebugLoc(TI->getDebugLoc());
    196 
    197   // Branch to the new block, breaking the edge.
    198   TI->setSuccessor(SuccNum, NewBB);
    199 
    200   // Insert the block into the function... right after the block TI lives in.
    201   Function &F = *TIBB->getParent();
    202   Function::iterator FBBI = TIBB;
    203   F.getBasicBlockList().insert(++FBBI, NewBB);
    204 
    205   // If there are any PHI nodes in DestBB, we need to update them so that they
    206   // merge incoming values from NewBB instead of from TIBB.
    207   {
    208     unsigned BBIdx = 0;
    209     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
    210       // We no longer enter through TIBB, now we come in through NewBB.
    211       // Revector exactly one entry in the PHI node that used to come from
    212       // TIBB to come from NewBB.
    213       PHINode *PN = cast<PHINode>(I);
    214 
    215       // Reuse the previous value of BBIdx if it lines up.  In cases where we
    216       // have multiple phi nodes with *lots* of predecessors, this is a speed
    217       // win because we don't have to scan the PHI looking for TIBB.  This
    218       // happens because the BB list of PHI nodes are usually in the same
    219       // order.
    220       if (PN->getIncomingBlock(BBIdx) != TIBB)
    221         BBIdx = PN->getBasicBlockIndex(TIBB);
    222       PN->setIncomingBlock(BBIdx, NewBB);
    223     }
    224   }
    225 
    226   // If there are any other edges from TIBB to DestBB, update those to go
    227   // through the split block, making those edges non-critical as well (and
    228   // reducing the number of phi entries in the DestBB if relevant).
    229   if (MergeIdenticalEdges) {
    230     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
    231       if (TI->getSuccessor(i) != DestBB) continue;
    232 
    233       // Remove an entry for TIBB from DestBB phi nodes.
    234       DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
    235 
    236       // We found another edge to DestBB, go to NewBB instead.
    237       TI->setSuccessor(i, NewBB);
    238     }
    239   }
    240 
    241 
    242 
    243   // If we don't have a pass object, we can't update anything...
    244   if (P == 0) return NewBB;
    245 
    246   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
    247   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
    248   ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
    249 
    250   // If we have nothing to update, just return.
    251   if (DT == 0 && LI == 0 && PI == 0)
    252     return NewBB;
    253 
    254   // Now update analysis information.  Since the only predecessor of NewBB is
    255   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
    256   // anything, as there are other successors of DestBB.  However, if all other
    257   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
    258   // loop header) then NewBB dominates DestBB.
    259   SmallVector<BasicBlock*, 8> OtherPreds;
    260 
    261   // If there is a PHI in the block, loop over predecessors with it, which is
    262   // faster than iterating pred_begin/end.
    263   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    264     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    265       if (PN->getIncomingBlock(i) != NewBB)
    266         OtherPreds.push_back(PN->getIncomingBlock(i));
    267   } else {
    268     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
    269          I != E; ++I) {
    270       BasicBlock *P = *I;
    271       if (P != NewBB)
    272         OtherPreds.push_back(P);
    273     }
    274   }
    275 
    276   bool NewBBDominatesDestBB = true;
    277 
    278   // Should we update DominatorTree information?
    279   if (DT) {
    280     DomTreeNode *TINode = DT->getNode(TIBB);
    281 
    282     // The new block is not the immediate dominator for any other nodes, but
    283     // TINode is the immediate dominator for the new node.
    284     //
    285     if (TINode) {       // Don't break unreachable code!
    286       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
    287       DomTreeNode *DestBBNode = 0;
    288 
    289       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
    290       if (!OtherPreds.empty()) {
    291         DestBBNode = DT->getNode(DestBB);
    292         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
    293           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
    294             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
    295           OtherPreds.pop_back();
    296         }
    297         OtherPreds.clear();
    298       }
    299 
    300       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
    301       // doesn't dominate anything.
    302       if (NewBBDominatesDestBB) {
    303         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
    304         DT->changeImmediateDominator(DestBBNode, NewBBNode);
    305       }
    306     }
    307   }
    308 
    309   // Update LoopInfo if it is around.
    310   if (LI) {
    311     if (Loop *TIL = LI->getLoopFor(TIBB)) {
    312       // If one or the other blocks were not in a loop, the new block is not
    313       // either, and thus LI doesn't need to be updated.
    314       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
    315         if (TIL == DestLoop) {
    316           // Both in the same loop, the NewBB joins loop.
    317           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    318         } else if (TIL->contains(DestLoop)) {
    319           // Edge from an outer loop to an inner loop.  Add to the outer loop.
    320           TIL->addBasicBlockToLoop(NewBB, LI->getBase());
    321         } else if (DestLoop->contains(TIL)) {
    322           // Edge from an inner loop to an outer loop.  Add to the outer loop.
    323           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    324         } else {
    325           // Edge from two loops with no containment relation.  Because these
    326           // are natural loops, we know that the destination block must be the
    327           // header of its loop (adding a branch into a loop elsewhere would
    328           // create an irreducible loop).
    329           assert(DestLoop->getHeader() == DestBB &&
    330                  "Should not create irreducible loops!");
    331           if (Loop *P = DestLoop->getParentLoop())
    332             P->addBasicBlockToLoop(NewBB, LI->getBase());
    333         }
    334       }
    335       // If TIBB is in a loop and DestBB is outside of that loop, split the
    336       // other exit blocks of the loop that also have predecessors outside
    337       // the loop, to maintain a LoopSimplify guarantee.
    338       if (!TIL->contains(DestBB) &&
    339           P->mustPreserveAnalysisID(LoopSimplifyID)) {
    340         assert(!TIL->contains(NewBB) &&
    341                "Split point for loop exit is contained in loop!");
    342 
    343         // Update LCSSA form in the newly created exit block.
    344         if (P->mustPreserveAnalysisID(LCSSAID))
    345           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
    346 
    347         // For each unique exit block...
    348         // FIXME: This code is functionally equivalent to the corresponding
    349         // loop in LoopSimplify.
    350         SmallVector<BasicBlock *, 4> ExitBlocks;
    351         TIL->getExitBlocks(ExitBlocks);
    352         for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    353           // Collect all the preds that are inside the loop, and note
    354           // whether there are any preds outside the loop.
    355           SmallVector<BasicBlock *, 4> Preds;
    356           bool HasPredOutsideOfLoop = false;
    357           BasicBlock *Exit = ExitBlocks[i];
    358           for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
    359                I != E; ++I) {
    360             BasicBlock *P = *I;
    361             if (TIL->contains(P)) {
    362               if (isa<IndirectBrInst>(P->getTerminator())) {
    363                 Preds.clear();
    364                 break;
    365               }
    366               Preds.push_back(P);
    367             } else {
    368               HasPredOutsideOfLoop = true;
    369             }
    370           }
    371           // If there are any preds not in the loop, we'll need to split
    372           // the edges. The Preds.empty() check is needed because a block
    373           // may appear multiple times in the list. We can't use
    374           // getUniqueExitBlocks above because that depends on LoopSimplify
    375           // form, which we're in the process of restoring!
    376           if (!Preds.empty() && HasPredOutsideOfLoop) {
    377             if (!Exit->isLandingPad()) {
    378               BasicBlock *NewExitBB =
    379                 SplitBlockPredecessors(Exit, Preds, "split", P);
    380               if (P->mustPreserveAnalysisID(LCSSAID))
    381                 createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
    382             } else if (SplitLandingPads) {
    383               SmallVector<BasicBlock*, 8> NewBBs;
    384               SplitLandingPadPredecessors(Exit, Preds,
    385                                           ".split1", ".split2",
    386                                           P, NewBBs);
    387               if (P->mustPreserveAnalysisID(LCSSAID))
    388                 createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
    389             }
    390           }
    391         }
    392       }
    393       // LCSSA form was updated above for the case where LoopSimplify is
    394       // available, which means that all predecessors of loop exit blocks
    395       // are within the loop. Without LoopSimplify form, it would be
    396       // necessary to insert a new phi.
    397       assert((!P->mustPreserveAnalysisID(LCSSAID) ||
    398               P->mustPreserveAnalysisID(LoopSimplifyID)) &&
    399              "SplitCriticalEdge doesn't know how to update LCCSA form "
    400              "without LoopSimplify!");
    401     }
    402   }
    403 
    404   // Update ProfileInfo if it is around.
    405   if (PI)
    406     PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
    407 
    408   return NewBB;
    409 }
    410