Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "mem2reg"
     29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/Hashing.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/Analysis/AliasSetTracker.h"
     37 #include "llvm/Analysis/Dominators.h"
     38 #include "llvm/Analysis/InstructionSimplify.h"
     39 #include "llvm/Analysis/ValueTracking.h"
     40 #include "llvm/DIBuilder.h"
     41 #include "llvm/DebugInfo.h"
     42 #include "llvm/IR/Constants.h"
     43 #include "llvm/IR/DerivedTypes.h"
     44 #include "llvm/IR/Function.h"
     45 #include "llvm/IR/Instructions.h"
     46 #include "llvm/IR/IntrinsicInst.h"
     47 #include "llvm/IR/Metadata.h"
     48 #include "llvm/Support/CFG.h"
     49 #include "llvm/Transforms/Utils/Local.h"
     50 #include <algorithm>
     51 #include <queue>
     52 using namespace llvm;
     53 
     54 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     55 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     56 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     57 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     58 
     59 namespace llvm {
     60 template<>
     61 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
     62   typedef std::pair<BasicBlock*, unsigned> EltTy;
     63   static inline EltTy getEmptyKey() {
     64     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
     65   }
     66   static inline EltTy getTombstoneKey() {
     67     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
     68   }
     69   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
     70     using llvm::hash_value;
     71     return static_cast<unsigned>(hash_value(Val));
     72   }
     73   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
     74     return LHS == RHS;
     75   }
     76 };
     77 }
     78 
     79 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
     80 /// This is true if there are only loads and stores to the alloca.
     81 ///
     82 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     83   // FIXME: If the memory unit is of pointer or integer type, we can permit
     84   // assignments to subsections of the memory unit.
     85 
     86   // Only allow direct and non-volatile loads and stores...
     87   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
     88        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
     89     const User *U = *UI;
     90     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     91       // Note that atomic loads can be transformed; atomic semantics do
     92       // not have any meaning for a local alloca.
     93       if (LI->isVolatile())
     94         return false;
     95     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     96       if (SI->getOperand(0) == AI)
     97         return false;   // Don't allow a store OF the AI, only INTO the AI.
     98       // Note that atomic stores can be transformed; atomic semantics do
     99       // not have any meaning for a local alloca.
    100       if (SI->isVolatile())
    101         return false;
    102     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
    103       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
    104           II->getIntrinsicID() != Intrinsic::lifetime_end)
    105         return false;
    106     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    107       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
    108         return false;
    109       if (!onlyUsedByLifetimeMarkers(BCI))
    110         return false;
    111     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    112       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
    113         return false;
    114       if (!GEPI->hasAllZeroIndices())
    115         return false;
    116       if (!onlyUsedByLifetimeMarkers(GEPI))
    117         return false;
    118     } else {
    119       return false;
    120     }
    121   }
    122 
    123   return true;
    124 }
    125 
    126 namespace {
    127   struct AllocaInfo;
    128 
    129   // Data package used by RenamePass()
    130   class RenamePassData {
    131   public:
    132     typedef std::vector<Value *> ValVector;
    133 
    134     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
    135     RenamePassData(BasicBlock *B, BasicBlock *P,
    136                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
    137     BasicBlock *BB;
    138     BasicBlock *Pred;
    139     ValVector Values;
    140 
    141     void swap(RenamePassData &RHS) {
    142       std::swap(BB, RHS.BB);
    143       std::swap(Pred, RHS.Pred);
    144       Values.swap(RHS.Values);
    145     }
    146   };
    147 
    148   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
    149   /// load/store instructions in the block that directly load or store an alloca.
    150   ///
    151   /// This functionality is important because it avoids scanning large basic
    152   /// blocks multiple times when promoting many allocas in the same block.
    153   class LargeBlockInfo {
    154     /// InstNumbers - For each instruction that we track, keep the index of the
    155     /// instruction.  The index starts out as the number of the instruction from
    156     /// the start of the block.
    157     DenseMap<const Instruction *, unsigned> InstNumbers;
    158   public:
    159 
    160     /// isInterestingInstruction - This code only looks at accesses to allocas.
    161     static bool isInterestingInstruction(const Instruction *I) {
    162       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    163              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    164     }
    165 
    166     /// getInstructionIndex - Get or calculate the index of the specified
    167     /// instruction.
    168     unsigned getInstructionIndex(const Instruction *I) {
    169       assert(isInterestingInstruction(I) &&
    170              "Not a load/store to/from an alloca?");
    171 
    172       // If we already have this instruction number, return it.
    173       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    174       if (It != InstNumbers.end()) return It->second;
    175 
    176       // Scan the whole block to get the instruction.  This accumulates
    177       // information for every interesting instruction in the block, in order to
    178       // avoid gratuitus rescans.
    179       const BasicBlock *BB = I->getParent();
    180       unsigned InstNo = 0;
    181       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
    182            BBI != E; ++BBI)
    183         if (isInterestingInstruction(BBI))
    184           InstNumbers[BBI] = InstNo++;
    185       It = InstNumbers.find(I);
    186 
    187       assert(It != InstNumbers.end() && "Didn't insert instruction?");
    188       return It->second;
    189     }
    190 
    191     void deleteValue(const Instruction *I) {
    192       InstNumbers.erase(I);
    193     }
    194 
    195     void clear() {
    196       InstNumbers.clear();
    197     }
    198   };
    199 
    200   struct PromoteMem2Reg {
    201     /// Allocas - The alloca instructions being promoted.
    202     ///
    203     std::vector<AllocaInst*> Allocas;
    204     DominatorTree &DT;
    205     DIBuilder *DIB;
    206 
    207     /// AST - An AliasSetTracker object to update.  If null, don't update it.
    208     ///
    209     AliasSetTracker *AST;
    210 
    211     /// AllocaLookup - Reverse mapping of Allocas.
    212     ///
    213     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
    214 
    215     /// NewPhiNodes - The PhiNodes we're adding.  That map is used to simplify
    216     /// some Phi nodes as we iterate over it, so it should have deterministic
    217     /// iterators.  We could use a MapVector, but since we already maintain a
    218     /// map from BasicBlock* to a stable numbering (BBNumbers), the DenseMap is
    219     /// more efficient (also supports removal).
    220     ///
    221     DenseMap<std::pair<unsigned, unsigned>, PHINode*> NewPhiNodes;
    222 
    223     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
    224     /// it corresponds to.
    225     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
    226 
    227     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
    228     /// each alloca that is of pointer type, we keep track of what to copyValue
    229     /// to the inserted PHI nodes here.
    230     ///
    231     std::vector<Value*> PointerAllocaValues;
    232 
    233     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
    234     /// intrinsic that describes it, if any, so that we can convert it to a
    235     /// dbg.value intrinsic if the alloca gets promoted.
    236     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
    237 
    238     /// Visited - The set of basic blocks the renamer has already visited.
    239     ///
    240     SmallPtrSet<BasicBlock*, 16> Visited;
    241 
    242     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
    243     /// non-determinstic behavior.
    244     DenseMap<BasicBlock*, unsigned> BBNumbers;
    245 
    246     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
    247     DenseMap<DomTreeNode*, unsigned> DomLevels;
    248 
    249     /// BBNumPreds - Lazily compute the number of predecessors a block has.
    250     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
    251   public:
    252     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
    253                    AliasSetTracker *ast)
    254       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
    255     ~PromoteMem2Reg() {
    256       delete DIB;
    257     }
    258 
    259     void run();
    260 
    261     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
    262     ///
    263     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
    264       return DT.dominates(BB1, BB2);
    265     }
    266 
    267   private:
    268     void RemoveFromAllocasList(unsigned &AllocaIdx) {
    269       Allocas[AllocaIdx] = Allocas.back();
    270       Allocas.pop_back();
    271       --AllocaIdx;
    272     }
    273 
    274     unsigned getNumPreds(const BasicBlock *BB) {
    275       unsigned &NP = BBNumPreds[BB];
    276       if (NP == 0)
    277         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
    278       return NP-1;
    279     }
    280 
    281     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    282                                  AllocaInfo &Info);
    283     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    284                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    285                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
    286 
    287     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    288                                   LargeBlockInfo &LBI);
    289     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    290                                   LargeBlockInfo &LBI);
    291 
    292     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    293                     RenamePassData::ValVector &IncVals,
    294                     std::vector<RenamePassData> &Worklist);
    295     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    296   };
    297 
    298   struct AllocaInfo {
    299     SmallVector<BasicBlock*, 32> DefiningBlocks;
    300     SmallVector<BasicBlock*, 32> UsingBlocks;
    301 
    302     StoreInst  *OnlyStore;
    303     BasicBlock *OnlyBlock;
    304     bool OnlyUsedInOneBlock;
    305 
    306     Value *AllocaPointerVal;
    307     DbgDeclareInst *DbgDeclare;
    308 
    309     void clear() {
    310       DefiningBlocks.clear();
    311       UsingBlocks.clear();
    312       OnlyStore = 0;
    313       OnlyBlock = 0;
    314       OnlyUsedInOneBlock = true;
    315       AllocaPointerVal = 0;
    316       DbgDeclare = 0;
    317     }
    318 
    319     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
    320     /// ivars.
    321     void AnalyzeAlloca(AllocaInst *AI) {
    322       clear();
    323 
    324       // As we scan the uses of the alloca instruction, keep track of stores,
    325       // and decide whether all of the loads and stores to the alloca are within
    326       // the same basic block.
    327       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    328            UI != E;)  {
    329         Instruction *User = cast<Instruction>(*UI++);
    330 
    331         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    332           // Remember the basic blocks which define new values for the alloca
    333           DefiningBlocks.push_back(SI->getParent());
    334           AllocaPointerVal = SI->getOperand(0);
    335           OnlyStore = SI;
    336         } else {
    337           LoadInst *LI = cast<LoadInst>(User);
    338           // Otherwise it must be a load instruction, keep track of variable
    339           // reads.
    340           UsingBlocks.push_back(LI->getParent());
    341           AllocaPointerVal = LI;
    342         }
    343 
    344         if (OnlyUsedInOneBlock) {
    345           if (OnlyBlock == 0)
    346             OnlyBlock = User->getParent();
    347           else if (OnlyBlock != User->getParent())
    348             OnlyUsedInOneBlock = false;
    349         }
    350       }
    351 
    352       DbgDeclare = FindAllocaDbgDeclare(AI);
    353     }
    354   };
    355 
    356   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
    357 
    358   struct DomTreeNodeCompare {
    359     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
    360       return LHS.second < RHS.second;
    361     }
    362   };
    363 }  // end of anonymous namespace
    364 
    365 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    366   // Knowing that this alloca is promotable, we know that it's safe to kill all
    367   // instructions except for load and store.
    368 
    369   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
    370        UI != UE;) {
    371     Instruction *I = cast<Instruction>(*UI);
    372     ++UI;
    373     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    374       continue;
    375 
    376     if (!I->getType()->isVoidTy()) {
    377       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    378       // Follow the use/def chain to erase them now instead of leaving it for
    379       // dead code elimination later.
    380       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
    381            UI != UE;) {
    382         Instruction *Inst = cast<Instruction>(*UI);
    383         ++UI;
    384         Inst->eraseFromParent();
    385       }
    386     }
    387     I->eraseFromParent();
    388   }
    389 }
    390 
    391 void PromoteMem2Reg::run() {
    392   Function &F = *DT.getRoot()->getParent();
    393 
    394   if (AST) PointerAllocaValues.resize(Allocas.size());
    395   AllocaDbgDeclares.resize(Allocas.size());
    396 
    397   AllocaInfo Info;
    398   LargeBlockInfo LBI;
    399 
    400   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    401     AllocaInst *AI = Allocas[AllocaNum];
    402 
    403     assert(isAllocaPromotable(AI) &&
    404            "Cannot promote non-promotable alloca!");
    405     assert(AI->getParent()->getParent() == &F &&
    406            "All allocas should be in the same function, which is same as DF!");
    407 
    408     removeLifetimeIntrinsicUsers(AI);
    409 
    410     if (AI->use_empty()) {
    411       // If there are no uses of the alloca, just delete it now.
    412       if (AST) AST->deleteValue(AI);
    413       AI->eraseFromParent();
    414 
    415       // Remove the alloca from the Allocas list, since it has been processed
    416       RemoveFromAllocasList(AllocaNum);
    417       ++NumDeadAlloca;
    418       continue;
    419     }
    420 
    421     // Calculate the set of read and write-locations for each alloca.  This is
    422     // analogous to finding the 'uses' and 'definitions' of each variable.
    423     Info.AnalyzeAlloca(AI);
    424 
    425     // If there is only a single store to this value, replace any loads of
    426     // it that are directly dominated by the definition with the value stored.
    427     if (Info.DefiningBlocks.size() == 1) {
    428       RewriteSingleStoreAlloca(AI, Info, LBI);
    429 
    430       // Finally, after the scan, check to see if the store is all that is left.
    431       if (Info.UsingBlocks.empty()) {
    432         // Record debuginfo for the store and remove the declaration's
    433         // debuginfo.
    434         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    435           if (!DIB)
    436             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
    437           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
    438           DDI->eraseFromParent();
    439         }
    440         // Remove the (now dead) store and alloca.
    441         Info.OnlyStore->eraseFromParent();
    442         LBI.deleteValue(Info.OnlyStore);
    443 
    444         if (AST) AST->deleteValue(AI);
    445         AI->eraseFromParent();
    446         LBI.deleteValue(AI);
    447 
    448         // The alloca has been processed, move on.
    449         RemoveFromAllocasList(AllocaNum);
    450 
    451         ++NumSingleStore;
    452         continue;
    453       }
    454     }
    455 
    456     // If the alloca is only read and written in one basic block, just perform a
    457     // linear sweep over the block to eliminate it.
    458     if (Info.OnlyUsedInOneBlock) {
    459       PromoteSingleBlockAlloca(AI, Info, LBI);
    460 
    461       // Finally, after the scan, check to see if the stores are all that is
    462       // left.
    463       if (Info.UsingBlocks.empty()) {
    464 
    465         // Remove the (now dead) stores and alloca.
    466         while (!AI->use_empty()) {
    467           StoreInst *SI = cast<StoreInst>(AI->use_back());
    468           // Record debuginfo for the store before removing it.
    469           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    470             if (!DIB)
    471               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
    472             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
    473           }
    474           SI->eraseFromParent();
    475           LBI.deleteValue(SI);
    476         }
    477 
    478         if (AST) AST->deleteValue(AI);
    479         AI->eraseFromParent();
    480         LBI.deleteValue(AI);
    481 
    482         // The alloca has been processed, move on.
    483         RemoveFromAllocasList(AllocaNum);
    484 
    485         // The alloca's debuginfo can be removed as well.
    486         if (DbgDeclareInst *DDI = Info.DbgDeclare)
    487           DDI->eraseFromParent();
    488 
    489         ++NumLocalPromoted;
    490         continue;
    491       }
    492     }
    493 
    494     // If we haven't computed dominator tree levels, do so now.
    495     if (DomLevels.empty()) {
    496       SmallVector<DomTreeNode*, 32> Worklist;
    497 
    498       DomTreeNode *Root = DT.getRootNode();
    499       DomLevels[Root] = 0;
    500       Worklist.push_back(Root);
    501 
    502       while (!Worklist.empty()) {
    503         DomTreeNode *Node = Worklist.pop_back_val();
    504         unsigned ChildLevel = DomLevels[Node] + 1;
    505         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    506              CI != CE; ++CI) {
    507           DomLevels[*CI] = ChildLevel;
    508           Worklist.push_back(*CI);
    509         }
    510       }
    511     }
    512 
    513     // If we haven't computed a numbering for the BB's in the function, do so
    514     // now.
    515     if (BBNumbers.empty()) {
    516       unsigned ID = 0;
    517       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    518         BBNumbers[I] = ID++;
    519     }
    520 
    521     // If we have an AST to keep updated, remember some pointer value that is
    522     // stored into the alloca.
    523     if (AST)
    524       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    525 
    526     // Remember the dbg.declare intrinsic describing this alloca, if any.
    527     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    528 
    529     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    530     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    531 
    532     // At this point, we're committed to promoting the alloca using IDF's, and
    533     // the standard SSA construction algorithm.  Determine which blocks need PHI
    534     // nodes and see if we can optimize out some work by avoiding insertion of
    535     // dead phi nodes.
    536     DetermineInsertionPoint(AI, AllocaNum, Info);
    537   }
    538 
    539   if (Allocas.empty())
    540     return; // All of the allocas must have been trivial!
    541 
    542   LBI.clear();
    543 
    544 
    545   // Set the incoming values for the basic block to be null values for all of
    546   // the alloca's.  We do this in case there is a load of a value that has not
    547   // been stored yet.  In this case, it will get this null value.
    548   //
    549   RenamePassData::ValVector Values(Allocas.size());
    550   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    551     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    552 
    553   // Walks all basic blocks in the function performing the SSA rename algorithm
    554   // and inserting the phi nodes we marked as necessary
    555   //
    556   std::vector<RenamePassData> RenamePassWorkList;
    557   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
    558   do {
    559     RenamePassData RPD;
    560     RPD.swap(RenamePassWorkList.back());
    561     RenamePassWorkList.pop_back();
    562     // RenamePass may add new worklist entries.
    563     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    564   } while (!RenamePassWorkList.empty());
    565 
    566   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    567   Visited.clear();
    568 
    569   // Remove the allocas themselves from the function.
    570   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    571     Instruction *A = Allocas[i];
    572 
    573     // If there are any uses of the alloca instructions left, they must be in
    574     // unreachable basic blocks that were not processed by walking the dominator
    575     // tree. Just delete the users now.
    576     if (!A->use_empty())
    577       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    578     if (AST) AST->deleteValue(A);
    579     A->eraseFromParent();
    580   }
    581 
    582   // Remove alloca's dbg.declare instrinsics from the function.
    583   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    584     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    585       DDI->eraseFromParent();
    586 
    587   // Loop over all of the PHI nodes and see if there are any that we can get
    588   // rid of because they merge all of the same incoming values.  This can
    589   // happen due to undef values coming into the PHI nodes.  This process is
    590   // iterative, because eliminating one PHI node can cause others to be removed.
    591   bool EliminatedAPHI = true;
    592   while (EliminatedAPHI) {
    593     EliminatedAPHI = false;
    594 
    595     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    596     // simplify and RAUW them as we go.  If it was not, we could add uses to
    597     // the values we replace with in a non deterministic order, thus creating
    598     // non deterministic def->use chains.
    599     for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I =
    600            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
    601       PHINode *PN = I->second;
    602 
    603       // If this PHI node merges one value and/or undefs, get the value.
    604       if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
    605         if (AST && PN->getType()->isPointerTy())
    606           AST->deleteValue(PN);
    607         PN->replaceAllUsesWith(V);
    608         PN->eraseFromParent();
    609         NewPhiNodes.erase(I++);
    610         EliminatedAPHI = true;
    611         continue;
    612       }
    613       ++I;
    614     }
    615   }
    616 
    617   // At this point, the renamer has added entries to PHI nodes for all reachable
    618   // code.  Unfortunately, there may be unreachable blocks which the renamer
    619   // hasn't traversed.  If this is the case, the PHI nodes may not
    620   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    621   // created, inserting undef values if they are missing any incoming values.
    622   //
    623   for (DenseMap<std::pair<unsigned, unsigned>, PHINode*>::iterator I =
    624          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
    625     // We want to do this once per basic block.  As such, only process a block
    626     // when we find the PHI that is the first entry in the block.
    627     PHINode *SomePHI = I->second;
    628     BasicBlock *BB = SomePHI->getParent();
    629     if (&BB->front() != SomePHI)
    630       continue;
    631 
    632     // Only do work here if there the PHI nodes are missing incoming values.  We
    633     // know that all PHI nodes that were inserted in a block will have the same
    634     // number of incoming values, so we can just check any of them.
    635     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    636       continue;
    637 
    638     // Get the preds for BB.
    639     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    640 
    641     // Ok, now we know that all of the PHI nodes are missing entries for some
    642     // basic blocks.  Start by sorting the incoming predecessors for efficient
    643     // access.
    644     std::sort(Preds.begin(), Preds.end());
    645 
    646     // Now we loop through all BB's which have entries in SomePHI and remove
    647     // them from the Preds list.
    648     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    649       // Do a log(n) search of the Preds list for the entry we want.
    650       SmallVector<BasicBlock*, 16>::iterator EntIt =
    651         std::lower_bound(Preds.begin(), Preds.end(),
    652                          SomePHI->getIncomingBlock(i));
    653       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
    654              "PHI node has entry for a block which is not a predecessor!");
    655 
    656       // Remove the entry
    657       Preds.erase(EntIt);
    658     }
    659 
    660     // At this point, the blocks left in the preds list must have dummy
    661     // entries inserted into every PHI nodes for the block.  Update all the phi
    662     // nodes in this block that we are inserting (there could be phis before
    663     // mem2reg runs).
    664     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    665     BasicBlock::iterator BBI = BB->begin();
    666     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    667            SomePHI->getNumIncomingValues() == NumBadPreds) {
    668       Value *UndefVal = UndefValue::get(SomePHI->getType());
    669       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    670         SomePHI->addIncoming(UndefVal, Preds[pred]);
    671     }
    672   }
    673 
    674   NewPhiNodes.clear();
    675 }
    676 
    677 
    678 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
    679 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
    680 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
    681 /// would be dead).
    682 void PromoteMem2Reg::
    683 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    684                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    685                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
    686 
    687   // To determine liveness, we must iterate through the predecessors of blocks
    688   // where the def is live.  Blocks are added to the worklist if we need to
    689   // check their predecessors.  Start with all the using blocks.
    690   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    691                                                    Info.UsingBlocks.end());
    692 
    693   // If any of the using blocks is also a definition block, check to see if the
    694   // definition occurs before or after the use.  If it happens before the use,
    695   // the value isn't really live-in.
    696   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    697     BasicBlock *BB = LiveInBlockWorklist[i];
    698     if (!DefBlocks.count(BB)) continue;
    699 
    700     // Okay, this is a block that both uses and defines the value.  If the first
    701     // reference to the alloca is a def (store), then we know it isn't live-in.
    702     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
    703       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    704         if (SI->getOperand(1) != AI) continue;
    705 
    706         // We found a store to the alloca before a load.  The alloca is not
    707         // actually live-in here.
    708         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    709         LiveInBlockWorklist.pop_back();
    710         --i, --e;
    711         break;
    712       }
    713 
    714       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    715         if (LI->getOperand(0) != AI) continue;
    716 
    717         // Okay, we found a load before a store to the alloca.  It is actually
    718         // live into this block.
    719         break;
    720       }
    721     }
    722   }
    723 
    724   // Now that we have a set of blocks where the phi is live-in, recursively add
    725   // their predecessors until we find the full region the value is live.
    726   while (!LiveInBlockWorklist.empty()) {
    727     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    728 
    729     // The block really is live in here, insert it into the set.  If already in
    730     // the set, then it has already been processed.
    731     if (!LiveInBlocks.insert(BB))
    732       continue;
    733 
    734     // Since the value is live into BB, it is either defined in a predecessor or
    735     // live into it to.  Add the preds to the worklist unless they are a
    736     // defining block.
    737     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    738       BasicBlock *P = *PI;
    739 
    740       // The value is not live into a predecessor if it defines the value.
    741       if (DefBlocks.count(P))
    742         continue;
    743 
    744       // Otherwise it is, add to the worklist.
    745       LiveInBlockWorklist.push_back(P);
    746     }
    747   }
    748 }
    749 
    750 /// DetermineInsertionPoint - At this point, we're committed to promoting the
    751 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
    752 /// which blocks need phi nodes and see if we can optimize out some work by
    753 /// avoiding insertion of dead phi nodes.
    754 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    755                                              AllocaInfo &Info) {
    756   // Unique the set of defining blocks for efficient lookup.
    757   SmallPtrSet<BasicBlock*, 32> DefBlocks;
    758   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    759 
    760   // Determine which blocks the value is live in.  These are blocks which lead
    761   // to uses.
    762   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
    763   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    764 
    765   // Use a priority queue keyed on dominator tree level so that inserted nodes
    766   // are handled from the bottom of the dominator tree upwards.
    767   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    768                               DomTreeNodeCompare> IDFPriorityQueue;
    769   IDFPriorityQueue PQ;
    770 
    771   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
    772        E = DefBlocks.end(); I != E; ++I) {
    773     if (DomTreeNode *Node = DT.getNode(*I))
    774       PQ.push(std::make_pair(Node, DomLevels[Node]));
    775   }
    776 
    777   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
    778   SmallPtrSet<DomTreeNode*, 32> Visited;
    779   SmallVector<DomTreeNode*, 32> Worklist;
    780   while (!PQ.empty()) {
    781     DomTreeNodePair RootPair = PQ.top();
    782     PQ.pop();
    783     DomTreeNode *Root = RootPair.first;
    784     unsigned RootLevel = RootPair.second;
    785 
    786     // Walk all dominator tree children of Root, inspecting their CFG edges with
    787     // targets elsewhere on the dominator tree. Only targets whose level is at
    788     // most Root's level are added to the iterated dominance frontier of the
    789     // definition set.
    790 
    791     Worklist.clear();
    792     Worklist.push_back(Root);
    793 
    794     while (!Worklist.empty()) {
    795       DomTreeNode *Node = Worklist.pop_back_val();
    796       BasicBlock *BB = Node->getBlock();
    797 
    798       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    799            ++SI) {
    800         DomTreeNode *SuccNode = DT.getNode(*SI);
    801 
    802         // Quickly skip all CFG edges that are also dominator tree edges instead
    803         // of catching them below.
    804         if (SuccNode->getIDom() == Node)
    805           continue;
    806 
    807         unsigned SuccLevel = DomLevels[SuccNode];
    808         if (SuccLevel > RootLevel)
    809           continue;
    810 
    811         if (!Visited.insert(SuccNode))
    812           continue;
    813 
    814         BasicBlock *SuccBB = SuccNode->getBlock();
    815         if (!LiveInBlocks.count(SuccBB))
    816           continue;
    817 
    818         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    819         if (!DefBlocks.count(SuccBB))
    820           PQ.push(std::make_pair(SuccNode, SuccLevel));
    821       }
    822 
    823       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    824            ++CI) {
    825         if (!Visited.count(*CI))
    826           Worklist.push_back(*CI);
    827       }
    828     }
    829   }
    830 
    831   if (DFBlocks.size() > 1)
    832     std::sort(DFBlocks.begin(), DFBlocks.end());
    833 
    834   unsigned CurrentVersion = 0;
    835   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    836     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    837 }
    838 
    839 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
    840 /// replace any loads of it that are directly dominated by the definition with
    841 /// the value stored.
    842 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
    843                                               AllocaInfo &Info,
    844                                               LargeBlockInfo &LBI) {
    845   StoreInst *OnlyStore = Info.OnlyStore;
    846   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    847   BasicBlock *StoreBB = OnlyStore->getParent();
    848   int StoreIndex = -1;
    849 
    850   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    851   Info.UsingBlocks.clear();
    852 
    853   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
    854     Instruction *UserInst = cast<Instruction>(*UI++);
    855     if (!isa<LoadInst>(UserInst)) {
    856       assert(UserInst == OnlyStore && "Should only have load/stores");
    857       continue;
    858     }
    859     LoadInst *LI = cast<LoadInst>(UserInst);
    860 
    861     // Okay, if we have a load from the alloca, we want to replace it with the
    862     // only value stored to the alloca.  We can do this if the value is
    863     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    864     // to insert the phi nodes as needed.
    865     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
    866       if (LI->getParent() == StoreBB) {
    867         // If we have a use that is in the same block as the store, compare the
    868         // indices of the two instructions to see which one came first.  If the
    869         // load came before the store, we can't handle it.
    870         if (StoreIndex == -1)
    871           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    872 
    873         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    874           // Can't handle this load, bail out.
    875           Info.UsingBlocks.push_back(StoreBB);
    876           continue;
    877         }
    878 
    879       } else if (LI->getParent() != StoreBB &&
    880                  !dominates(StoreBB, LI->getParent())) {
    881         // If the load and store are in different blocks, use BB dominance to
    882         // check their relationships.  If the store doesn't dom the use, bail
    883         // out.
    884         Info.UsingBlocks.push_back(LI->getParent());
    885         continue;
    886       }
    887     }
    888 
    889     // Otherwise, we *can* safely rewrite this load.
    890     Value *ReplVal = OnlyStore->getOperand(0);
    891     // If the replacement value is the load, this must occur in unreachable
    892     // code.
    893     if (ReplVal == LI)
    894       ReplVal = UndefValue::get(LI->getType());
    895     LI->replaceAllUsesWith(ReplVal);
    896     if (AST && LI->getType()->isPointerTy())
    897       AST->deleteValue(LI);
    898     LI->eraseFromParent();
    899     LBI.deleteValue(LI);
    900   }
    901 }
    902 
    903 namespace {
    904 
    905 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
    906 /// first element of a pair.
    907 struct StoreIndexSearchPredicate {
    908   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
    909                   const std::pair<unsigned, StoreInst*> &RHS) {
    910     return LHS.first < RHS.first;
    911   }
    912 };
    913 
    914 }
    915 
    916 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
    917 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
    918 /// potentially useless PHI nodes by just performing a single linear pass over
    919 /// the basic block using the Alloca.
    920 ///
    921 /// If we cannot promote this alloca (because it is read before it is written),
    922 /// return true.  This is necessary in cases where, due to control flow, the
    923 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    924 /// this is potentially correct:
    925 ///
    926 ///   for (...) { if (c) { A = undef; undef = B; } }
    927 ///
    928 /// ... so long as A is not used before undef is set.
    929 ///
    930 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    931                                               LargeBlockInfo &LBI) {
    932   // The trickiest case to handle is when we have large blocks. Because of this,
    933   // this code is optimized assuming that large blocks happen.  This does not
    934   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    935   // make it efficient to get the index of various operations in the block.
    936 
    937   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    938   Info.UsingBlocks.clear();
    939 
    940   // Walk the use-def list of the alloca, getting the locations of all stores.
    941   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
    942   StoresByIndexTy StoresByIndex;
    943 
    944   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    945        UI != E; ++UI)
    946     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    947       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    948 
    949   // If there are no stores to the alloca, just replace any loads with undef.
    950   if (StoresByIndex.empty()) {
    951     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
    952       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
    953         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    954         if (AST && LI->getType()->isPointerTy())
    955           AST->deleteValue(LI);
    956         LBI.deleteValue(LI);
    957         LI->eraseFromParent();
    958       }
    959     return;
    960   }
    961 
    962   // Sort the stores by their index, making it efficient to do a lookup with a
    963   // binary search.
    964   std::sort(StoresByIndex.begin(), StoresByIndex.end());
    965 
    966   // Walk all of the loads from this alloca, replacing them with the nearest
    967   // store above them, if any.
    968   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    969     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    970     if (!LI) continue;
    971 
    972     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    973 
    974     // Find the nearest store that has a lower than this load.
    975     StoresByIndexTy::iterator I =
    976       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    977                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
    978                        StoreIndexSearchPredicate());
    979 
    980     // If there is no store before this load, then we can't promote this load.
    981     if (I == StoresByIndex.begin()) {
    982       // Can't handle this load, bail out.
    983       Info.UsingBlocks.push_back(LI->getParent());
    984       continue;
    985     }
    986 
    987     // Otherwise, there was a store before this load, the load takes its value.
    988     --I;
    989     LI->replaceAllUsesWith(I->second->getOperand(0));
    990     if (AST && LI->getType()->isPointerTy())
    991       AST->deleteValue(LI);
    992     LI->eraseFromParent();
    993     LBI.deleteValue(LI);
    994   }
    995 }
    996 
    997 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
    998 // Alloca returns true if there wasn't already a phi-node for that variable
    999 //
   1000 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
   1001                                   unsigned &Version) {
   1002   // Look up the basic-block in question.
   1003   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
   1004 
   1005   // If the BB already has a phi node added for the i'th alloca then we're done!
   1006   if (PN) return false;
   1007 
   1008   // Create a PhiNode using the dereferenced type... and add the phi-node to the
   1009   // BasicBlock.
   1010   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
   1011                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
   1012                        BB->begin());
   1013   ++NumPHIInsert;
   1014   PhiToAllocaMap[PN] = AllocaNo;
   1015 
   1016   if (AST && PN->getType()->isPointerTy())
   1017     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
   1018 
   1019   return true;
   1020 }
   1021 
   1022 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
   1023 // stores to the allocas which we are promoting.  IncomingVals indicates what
   1024 // value each Alloca contains on exit from the predecessor block Pred.
   1025 //
   1026 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
   1027                                 RenamePassData::ValVector &IncomingVals,
   1028                                 std::vector<RenamePassData> &Worklist) {
   1029 NextIteration:
   1030   // If we are inserting any phi nodes into this BB, they will already be in the
   1031   // block.
   1032   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
   1033     // If we have PHI nodes to update, compute the number of edges from Pred to
   1034     // BB.
   1035     if (PhiToAllocaMap.count(APN)) {
   1036       // We want to be able to distinguish between PHI nodes being inserted by
   1037       // this invocation of mem2reg from those phi nodes that already existed in
   1038       // the IR before mem2reg was run.  We determine that APN is being inserted
   1039       // because it is missing incoming edges.  All other PHI nodes being
   1040       // inserted by this pass of mem2reg will have the same number of incoming
   1041       // operands so far.  Remember this count.
   1042       unsigned NewPHINumOperands = APN->getNumOperands();
   1043 
   1044       unsigned NumEdges = 0;
   1045       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
   1046         if (*I == BB)
   1047           ++NumEdges;
   1048       assert(NumEdges && "Must be at least one edge from Pred to BB!");
   1049 
   1050       // Add entries for all the phis.
   1051       BasicBlock::iterator PNI = BB->begin();
   1052       do {
   1053         unsigned AllocaNo = PhiToAllocaMap[APN];
   1054 
   1055         // Add N incoming values to the PHI node.
   1056         for (unsigned i = 0; i != NumEdges; ++i)
   1057           APN->addIncoming(IncomingVals[AllocaNo], Pred);
   1058 
   1059         // The currently active variable for this block is now the PHI.
   1060         IncomingVals[AllocaNo] = APN;
   1061 
   1062         // Get the next phi node.
   1063         ++PNI;
   1064         APN = dyn_cast<PHINode>(PNI);
   1065         if (APN == 0) break;
   1066 
   1067         // Verify that it is missing entries.  If not, it is not being inserted
   1068         // by this mem2reg invocation so we want to ignore it.
   1069       } while (APN->getNumOperands() == NewPHINumOperands);
   1070     }
   1071   }
   1072 
   1073   // Don't revisit blocks.
   1074   if (!Visited.insert(BB)) return;
   1075 
   1076   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
   1077     Instruction *I = II++; // get the instruction, increment iterator
   1078 
   1079     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1080       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1081       if (!Src) continue;
   1082 
   1083       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
   1084       if (AI == AllocaLookup.end()) continue;
   1085 
   1086       Value *V = IncomingVals[AI->second];
   1087 
   1088       // Anything using the load now uses the current value.
   1089       LI->replaceAllUsesWith(V);
   1090       if (AST && LI->getType()->isPointerTy())
   1091         AST->deleteValue(LI);
   1092       BB->getInstList().erase(LI);
   1093     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1094       // Delete this instruction and mark the name as the current holder of the
   1095       // value
   1096       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1097       if (!Dest) continue;
   1098 
   1099       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1100       if (ai == AllocaLookup.end())
   1101         continue;
   1102 
   1103       // what value were we writing?
   1104       IncomingVals[ai->second] = SI->getOperand(0);
   1105       // Record debuginfo for the store before removing it.
   1106       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
   1107         if (!DIB)
   1108           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
   1109         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1110       }
   1111       BB->getInstList().erase(SI);
   1112     }
   1113   }
   1114 
   1115   // 'Recurse' to our successors.
   1116   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1117   if (I == E) return;
   1118 
   1119   // Keep track of the successors so we don't visit the same successor twice
   1120   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
   1121 
   1122   // Handle the first successor without using the worklist.
   1123   VisitedSuccs.insert(*I);
   1124   Pred = BB;
   1125   BB = *I;
   1126   ++I;
   1127 
   1128   for (; I != E; ++I)
   1129     if (VisitedSuccs.insert(*I))
   1130       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1131 
   1132   goto NextIteration;
   1133 }
   1134 
   1135 /// PromoteMemToReg - Promote the specified list of alloca instructions into
   1136 /// scalar registers, inserting PHI nodes as appropriate.  This function does
   1137 /// not modify the CFG of the function at all.  All allocas must be from the
   1138 /// same function.
   1139 ///
   1140 /// If AST is specified, the specified tracker is updated to reflect changes
   1141 /// made to the IR.
   1142 ///
   1143 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
   1144                            DominatorTree &DT, AliasSetTracker *AST) {
   1145   // If there is nothing to do, bail out...
   1146   if (Allocas.empty()) return;
   1147 
   1148   PromoteMem2Reg(Allocas, DT, AST).run();
   1149 }
   1150