Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/ExecutionEngine/JIT.h"
     11 #include "llvm/ADT/OwningPtr.h"
     12 #include "llvm/ADT/SmallPtrSet.h"
     13 #include "llvm/Assembly/Parser.h"
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     16 #include "llvm/IR/BasicBlock.h"
     17 #include "llvm/IR/Constant.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/GlobalValue.h"
     22 #include "llvm/IR/GlobalVariable.h"
     23 #include "llvm/IR/IRBuilder.h"
     24 #include "llvm/IR/LLVMContext.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/IR/TypeBuilder.h"
     28 #include "llvm/Support/MemoryBuffer.h"
     29 #include "llvm/Support/SourceMgr.h"
     30 #include "llvm/Support/TargetSelect.h"
     31 #include "gtest/gtest.h"
     32 #include <vector>
     33 
     34 using namespace llvm;
     35 
     36 namespace {
     37 
     38 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     39   std::vector<Type*> params;
     40   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     41                                               params, false);
     42   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     43   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     44   IRBuilder<> builder(Entry);
     45   Value *Load = builder.CreateLoad(G);
     46   Type *GTy = G->getType()->getElementType();
     47   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     48   builder.CreateStore(Add, G);
     49   builder.CreateRet(Add);
     50   return F;
     51 }
     52 
     53 std::string DumpFunction(const Function *F) {
     54   std::string Result;
     55   raw_string_ostream(Result) << "" << *F;
     56   return Result;
     57 }
     58 
     59 class RecordingJITMemoryManager : public JITMemoryManager {
     60   const OwningPtr<JITMemoryManager> Base;
     61 public:
     62   RecordingJITMemoryManager()
     63     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     64     stubsAllocated = 0;
     65   }
     66   virtual void *getPointerToNamedFunction(const std::string &Name,
     67                                           bool AbortOnFailure = true) {
     68     return Base->getPointerToNamedFunction(Name, AbortOnFailure);
     69   }
     70 
     71   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     72   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     73   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     74   virtual void AllocateGOT() { Base->AllocateGOT(); }
     75   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     76   struct StartFunctionBodyCall {
     77     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     78                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     79       : Result(Result), F(F), F_dump(DumpFunction(F)),
     80         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
     81     uint8_t *Result;
     82     const Function *F;
     83     std::string F_dump;
     84     uintptr_t ActualSize;
     85     uintptr_t ActualSizeResult;
     86   };
     87   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
     88   virtual uint8_t *startFunctionBody(const Function *F,
     89                                      uintptr_t &ActualSize) {
     90     uintptr_t InitialActualSize = ActualSize;
     91     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
     92     startFunctionBodyCalls.push_back(
     93       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
     94     return Result;
     95   }
     96   int stubsAllocated;
     97   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
     98                                 unsigned Alignment) {
     99     stubsAllocated++;
    100     return Base->allocateStub(F, StubSize, Alignment);
    101   }
    102   struct EndFunctionBodyCall {
    103     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    104                         uint8_t *FunctionEnd)
    105       : F(F), F_dump(DumpFunction(F)),
    106         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    107     const Function *F;
    108     std::string F_dump;
    109     uint8_t *FunctionStart;
    110     uint8_t *FunctionEnd;
    111   };
    112   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    113   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    114                                uint8_t *FunctionEnd) {
    115     endFunctionBodyCalls.push_back(
    116       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    117     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    118   }
    119   virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    120                                        unsigned SectionID, bool IsReadOnly) {
    121     return Base->allocateDataSection(Size, Alignment, SectionID, IsReadOnly);
    122   }
    123   virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    124                                        unsigned SectionID) {
    125     return Base->allocateCodeSection(Size, Alignment, SectionID);
    126   }
    127   virtual bool applyPermissions(std::string *ErrMsg) { return false; }
    128   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    129     return Base->allocateSpace(Size, Alignment);
    130   }
    131   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    132     return Base->allocateGlobal(Size, Alignment);
    133   }
    134   struct DeallocateFunctionBodyCall {
    135     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    136     const void *Body;
    137   };
    138   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    139   virtual void deallocateFunctionBody(void *Body) {
    140     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    141     Base->deallocateFunctionBody(Body);
    142   }
    143   struct DeallocateExceptionTableCall {
    144     DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
    145     const void *ET;
    146   };
    147   std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
    148   virtual void deallocateExceptionTable(void *ET) {
    149     deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
    150     Base->deallocateExceptionTable(ET);
    151   }
    152   struct StartExceptionTableCall {
    153     StartExceptionTableCall(uint8_t *Result, const Function *F,
    154                             uintptr_t ActualSize, uintptr_t ActualSizeResult)
    155       : Result(Result), F(F), F_dump(DumpFunction(F)),
    156         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    157     uint8_t *Result;
    158     const Function *F;
    159     std::string F_dump;
    160     uintptr_t ActualSize;
    161     uintptr_t ActualSizeResult;
    162   };
    163   std::vector<StartExceptionTableCall> startExceptionTableCalls;
    164   virtual uint8_t *startExceptionTable(const Function *F,
    165                                        uintptr_t &ActualSize) {
    166     uintptr_t InitialActualSize = ActualSize;
    167     uint8_t *Result = Base->startExceptionTable(F, ActualSize);
    168     startExceptionTableCalls.push_back(
    169       StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
    170     return Result;
    171   }
    172   struct EndExceptionTableCall {
    173     EndExceptionTableCall(const Function *F, uint8_t *TableStart,
    174                           uint8_t *TableEnd, uint8_t* FrameRegister)
    175       : F(F), F_dump(DumpFunction(F)),
    176         TableStart(TableStart), TableEnd(TableEnd),
    177         FrameRegister(FrameRegister) {}
    178     const Function *F;
    179     std::string F_dump;
    180     uint8_t *TableStart;
    181     uint8_t *TableEnd;
    182     uint8_t *FrameRegister;
    183   };
    184   std::vector<EndExceptionTableCall> endExceptionTableCalls;
    185   virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
    186                                  uint8_t *TableEnd, uint8_t* FrameRegister) {
    187       endExceptionTableCalls.push_back(
    188           EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
    189     return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
    190   }
    191 };
    192 
    193 bool LoadAssemblyInto(Module *M, const char *assembly) {
    194   SMDiagnostic Error;
    195   bool success =
    196     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
    197   std::string errMsg;
    198   raw_string_ostream os(errMsg);
    199   Error.print("", os);
    200   EXPECT_TRUE(success) << os.str();
    201   return success;
    202 }
    203 
    204 class JITTest : public testing::Test {
    205  protected:
    206   virtual RecordingJITMemoryManager *createMemoryManager() {
    207     return new RecordingJITMemoryManager;
    208   }
    209 
    210   virtual void SetUp() {
    211     M = new Module("<main>", Context);
    212     RJMM = createMemoryManager();
    213     RJMM->setPoisonMemory(true);
    214     std::string Error;
    215     TargetOptions Options;
    216     Options.JITExceptionHandling = true;
    217     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    218                  .setJITMemoryManager(RJMM)
    219                  .setErrorStr(&Error)
    220                  .setTargetOptions(Options).create());
    221     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
    222   }
    223 
    224   void LoadAssembly(const char *assembly) {
    225     LoadAssemblyInto(M, assembly);
    226   }
    227 
    228   LLVMContext Context;
    229   Module *M;  // Owned by ExecutionEngine.
    230   RecordingJITMemoryManager *RJMM;
    231   OwningPtr<ExecutionEngine> TheJIT;
    232 };
    233 
    234 // Tests on ARM and PowerPC disabled as we're running the old jit
    235 #if !defined(__arm__) && !defined(__powerpc__)
    236 
    237 // Regression test for a bug.  The JIT used to allocate globals inside the same
    238 // memory block used for the function, and when the function code was freed,
    239 // the global was left in the same place.  This test allocates a function
    240 // that uses and global, deallocates it, and then makes sure that the global
    241 // stays alive after that.
    242 TEST(JIT, GlobalInFunction) {
    243   LLVMContext context;
    244   Module *M = new Module("<main>", context);
    245 
    246   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    247   // Tell the memory manager to poison freed memory so that accessing freed
    248   // memory is more easily tested.
    249   MemMgr->setPoisonMemory(true);
    250   std::string Error;
    251   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
    252                                  .setEngineKind(EngineKind::JIT)
    253                                  .setErrorStr(&Error)
    254                                  .setJITMemoryManager(MemMgr)
    255                                  // The next line enables the fix:
    256                                  .setAllocateGVsWithCode(false)
    257                                  .create());
    258   ASSERT_EQ(Error, "");
    259 
    260   // Create a global variable.
    261   Type *GTy = Type::getInt32Ty(context);
    262   GlobalVariable *G = new GlobalVariable(
    263       *M,
    264       GTy,
    265       false,  // Not constant.
    266       GlobalValue::InternalLinkage,
    267       Constant::getNullValue(GTy),
    268       "myglobal");
    269 
    270   // Make a function that points to a global.
    271   Function *F1 = makeReturnGlobal("F1", G, M);
    272 
    273   // Get the pointer to the native code to force it to JIT the function and
    274   // allocate space for the global.
    275   void (*F1Ptr)() =
    276       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    277 
    278   // Since F1 was codegen'd, a pointer to G should be available.
    279   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    280   ASSERT_NE((int32_t*)NULL, GPtr);
    281   EXPECT_EQ(0, *GPtr);
    282 
    283   // F1() should increment G.
    284   F1Ptr();
    285   EXPECT_EQ(1, *GPtr);
    286 
    287   // Make a second function identical to the first, referring to the same
    288   // global.
    289   Function *F2 = makeReturnGlobal("F2", G, M);
    290   void (*F2Ptr)() =
    291       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    292 
    293   // F2() should increment G.
    294   F2Ptr();
    295   EXPECT_EQ(2, *GPtr);
    296 
    297   // Deallocate F1.
    298   JIT->freeMachineCodeForFunction(F1);
    299 
    300   // F2() should *still* increment G.
    301   F2Ptr();
    302   EXPECT_EQ(3, *GPtr);
    303 }
    304 
    305 #endif // !defined(__arm__) && !defined(__powerpc__)
    306 
    307 // Regression test for a bug.  The JITEmitter wasn't checking to verify that
    308 // it hadn't run out of space while generating the DWARF exception information
    309 // for an emitted function.
    310 
    311 class ExceptionMemoryManagerMock : public RecordingJITMemoryManager {
    312  public:
    313   virtual uint8_t *startExceptionTable(const Function *F,
    314                                        uintptr_t &ActualSize) {
    315     // force an insufficient size the first time through.
    316     bool ChangeActualSize = false;
    317     if (ActualSize == 0)
    318       ChangeActualSize = true;;
    319     uint8_t *result =
    320       RecordingJITMemoryManager::startExceptionTable(F, ActualSize);
    321     if (ChangeActualSize)
    322       ActualSize = 1;
    323     return result;
    324   }
    325 };
    326 
    327 class JITExceptionMemoryTest : public JITTest {
    328  protected:
    329   virtual RecordingJITMemoryManager *createMemoryManager() {
    330     return new ExceptionMemoryManagerMock;
    331   }
    332 };
    333 
    334 TEST_F(JITExceptionMemoryTest, ExceptionTableOverflow) {
    335   Function *F = Function::Create(TypeBuilder<void(void), false>::get(Context),
    336                                  Function::ExternalLinkage,
    337                                  "func1", M);
    338   BasicBlock *Block = BasicBlock::Create(Context, "block", F);
    339   IRBuilder<> Builder(Block);
    340   Builder.CreateRetVoid();
    341   TheJIT->getPointerToFunction(F);
    342   ASSERT_TRUE(RJMM->startExceptionTableCalls.size() == 2);
    343   ASSERT_TRUE(RJMM->deallocateExceptionTableCalls.size() == 1);
    344   ASSERT_TRUE(RJMM->endExceptionTableCalls.size() == 1);
    345 }
    346 
    347 int PlusOne(int arg) {
    348   return arg + 1;
    349 }
    350 
    351 // ARM and PowerPC tests disabled pending fix for PR10783.
    352 #if !defined(__arm__) && !defined(__powerpc__)
    353 TEST_F(JITTest, FarCallToKnownFunction) {
    354   // x86-64 can only make direct calls to functions within 32 bits of
    355   // the current PC.  To call anything farther away, we have to load
    356   // the address into a register and call through the register.  The
    357   // current JIT does this by allocating a stub for any far call.
    358   // There was a bug in which the JIT tried to emit a direct call when
    359   // the target was already in the JIT's global mappings and lazy
    360   // compilation was disabled.
    361 
    362   Function *KnownFunction = Function::Create(
    363       TypeBuilder<int(int), false>::get(Context),
    364       GlobalValue::ExternalLinkage, "known", M);
    365   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    366 
    367   // int test() { return known(7); }
    368   Function *TestFunction = Function::Create(
    369       TypeBuilder<int(), false>::get(Context),
    370       GlobalValue::ExternalLinkage, "test", M);
    371   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    372   IRBuilder<> Builder(Entry);
    373   Value *result = Builder.CreateCall(
    374       KnownFunction,
    375       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    376   Builder.CreateRet(result);
    377 
    378   TheJIT->DisableLazyCompilation(true);
    379   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    380       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    381   // This used to crash in trying to call PlusOne().
    382   EXPECT_EQ(8, TestFunctionPtr());
    383 }
    384 
    385 // Test a function C which calls A and B which call each other.
    386 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    387   TheJIT->DisableLazyCompilation(true);
    388 
    389   FunctionType *Func1Ty =
    390       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    391   std::vector<Type*> arg_types;
    392   arg_types.push_back(Type::getInt1Ty(Context));
    393   FunctionType *FuncTy = FunctionType::get(
    394       Type::getVoidTy(Context), arg_types, false);
    395   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    396                                      "func1", M);
    397   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    398                                      "func2", M);
    399   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    400                                      "func3", M);
    401   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    402   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    403   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    404   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    405   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    406   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    407   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    408 
    409   // Make Func1 call Func2(0) and Func3(0).
    410   IRBuilder<> Builder(Block1);
    411   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    412   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    413   Builder.CreateRetVoid();
    414 
    415   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    416   Builder.SetInsertPoint(Block2);
    417   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    418   Builder.SetInsertPoint(True2);
    419   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    420   Builder.CreateRetVoid();
    421   Builder.SetInsertPoint(False2);
    422   Builder.CreateRetVoid();
    423 
    424   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    425   Builder.SetInsertPoint(Block3);
    426   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    427   Builder.SetInsertPoint(True3);
    428   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    429   Builder.CreateRetVoid();
    430   Builder.SetInsertPoint(False3);
    431   Builder.CreateRetVoid();
    432 
    433   // Compile the function to native code
    434   void (*F1Ptr)() =
    435      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    436 
    437   F1Ptr();
    438 }
    439 
    440 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    441 // JIT's Function to stub mapping.
    442 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    443   TheJIT->DisableLazyCompilation(true);
    444 
    445   // Create two functions with a single basic block each.
    446   FunctionType *FuncTy =
    447       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    448   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    449                                      "func1", M);
    450   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    451                                      "func2", M);
    452   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    453   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    454 
    455   // The first function calls the second and returns the result
    456   IRBuilder<> Builder(Block1);
    457   Value *Result = Builder.CreateCall(Func2);
    458   Builder.CreateRet(Result);
    459 
    460   // The second function just returns a constant
    461   Builder.SetInsertPoint(Block2);
    462   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    463 
    464   // Compile the function to native code
    465   (void)TheJIT->getPointerToFunction(Func1);
    466 
    467   // Free the JIT state for the functions
    468   TheJIT->freeMachineCodeForFunction(Func1);
    469   TheJIT->freeMachineCodeForFunction(Func2);
    470 
    471   // Delete the first function (and show that is has no users)
    472   EXPECT_EQ(Func1->getNumUses(), 0u);
    473   Func1->eraseFromParent();
    474 
    475   // Delete the second function (and show that it has no users - it had one,
    476   // func1 but that's gone now)
    477   EXPECT_EQ(Func2->getNumUses(), 0u);
    478   Func2->eraseFromParent();
    479 }
    480 
    481 TEST_F(JITTest, ModuleDeletion) {
    482   TheJIT->DisableLazyCompilation(false);
    483   LoadAssembly("define void @main() { "
    484                "  call i32 @computeVal() "
    485                "  ret void "
    486                "} "
    487                " "
    488                "define internal i32 @computeVal()  { "
    489                "  ret i32 0 "
    490                "} ");
    491   Function *func = M->getFunction("main");
    492   TheJIT->getPointerToFunction(func);
    493   TheJIT->removeModule(M);
    494   delete M;
    495 
    496   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    497   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    498        i != e; ++i) {
    499     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    500   }
    501   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    502     EXPECT_TRUE(FunctionsDeallocated.count(
    503                   RJMM->startFunctionBodyCalls[i].Result))
    504       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    505   }
    506   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    507             RJMM->deallocateFunctionBodyCalls.size());
    508 
    509   SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
    510   unsigned NumTablesDeallocated = 0;
    511   for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
    512        i != e; ++i) {
    513     ExceptionTablesDeallocated.insert(
    514         RJMM->deallocateExceptionTableCalls[i].ET);
    515     if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
    516         // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
    517         // appear in startExceptionTableCalls.
    518         NumTablesDeallocated++;
    519     }
    520   }
    521   for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
    522     EXPECT_TRUE(ExceptionTablesDeallocated.count(
    523                   RJMM->startExceptionTableCalls[i].Result))
    524       << "Function's exception table leaked: \n"
    525       << RJMM->startExceptionTableCalls[i].F_dump;
    526   }
    527   EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
    528             NumTablesDeallocated);
    529 }
    530 #endif // !defined(__arm__) && !defined(__powerpc__)
    531 
    532 // ARM, MIPS and PPC still emit stubs for calls since the target may be
    533 // too far away to call directly.  This #if can probably be removed when
    534 // http://llvm.org/PR5201 is fixed.
    535 #if !defined(__arm__) && !defined(__mips__) && \
    536     !defined(__powerpc__) && !defined(__ppc__)
    537 typedef int (*FooPtr) ();
    538 
    539 TEST_F(JITTest, NoStubs) {
    540   LoadAssembly("define void @bar() {"
    541 	       "entry: "
    542 	       "ret void"
    543 	       "}"
    544 	       " "
    545 	       "define i32 @foo() {"
    546 	       "entry:"
    547 	       "call void @bar()"
    548 	       "ret i32 undef"
    549 	       "}"
    550 	       " "
    551 	       "define i32 @main() {"
    552 	       "entry:"
    553 	       "%0 = call i32 @foo()"
    554 	       "call void @bar()"
    555 	       "ret i32 undef"
    556 	       "}");
    557   Function *foo = M->getFunction("foo");
    558   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    559   FooPtr ptr = (FooPtr)(tmp);
    560 
    561   (ptr)();
    562 
    563   // We should now allocate no more stubs, we have the code to foo
    564   // and the existing stub for bar.
    565   int stubsBefore = RJMM->stubsAllocated;
    566   Function *func = M->getFunction("main");
    567   TheJIT->getPointerToFunction(func);
    568 
    569   Function *bar = M->getFunction("bar");
    570   TheJIT->getPointerToFunction(bar);
    571 
    572   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    573 }
    574 #endif  // !ARM && !PPC
    575 
    576 // Tests on ARM and PowerPC disabled as we're running the old jit
    577 #if !defined(__arm__) && !defined(__powerpc__)
    578 
    579 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    580   TheJIT->DisableLazyCompilation(true);
    581   LoadAssembly("define i8()* @get_foo_addr() { "
    582                "  ret i8()* @foo "
    583                "} "
    584                " "
    585                "define i8 @foo() { "
    586                "  ret i8 42 "
    587                "} ");
    588   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    589 
    590   typedef char(*fooT)();
    591   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    592       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    593   fooT foo_addr = get_foo_addr();
    594 
    595   // Now free get_foo_addr.  This should not free the machine code for foo or
    596   // any call stub returned as foo's canonical address.
    597   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    598 
    599   // Check by calling the reported address of foo.
    600   EXPECT_EQ(42, foo_addr());
    601 
    602   // The reported address should also be the same as the result of a subsequent
    603   // getPointerToFunction(foo).
    604 #if 0
    605   // Fails until PR5126 is fixed:
    606   Function *F_foo = M->getFunction("foo");
    607   fooT foo = reinterpret_cast<fooT>(
    608       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    609   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    610 #endif
    611 }
    612 
    613 #endif //!defined(__arm__) && !defined(__powerpc__)
    614 
    615 // Tests on ARM and PowerPC disabled as we're running the old jit
    616 // In addition, ARM does not have an implementation
    617 // of replaceMachineCodeForFunction(), so recompileAndRelinkFunction
    618 // doesn't work.
    619 #if !defined(__arm__) && !defined(__powerpc__)
    620 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    621   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    622                                  GlobalValue::ExternalLinkage, "test", M);
    623   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    624   IRBuilder<> Builder(Entry);
    625   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    626   Builder.CreateRet(Val);
    627 
    628   TheJIT->DisableLazyCompilation(true);
    629   // Compile the function once, and make sure it works.
    630   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    631     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    632   EXPECT_EQ(1, OrigFPtr());
    633 
    634   // Now change the function to return a different value.
    635   Entry->eraseFromParent();
    636   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    637   Builder.SetInsertPoint(NewEntry);
    638   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    639   Builder.CreateRet(Val);
    640   // Recompile it, which should produce a new function pointer _and_ update the
    641   // old one.
    642   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    643     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    644 
    645   EXPECT_EQ(2, NewFPtr())
    646     << "The new pointer should call the new version of the function";
    647   EXPECT_EQ(2, OrigFPtr())
    648     << "The old pointer's target should now jump to the new version";
    649 }
    650 #endif  // !defined(__arm__) && !defined(__powerpc__)
    651 
    652 }  // anonymous namespace
    653 // This variable is intentionally defined differently in the statically-compiled
    654 // program from the IR input to the JIT to assert that the JIT doesn't use its
    655 // definition.
    656 extern "C" int32_t JITTest_AvailableExternallyGlobal;
    657 int32_t JITTest_AvailableExternallyGlobal LLVM_ATTRIBUTE_USED = 42;
    658 namespace {
    659 
    660 // Tests on ARM and PowerPC disabled as we're running the old jit
    661 #if !defined(__arm__) && !defined(__powerpc__)
    662 
    663 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    664   TheJIT->DisableLazyCompilation(true);
    665   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    666                "  available_externally global i32 7 "
    667                " "
    668                "define i32 @loader() { "
    669                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    670                "  ret i32 %result "
    671                "} ");
    672   Function *loaderIR = M->getFunction("loader");
    673 
    674   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    675     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    676   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    677                           << " not 7 from the IR version.";
    678 }
    679 #endif //!defined(__arm__) && !defined(__powerpc__)
    680 }  // anonymous namespace
    681 // This function is intentionally defined differently in the statically-compiled
    682 // program from the IR input to the JIT to assert that the JIT doesn't use its
    683 // definition.
    684 extern "C" int32_t JITTest_AvailableExternallyFunction() LLVM_ATTRIBUTE_USED;
    685 extern "C" int32_t JITTest_AvailableExternallyFunction() {
    686   return 42;
    687 }
    688 namespace {
    689 
    690 // ARM and PowerPC tests disabled pending fix for PR10783.
    691 #if !defined(__arm__) && !defined(__powerpc__)
    692 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    693   TheJIT->DisableLazyCompilation(true);
    694   LoadAssembly("define available_externally i32 "
    695                "    @JITTest_AvailableExternallyFunction() { "
    696                "  ret i32 7 "
    697                "} "
    698                " "
    699                "define i32 @func() { "
    700                "  %result = tail call i32 "
    701                "    @JITTest_AvailableExternallyFunction() "
    702                "  ret i32 %result "
    703                "} ");
    704   Function *funcIR = M->getFunction("func");
    705 
    706   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    707     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    708   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    709                         << " not 7 from the IR version.";
    710 }
    711 
    712 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    713   TheJIT->DisableLazyCompilation(false);
    714   LoadAssembly("define internal i32 @stubbed() { "
    715                "  ret i32 42 "
    716                "} "
    717                " "
    718                "define i32()* @get_stub() { "
    719                "  ret i32()* @stubbed "
    720                "} ");
    721   typedef int32_t(*StubTy)();
    722 
    723   // Call get_stub() to get the address of @stubbed without actually JITting it.
    724   Function *get_stubIR = M->getFunction("get_stub");
    725   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    726     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    727   StubTy stubbed = get_stub();
    728   // Now get_stubIR is the only reference to stubbed's stub.
    729   get_stubIR->eraseFromParent();
    730   // Now there are no references inside the JIT, but we've got a pointer outside
    731   // it.  The stub should be callable and return the right value.
    732   EXPECT_EQ(42, stubbed());
    733 }
    734 
    735 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    736 // empty string indicates an error.
    737 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    738   Module TempModule("TempModule", Context);
    739   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    740     return "";
    741   }
    742 
    743   std::string Result;
    744   raw_string_ostream OS(Result);
    745   WriteBitcodeToFile(&TempModule, OS);
    746   OS.flush();
    747   return Result;
    748 }
    749 
    750 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    751 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    752 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    753 // ExecutionEngine.
    754 ExecutionEngine *getJITFromBitcode(
    755   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    756   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    757   MemoryBuffer *BitcodeBuffer =
    758     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    759   std::string errMsg;
    760   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
    761   if (M == NULL) {
    762     ADD_FAILURE() << errMsg;
    763     delete BitcodeBuffer;
    764     return NULL;
    765   }
    766   ExecutionEngine *TheJIT = EngineBuilder(M)
    767     .setEngineKind(EngineKind::JIT)
    768     .setErrorStr(&errMsg)
    769     .create();
    770   if (TheJIT == NULL) {
    771     ADD_FAILURE() << errMsg;
    772     delete M;
    773     M = NULL;
    774     return NULL;
    775   }
    776   return TheJIT;
    777 }
    778 
    779 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    780   LLVMContext Context;
    781   const std::string Bitcode =
    782     AssembleToBitcode(Context,
    783                       "define available_externally i32 "
    784                       "    @JITTest_AvailableExternallyFunction() { "
    785                       "  ret i32 7 "
    786                       "} "
    787                       " "
    788                       "define i32 @func() { "
    789                       "  %result = tail call i32 "
    790                       "    @JITTest_AvailableExternallyFunction() "
    791                       "  ret i32 %result "
    792                       "} ");
    793   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    794   Module *M;
    795   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    796   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    797   TheJIT->DisableLazyCompilation(true);
    798 
    799   Function *funcIR = M->getFunction("func");
    800   Function *availableFunctionIR =
    801     M->getFunction("JITTest_AvailableExternallyFunction");
    802 
    803   // Double-check that the available_externally function is still unmaterialized
    804   // when getPointerToFunction needs to find out if it's available_externally.
    805   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    806 
    807   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    808     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    809   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    810                         << " not 7 from the IR version.";
    811 }
    812 
    813 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    814   LLVMContext Context;
    815   const std::string Bitcode =
    816     AssembleToBitcode(Context,
    817                       "define i32 @recur1(i32 %a) { "
    818                       "  %zero = icmp eq i32 %a, 0 "
    819                       "  br i1 %zero, label %done, label %notdone "
    820                       "done: "
    821                       "  ret i32 3 "
    822                       "notdone: "
    823                       "  %am1 = sub i32 %a, 1 "
    824                       "  %result = call i32 @recur2(i32 %am1) "
    825                       "  ret i32 %result "
    826                       "} "
    827                       " "
    828                       "define i32 @recur2(i32 %b) { "
    829                       "  %result = call i32 @recur1(i32 %b) "
    830                       "  ret i32 %result "
    831                       "} ");
    832   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    833   Module *M;
    834   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    835   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    836   TheJIT->DisableLazyCompilation(true);
    837 
    838   Function *recur1IR = M->getFunction("recur1");
    839   Function *recur2IR = M->getFunction("recur2");
    840   EXPECT_TRUE(recur1IR->isMaterializable());
    841   EXPECT_TRUE(recur2IR->isMaterializable());
    842 
    843   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    844     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    845   EXPECT_EQ(3, recur1(4));
    846 }
    847 #endif // !defined(__arm__) && !defined(__powerpc__)
    848 
    849 // This code is copied from JITEventListenerTest, but it only runs once for all
    850 // the tests in this directory.  Everything seems fine, but that's strange
    851 // behavior.
    852 class JITEnvironment : public testing::Environment {
    853   virtual void SetUp() {
    854     // Required to create a JIT.
    855     InitializeNativeTarget();
    856   }
    857 };
    858 testing::Environment* const jit_env =
    859   testing::AddGlobalTestEnvironment(new JITEnvironment);
    860 
    861 }
    862