Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #include <ctype.h>
     50 #include <string.h>
     51 #include <iomanip>
     52 #include <limits>
     53 #include <set>
     54 
     55 #include "gtest/internal/gtest-string.h"
     56 #include "gtest/internal/gtest-filepath.h"
     57 #include "gtest/internal/gtest-type-util.h"
     58 
     59 #if !GTEST_NO_LLVM_RAW_OSTREAM
     60 #include "llvm/Support/raw_os_ostream.h"
     61 #endif
     62 
     63 // Due to C++ preprocessor weirdness, we need double indirection to
     64 // concatenate two tokens when one of them is __LINE__.  Writing
     65 //
     66 //   foo ## __LINE__
     67 //
     68 // will result in the token foo__LINE__, instead of foo followed by
     69 // the current line number.  For more details, see
     70 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     71 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     72 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     73 
     74 // Google Test defines the testing::Message class to allow construction of
     75 // test messages via the << operator.  The idea is that anything
     76 // streamable to std::ostream can be streamed to a testing::Message.
     77 // This allows a user to use his own types in Google Test assertions by
     78 // overloading the << operator.
     79 //
     80 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
     81 // overloads cannot be defined in the std namespace, as that will be
     82 // undefined behavior.  Therefore, they are defined in the global
     83 // namespace instead.
     84 //
     85 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
     86 // overloads are visible in either the std namespace or the global
     87 // namespace, but not other namespaces, including the testing
     88 // namespace which Google Test's Message class is in.
     89 //
     90 // To allow STL containers (and other types that has a << operator
     91 // defined in the global namespace) to be used in Google Test assertions,
     92 // testing::Message must access the custom << operator from the global
     93 // namespace.  Hence this helper function.
     94 //
     95 // Note: Jeffrey Yasskin suggested an alternative fix by "using
     96 // ::operator<<;" in the definition of Message's operator<<.  That fix
     97 // doesn't require a helper function, but unfortunately doesn't
     98 // compile with MSVC.
     99 
    100 // LLVM INTERNAL CHANGE: To allow operator<< to work with both
    101 // std::ostreams and LLVM's raw_ostreams, we define a special
    102 // std::ostream with an implicit conversion to raw_ostream& and stream
    103 // to that.  This causes the compiler to prefer std::ostream overloads
    104 // but still find raw_ostream& overloads.
    105 #if !GTEST_NO_LLVM_RAW_OSTREAM
    106 namespace llvm {
    107 class convertible_fwd_ostream : public std::ostream {
    108   raw_os_ostream ros_;
    109 
    110 public:
    111   convertible_fwd_ostream(std::ostream& os)
    112     : std::ostream(os.rdbuf()), ros_(*this) {}
    113   operator raw_ostream&() { return ros_; }
    114 };
    115 }
    116 template <typename T>
    117 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
    118   llvm::convertible_fwd_ostream cos(*os);
    119   cos << val;
    120 }
    121 #else
    122 template <typename T>
    123 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
    124   *os << val;
    125 }
    126 #endif
    127 
    128 class ProtocolMessage;
    129 namespace proto2 { class Message; }
    130 
    131 namespace testing {
    132 
    133 // Forward declarations.
    134 
    135 class AssertionResult;                 // Result of an assertion.
    136 class Message;                         // Represents a failure message.
    137 class Test;                            // Represents a test.
    138 class TestInfo;                        // Information about a test.
    139 class TestPartResult;                  // Result of a test part.
    140 class UnitTest;                        // A collection of test cases.
    141 
    142 template <typename T>
    143 ::std::string PrintToString(const T& value);
    144 
    145 namespace internal {
    146 
    147 struct TraceInfo;                      // Information about a trace point.
    148 class ScopedTrace;                     // Implements scoped trace.
    149 class TestInfoImpl;                    // Opaque implementation of TestInfo
    150 class UnitTestImpl;                    // Opaque implementation of UnitTest
    151 
    152 // How many times InitGoogleTest() has been called.
    153 extern int g_init_gtest_count;
    154 
    155 // The text used in failure messages to indicate the start of the
    156 // stack trace.
    157 GTEST_API_ extern const char kStackTraceMarker[];
    158 
    159 // A secret type that Google Test users don't know about.  It has no
    160 // definition on purpose.  Therefore it's impossible to create a
    161 // Secret object, which is what we want.
    162 class Secret;
    163 
    164 // Two overloaded helpers for checking at compile time whether an
    165 // expression is a null pointer literal (i.e. NULL or any 0-valued
    166 // compile-time integral constant).  Their return values have
    167 // different sizes, so we can use sizeof() to test which version is
    168 // picked by the compiler.  These helpers have no implementations, as
    169 // we only need their signatures.
    170 //
    171 // Given IsNullLiteralHelper(x), the compiler will pick the first
    172 // version if x can be implicitly converted to Secret*, and pick the
    173 // second version otherwise.  Since Secret is a secret and incomplete
    174 // type, the only expression a user can write that has type Secret* is
    175 // a null pointer literal.  Therefore, we know that x is a null
    176 // pointer literal if and only if the first version is picked by the
    177 // compiler.
    178 char IsNullLiteralHelper(Secret* p);
    179 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    180 
    181 // A compile-time bool constant that is true if and only if x is a
    182 // null pointer literal (i.e. NULL or any 0-valued compile-time
    183 // integral constant).
    184 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    185 // We lose support for NULL detection where the compiler doesn't like
    186 // passing non-POD classes through ellipsis (...).
    187 # define GTEST_IS_NULL_LITERAL_(x) false
    188 #else
    189 # define GTEST_IS_NULL_LITERAL_(x) \
    190     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    191 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    192 
    193 // Appends the user-supplied message to the Google-Test-generated message.
    194 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
    195                                     const Message& user_msg);
    196 
    197 // A helper class for creating scoped traces in user programs.
    198 class GTEST_API_ ScopedTrace {
    199  public:
    200   // The c'tor pushes the given source file location and message onto
    201   // a trace stack maintained by Google Test.
    202   ScopedTrace(const char* file, int line, const Message& message);
    203 
    204   // The d'tor pops the info pushed by the c'tor.
    205   //
    206   // Note that the d'tor is not virtual in order to be efficient.
    207   // Don't inherit from ScopedTrace!
    208   ~ScopedTrace();
    209 
    210  private:
    211   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    212 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    213                             // c'tor and d'tor.  Therefore it doesn't
    214                             // need to be used otherwise.
    215 
    216 // Converts a streamable value to a String.  A NULL pointer is
    217 // converted to "(null)".  When the input value is a ::string,
    218 // ::std::string, ::wstring, or ::std::wstring object, each NUL
    219 // character in it is replaced with "\\0".
    220 // Declared here but defined in gtest.h, so that it has access
    221 // to the definition of the Message class, required by the ARM
    222 // compiler.
    223 template <typename T>
    224 String StreamableToString(const T& streamable);
    225 
    226 // The Symbian compiler has a bug that prevents it from selecting the
    227 // correct overload of FormatForComparisonFailureMessage (see below)
    228 // unless we pass the first argument by reference.  If we do that,
    229 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
    230 // we only apply the work-around for Symbian.
    231 #if defined(__SYMBIAN32__)
    232 # define GTEST_CREF_WORKAROUND_ const&
    233 #else
    234 # define GTEST_CREF_WORKAROUND_
    235 #endif
    236 
    237 // When this operand is a const char* or char*, if the other operand
    238 // is a ::std::string or ::string, we print this operand as a C string
    239 // rather than a pointer (we do the same for wide strings); otherwise
    240 // we print it as a pointer to be safe.
    241 
    242 // This internal macro is used to avoid duplicated code.
    243 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
    244 inline String FormatForComparisonFailureMessage(\
    245     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    246     const operand2_type& /*operand2*/) {\
    247   return operand1_printer(str);\
    248 }\
    249 inline String FormatForComparisonFailureMessage(\
    250     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    251     const operand2_type& /*operand2*/) {\
    252   return operand1_printer(str);\
    253 }
    254 
    255 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
    256 #if GTEST_HAS_STD_WSTRING
    257 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
    258 #endif  // GTEST_HAS_STD_WSTRING
    259 
    260 #if GTEST_HAS_GLOBAL_STRING
    261 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
    262 #endif  // GTEST_HAS_GLOBAL_STRING
    263 #if GTEST_HAS_GLOBAL_WSTRING
    264 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
    265 #endif  // GTEST_HAS_GLOBAL_WSTRING
    266 
    267 #undef GTEST_FORMAT_IMPL_
    268 
    269 // The next four overloads handle the case where the operand being
    270 // printed is a char/wchar_t pointer and the other operand is not a
    271 // string/wstring object.  In such cases, we just print the operand as
    272 // a pointer to be safe.
    273 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
    274   template <typename T>                                             \
    275   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
    276                                            const T&) { \
    277     return PrintToString(static_cast<const void*>(p));              \
    278   }
    279 
    280 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
    281 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
    282 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
    283 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
    284 
    285 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
    286 
    287 // Constructs and returns the message for an equality assertion
    288 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    289 //
    290 // The first four parameters are the expressions used in the assertion
    291 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    292 // where foo is 5 and bar is 6, we have:
    293 //
    294 //   expected_expression: "foo"
    295 //   actual_expression:   "bar"
    296 //   expected_value:      "5"
    297 //   actual_value:        "6"
    298 //
    299 // The ignoring_case parameter is true iff the assertion is a
    300 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    301 // be inserted into the message.
    302 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    303                                      const char* actual_expression,
    304                                      const String& expected_value,
    305                                      const String& actual_value,
    306                                      bool ignoring_case);
    307 
    308 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    309 GTEST_API_ String GetBoolAssertionFailureMessage(
    310     const AssertionResult& assertion_result,
    311     const char* expression_text,
    312     const char* actual_predicate_value,
    313     const char* expected_predicate_value);
    314 
    315 // This template class represents an IEEE floating-point number
    316 // (either single-precision or double-precision, depending on the
    317 // template parameters).
    318 //
    319 // The purpose of this class is to do more sophisticated number
    320 // comparison.  (Due to round-off error, etc, it's very unlikely that
    321 // two floating-points will be equal exactly.  Hence a naive
    322 // comparison by the == operation often doesn't work.)
    323 //
    324 // Format of IEEE floating-point:
    325 //
    326 //   The most-significant bit being the leftmost, an IEEE
    327 //   floating-point looks like
    328 //
    329 //     sign_bit exponent_bits fraction_bits
    330 //
    331 //   Here, sign_bit is a single bit that designates the sign of the
    332 //   number.
    333 //
    334 //   For float, there are 8 exponent bits and 23 fraction bits.
    335 //
    336 //   For double, there are 11 exponent bits and 52 fraction bits.
    337 //
    338 //   More details can be found at
    339 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    340 //
    341 // Template parameter:
    342 //
    343 //   RawType: the raw floating-point type (either float or double)
    344 template <typename RawType>
    345 class FloatingPoint {
    346  public:
    347   // Defines the unsigned integer type that has the same size as the
    348   // floating point number.
    349   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    350 
    351   // Constants.
    352 
    353   // # of bits in a number.
    354   static const size_t kBitCount = 8*sizeof(RawType);
    355 
    356   // # of fraction bits in a number.
    357   static const size_t kFractionBitCount =
    358     std::numeric_limits<RawType>::digits - 1;
    359 
    360   // # of exponent bits in a number.
    361   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    362 
    363   // The mask for the sign bit.
    364   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    365 
    366   // The mask for the fraction bits.
    367   static const Bits kFractionBitMask =
    368     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    369 
    370   // The mask for the exponent bits.
    371   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    372 
    373   // How many ULP's (Units in the Last Place) we want to tolerate when
    374   // comparing two numbers.  The larger the value, the more error we
    375   // allow.  A 0 value means that two numbers must be exactly the same
    376   // to be considered equal.
    377   //
    378   // The maximum error of a single floating-point operation is 0.5
    379   // units in the last place.  On Intel CPU's, all floating-point
    380   // calculations are done with 80-bit precision, while double has 64
    381   // bits.  Therefore, 4 should be enough for ordinary use.
    382   //
    383   // See the following article for more details on ULP:
    384   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
    385   static const size_t kMaxUlps = 4;
    386 
    387   // Constructs a FloatingPoint from a raw floating-point number.
    388   //
    389   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    390   // around may change its bits, although the new value is guaranteed
    391   // to be also a NAN.  Therefore, don't expect this constructor to
    392   // preserve the bits in x when x is a NAN.
    393   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    394 
    395   // Static methods
    396 
    397   // Reinterprets a bit pattern as a floating-point number.
    398   //
    399   // This function is needed to test the AlmostEquals() method.
    400   static RawType ReinterpretBits(const Bits bits) {
    401     FloatingPoint fp(0);
    402     fp.u_.bits_ = bits;
    403     return fp.u_.value_;
    404   }
    405 
    406   // Returns the floating-point number that represent positive infinity.
    407   static RawType Infinity() {
    408     return ReinterpretBits(kExponentBitMask);
    409   }
    410 
    411   // Non-static methods
    412 
    413   // Returns the bits that represents this number.
    414   const Bits &bits() const { return u_.bits_; }
    415 
    416   // Returns the exponent bits of this number.
    417   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    418 
    419   // Returns the fraction bits of this number.
    420   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    421 
    422   // Returns the sign bit of this number.
    423   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    424 
    425   // Returns true iff this is NAN (not a number).
    426   bool is_nan() const {
    427     // It's a NAN if the exponent bits are all ones and the fraction
    428     // bits are not entirely zeros.
    429     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    430   }
    431 
    432   // Returns true iff this number is at most kMaxUlps ULP's away from
    433   // rhs.  In particular, this function:
    434   //
    435   //   - returns false if either number is (or both are) NAN.
    436   //   - treats really large numbers as almost equal to infinity.
    437   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    438   bool AlmostEquals(const FloatingPoint& rhs) const {
    439     // The IEEE standard says that any comparison operation involving
    440     // a NAN must return false.
    441     if (is_nan() || rhs.is_nan()) return false;
    442 
    443     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    444         <= kMaxUlps;
    445   }
    446 
    447  private:
    448   // The data type used to store the actual floating-point number.
    449   union FloatingPointUnion {
    450     RawType value_;  // The raw floating-point number.
    451     Bits bits_;      // The bits that represent the number.
    452   };
    453 
    454   // Converts an integer from the sign-and-magnitude representation to
    455   // the biased representation.  More precisely, let N be 2 to the
    456   // power of (kBitCount - 1), an integer x is represented by the
    457   // unsigned number x + N.
    458   //
    459   // For instance,
    460   //
    461   //   -N + 1 (the most negative number representable using
    462   //          sign-and-magnitude) is represented by 1;
    463   //   0      is represented by N; and
    464   //   N - 1  (the biggest number representable using
    465   //          sign-and-magnitude) is represented by 2N - 1.
    466   //
    467   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    468   // for more details on signed number representations.
    469   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    470     if (kSignBitMask & sam) {
    471       // sam represents a negative number.
    472       return ~sam + 1;
    473     } else {
    474       // sam represents a positive number.
    475       return kSignBitMask | sam;
    476     }
    477   }
    478 
    479   // Given two numbers in the sign-and-magnitude representation,
    480   // returns the distance between them as an unsigned number.
    481   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    482                                                      const Bits &sam2) {
    483     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    484     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    485     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    486   }
    487 
    488   FloatingPointUnion u_;
    489 };
    490 
    491 // Typedefs the instances of the FloatingPoint template class that we
    492 // care to use.
    493 typedef FloatingPoint<float> Float;
    494 typedef FloatingPoint<double> Double;
    495 
    496 // In order to catch the mistake of putting tests that use different
    497 // test fixture classes in the same test case, we need to assign
    498 // unique IDs to fixture classes and compare them.  The TypeId type is
    499 // used to hold such IDs.  The user should treat TypeId as an opaque
    500 // type: the only operation allowed on TypeId values is to compare
    501 // them for equality using the == operator.
    502 typedef const void* TypeId;
    503 
    504 template <typename T>
    505 class TypeIdHelper {
    506  public:
    507   // dummy_ must not have a const type.  Otherwise an overly eager
    508   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    509   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    510   static bool dummy_;
    511 };
    512 
    513 template <typename T>
    514 bool TypeIdHelper<T>::dummy_ = false;
    515 
    516 // GetTypeId<T>() returns the ID of type T.  Different values will be
    517 // returned for different types.  Calling the function twice with the
    518 // same type argument is guaranteed to return the same ID.
    519 template <typename T>
    520 TypeId GetTypeId() {
    521   // The compiler is required to allocate a different
    522   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    523   // the template.  Therefore, the address of dummy_ is guaranteed to
    524   // be unique.
    525   return &(TypeIdHelper<T>::dummy_);
    526 }
    527 
    528 // Returns the type ID of ::testing::Test.  Always call this instead
    529 // of GetTypeId< ::testing::Test>() to get the type ID of
    530 // ::testing::Test, as the latter may give the wrong result due to a
    531 // suspected linker bug when compiling Google Test as a Mac OS X
    532 // framework.
    533 GTEST_API_ TypeId GetTestTypeId();
    534 
    535 // Defines the abstract factory interface that creates instances
    536 // of a Test object.
    537 class TestFactoryBase {
    538  public:
    539   virtual ~TestFactoryBase() {}
    540 
    541   // Creates a test instance to run. The instance is both created and destroyed
    542   // within TestInfoImpl::Run()
    543   virtual Test* CreateTest() = 0;
    544 
    545  protected:
    546   TestFactoryBase() {}
    547 
    548  private:
    549   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    550 };
    551 
    552 // This class provides implementation of TeastFactoryBase interface.
    553 // It is used in TEST and TEST_F macros.
    554 template <class TestClass>
    555 class TestFactoryImpl : public TestFactoryBase {
    556  public:
    557   virtual Test* CreateTest() { return new TestClass; }
    558 };
    559 
    560 #if GTEST_OS_WINDOWS
    561 
    562 // Predicate-formatters for implementing the HRESULT checking macros
    563 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    564 // We pass a long instead of HRESULT to avoid causing an
    565 // include dependency for the HRESULT type.
    566 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    567                                             long hr);  // NOLINT
    568 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    569                                             long hr);  // NOLINT
    570 
    571 #endif  // GTEST_OS_WINDOWS
    572 
    573 // Types of SetUpTestCase() and TearDownTestCase() functions.
    574 typedef void (*SetUpTestCaseFunc)();
    575 typedef void (*TearDownTestCaseFunc)();
    576 
    577 // Creates a new TestInfo object and registers it with Google Test;
    578 // returns the created object.
    579 //
    580 // Arguments:
    581 //
    582 //   test_case_name:   name of the test case
    583 //   name:             name of the test
    584 //   type_param        the name of the test's type parameter, or NULL if
    585 //                     this is not  a typed or a type-parameterized test.
    586 //   value_param       text representation of the test's value parameter,
    587 //                     or NULL if this is not a type-parameterized test.
    588 //   fixture_class_id: ID of the test fixture class
    589 //   set_up_tc:        pointer to the function that sets up the test case
    590 //   tear_down_tc:     pointer to the function that tears down the test case
    591 //   factory:          pointer to the factory that creates a test object.
    592 //                     The newly created TestInfo instance will assume
    593 //                     ownership of the factory object.
    594 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    595     const char* test_case_name, const char* name,
    596     const char* type_param,
    597     const char* value_param,
    598     TypeId fixture_class_id,
    599     SetUpTestCaseFunc set_up_tc,
    600     TearDownTestCaseFunc tear_down_tc,
    601     TestFactoryBase* factory);
    602 
    603 // If *pstr starts with the given prefix, modifies *pstr to be right
    604 // past the prefix and returns true; otherwise leaves *pstr unchanged
    605 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    606 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    607 
    608 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    609 
    610 // State of the definition of a type-parameterized test case.
    611 class GTEST_API_ TypedTestCasePState {
    612  public:
    613   TypedTestCasePState() : registered_(false) {}
    614 
    615   // Adds the given test name to defined_test_names_ and return true
    616   // if the test case hasn't been registered; otherwise aborts the
    617   // program.
    618   bool AddTestName(const char* file, int line, const char* case_name,
    619                    const char* test_name) {
    620     if (registered_) {
    621       fprintf(stderr, "%s Test %s must be defined before "
    622               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    623               FormatFileLocation(file, line).c_str(), test_name, case_name);
    624       fflush(stderr);
    625       posix::Abort();
    626     }
    627     defined_test_names_.insert(test_name);
    628     return true;
    629   }
    630 
    631   // Verifies that registered_tests match the test names in
    632   // defined_test_names_; returns registered_tests if successful, or
    633   // aborts the program otherwise.
    634   const char* VerifyRegisteredTestNames(
    635       const char* file, int line, const char* registered_tests);
    636 
    637  private:
    638   bool registered_;
    639   ::std::set<const char*> defined_test_names_;
    640 };
    641 
    642 // Skips to the first non-space char after the first comma in 'str';
    643 // returns NULL if no comma is found in 'str'.
    644 inline const char* SkipComma(const char* str) {
    645   const char* comma = strchr(str, ',');
    646   if (comma == NULL) {
    647     return NULL;
    648   }
    649   while (IsSpace(*(++comma))) {}
    650   return comma;
    651 }
    652 
    653 // Returns the prefix of 'str' before the first comma in it; returns
    654 // the entire string if it contains no comma.
    655 inline String GetPrefixUntilComma(const char* str) {
    656   const char* comma = strchr(str, ',');
    657   return comma == NULL ? String(str) : String(str, comma - str);
    658 }
    659 
    660 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    661 // registers a list of type-parameterized tests with Google Test.  The
    662 // return value is insignificant - we just need to return something
    663 // such that we can call this function in a namespace scope.
    664 //
    665 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    666 // template parameter.  It's defined in gtest-type-util.h.
    667 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    668 class TypeParameterizedTest {
    669  public:
    670   // 'index' is the index of the test in the type list 'Types'
    671   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    672   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    673   // length of Types.
    674   static bool Register(const char* prefix, const char* case_name,
    675                        const char* test_names, int index) {
    676     typedef typename Types::Head Type;
    677     typedef Fixture<Type> FixtureClass;
    678     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    679 
    680     // First, registers the first type-parameterized test in the type
    681     // list.
    682     MakeAndRegisterTestInfo(
    683         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
    684                        case_name, index).c_str(),
    685         GetPrefixUntilComma(test_names).c_str(),
    686         GetTypeName<Type>().c_str(),
    687         NULL,  // No value parameter.
    688         GetTypeId<FixtureClass>(),
    689         TestClass::SetUpTestCase,
    690         TestClass::TearDownTestCase,
    691         new TestFactoryImpl<TestClass>);
    692 
    693     // Next, recurses (at compile time) with the tail of the type list.
    694     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    695         ::Register(prefix, case_name, test_names, index + 1);
    696   }
    697 };
    698 
    699 // The base case for the compile time recursion.
    700 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    701 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    702  public:
    703   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    704                        const char* /*test_names*/, int /*index*/) {
    705     return true;
    706   }
    707 };
    708 
    709 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    710 // registers *all combinations* of 'Tests' and 'Types' with Google
    711 // Test.  The return value is insignificant - we just need to return
    712 // something such that we can call this function in a namespace scope.
    713 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    714 class TypeParameterizedTestCase {
    715  public:
    716   static bool Register(const char* prefix, const char* case_name,
    717                        const char* test_names) {
    718     typedef typename Tests::Head Head;
    719 
    720     // First, register the first test in 'Test' for each type in 'Types'.
    721     TypeParameterizedTest<Fixture, Head, Types>::Register(
    722         prefix, case_name, test_names, 0);
    723 
    724     // Next, recurses (at compile time) with the tail of the test list.
    725     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    726         ::Register(prefix, case_name, SkipComma(test_names));
    727   }
    728 };
    729 
    730 // The base case for the compile time recursion.
    731 template <GTEST_TEMPLATE_ Fixture, typename Types>
    732 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    733  public:
    734   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    735                        const char* /*test_names*/) {
    736     return true;
    737   }
    738 };
    739 
    740 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    741 
    742 // Returns the current OS stack trace as a String.
    743 //
    744 // The maximum number of stack frames to be included is specified by
    745 // the gtest_stack_trace_depth flag.  The skip_count parameter
    746 // specifies the number of top frames to be skipped, which doesn't
    747 // count against the number of frames to be included.
    748 //
    749 // For example, if Foo() calls Bar(), which in turn calls
    750 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    751 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    752 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
    753                                                   int skip_count);
    754 
    755 // Helpers for suppressing warnings on unreachable code or constant
    756 // condition.
    757 
    758 // Always returns true.
    759 GTEST_API_ bool AlwaysTrue();
    760 
    761 // Always returns false.
    762 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    763 
    764 // Helper for suppressing false warning from Clang on a const char*
    765 // variable declared in a conditional expression always being NULL in
    766 // the else branch.
    767 struct GTEST_API_ ConstCharPtr {
    768   ConstCharPtr(const char* str) : value(str) {}
    769   operator bool() const { return true; }
    770   const char* value;
    771 };
    772 
    773 // A simple Linear Congruential Generator for generating random
    774 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    775 // doesn't use global state (and therefore can't interfere with user
    776 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    777 // but it's good enough for our purposes.
    778 class GTEST_API_ Random {
    779  public:
    780   static const UInt32 kMaxRange = 1u << 31;
    781 
    782   explicit Random(UInt32 seed) : state_(seed) {}
    783 
    784   void Reseed(UInt32 seed) { state_ = seed; }
    785 
    786   // Generates a random number from [0, range).  Crashes if 'range' is
    787   // 0 or greater than kMaxRange.
    788   UInt32 Generate(UInt32 range);
    789 
    790  private:
    791   UInt32 state_;
    792   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    793 };
    794 
    795 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    796 // compiler error iff T1 and T2 are different types.
    797 template <typename T1, typename T2>
    798 struct CompileAssertTypesEqual;
    799 
    800 template <typename T>
    801 struct CompileAssertTypesEqual<T, T> {
    802 };
    803 
    804 // Removes the reference from a type if it is a reference type,
    805 // otherwise leaves it unchanged.  This is the same as
    806 // tr1::remove_reference, which is not widely available yet.
    807 template <typename T>
    808 struct RemoveReference { typedef T type; };  // NOLINT
    809 template <typename T>
    810 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    811 
    812 // A handy wrapper around RemoveReference that works when the argument
    813 // T depends on template parameters.
    814 #define GTEST_REMOVE_REFERENCE_(T) \
    815     typename ::testing::internal::RemoveReference<T>::type
    816 
    817 // Removes const from a type if it is a const type, otherwise leaves
    818 // it unchanged.  This is the same as tr1::remove_const, which is not
    819 // widely available yet.
    820 template <typename T>
    821 struct RemoveConst { typedef T type; };  // NOLINT
    822 template <typename T>
    823 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    824 
    825 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    826 // definition to fail to remove the const in 'const int[3]' and 'const
    827 // char[3][4]'.  The following specialization works around the bug.
    828 // However, it causes trouble with GCC and thus needs to be
    829 // conditionally compiled.
    830 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
    831 template <typename T, size_t N>
    832 struct RemoveConst<const T[N]> {
    833   typedef typename RemoveConst<T>::type type[N];
    834 };
    835 #endif
    836 
    837 // A handy wrapper around RemoveConst that works when the argument
    838 // T depends on template parameters.
    839 #define GTEST_REMOVE_CONST_(T) \
    840     typename ::testing::internal::RemoveConst<T>::type
    841 
    842 // Turns const U&, U&, const U, and U all into U.
    843 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    844     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    845 
    846 // Adds reference to a type if it is not a reference type,
    847 // otherwise leaves it unchanged.  This is the same as
    848 // tr1::add_reference, which is not widely available yet.
    849 template <typename T>
    850 struct AddReference { typedef T& type; };  // NOLINT
    851 template <typename T>
    852 struct AddReference<T&> { typedef T& type; };  // NOLINT
    853 
    854 // A handy wrapper around AddReference that works when the argument T
    855 // depends on template parameters.
    856 #define GTEST_ADD_REFERENCE_(T) \
    857     typename ::testing::internal::AddReference<T>::type
    858 
    859 // Adds a reference to const on top of T as necessary.  For example,
    860 // it transforms
    861 //
    862 //   char         ==> const char&
    863 //   const char   ==> const char&
    864 //   char&        ==> const char&
    865 //   const char&  ==> const char&
    866 //
    867 // The argument T must depend on some template parameters.
    868 #define GTEST_REFERENCE_TO_CONST_(T) \
    869     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    870 
    871 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    872 // constant that's true iff type From can be implicitly converted to
    873 // type To.
    874 template <typename From, typename To>
    875 class ImplicitlyConvertible {
    876  private:
    877   // We need the following helper functions only for their types.
    878   // They have no implementations.
    879 
    880   // MakeFrom() is an expression whose type is From.  We cannot simply
    881   // use From(), as the type From may not have a public default
    882   // constructor.
    883   static From MakeFrom();
    884 
    885   // These two functions are overloaded.  Given an expression
    886   // Helper(x), the compiler will pick the first version if x can be
    887   // implicitly converted to type To; otherwise it will pick the
    888   // second version.
    889   //
    890   // The first version returns a value of size 1, and the second
    891   // version returns a value of size 2.  Therefore, by checking the
    892   // size of Helper(x), which can be done at compile time, we can tell
    893   // which version of Helper() is used, and hence whether x can be
    894   // implicitly converted to type To.
    895   static char Helper(To);
    896   static char (&Helper(...))[2];  // NOLINT
    897 
    898   // We have to put the 'public' section after the 'private' section,
    899   // or MSVC refuses to compile the code.
    900  public:
    901   // MSVC warns about implicitly converting from double to int for
    902   // possible loss of data, so we need to temporarily disable the
    903   // warning.
    904 #ifdef _MSC_VER
    905 # pragma warning(push)          // Saves the current warning state.
    906 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    907 
    908   static const bool value =
    909       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    910 # pragma warning(pop)           // Restores the warning state.
    911 #elif defined(__BORLANDC__)
    912   // C++Builder cannot use member overload resolution during template
    913   // instantiation.  The simplest workaround is to use its C++0x type traits
    914   // functions (C++Builder 2009 and above only).
    915   static const bool value = __is_convertible(From, To);
    916 #else
    917   static const bool value =
    918       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    919 #endif  // _MSV_VER
    920 };
    921 template <typename From, typename To>
    922 const bool ImplicitlyConvertible<From, To>::value;
    923 
    924 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    925 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    926 // of those.
    927 template <typename T>
    928 struct IsAProtocolMessage
    929     : public bool_constant<
    930   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    931   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    932 };
    933 
    934 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    935 // STL-style container class, the first overload of IsContainerTest
    936 // will be viable (since both C::iterator* and C::const_iterator* are
    937 // valid types and NULL can be implicitly converted to them).  It will
    938 // be picked over the second overload as 'int' is a perfect match for
    939 // the type of argument 0.  If C::iterator or C::const_iterator is not
    940 // a valid type, the first overload is not viable, and the second
    941 // overload will be picked.  Therefore, we can determine whether C is
    942 // a container class by checking the type of IsContainerTest<C>(0).
    943 // The value of the expression is insignificant.
    944 //
    945 // Note that we look for both C::iterator and C::const_iterator.  The
    946 // reason is that C++ injects the name of a class as a member of the
    947 // class itself (e.g. you can refer to class iterator as either
    948 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    949 // only, for example, we would mistakenly think that a class named
    950 // iterator is an STL container.
    951 //
    952 // Also note that the simpler approach of overloading
    953 // IsContainerTest(typename C::const_iterator*) and
    954 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    955 typedef int IsContainer;
    956 template <class C>
    957 IsContainer IsContainerTest(int /* dummy */,
    958                             typename C::iterator* /* it */ = NULL,
    959                             typename C::const_iterator* /* const_it */ = NULL) {
    960   return 0;
    961 }
    962 
    963 typedef char IsNotContainer;
    964 template <class C>
    965 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    966 
    967 // EnableIf<condition>::type is void when 'Cond' is true, and
    968 // undefined when 'Cond' is false.  To use SFINAE to make a function
    969 // overload only apply when a particular expression is true, add
    970 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    971 template<bool> struct EnableIf;
    972 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    973 
    974 // Utilities for native arrays.
    975 
    976 // ArrayEq() compares two k-dimensional native arrays using the
    977 // elements' operator==, where k can be any integer >= 0.  When k is
    978 // 0, ArrayEq() degenerates into comparing a single pair of values.
    979 
    980 template <typename T, typename U>
    981 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    982 
    983 // This generic version is used when k is 0.
    984 template <typename T, typename U>
    985 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    986 
    987 // This overload is used when k >= 1.
    988 template <typename T, typename U, size_t N>
    989 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    990   return internal::ArrayEq(lhs, N, rhs);
    991 }
    992 
    993 // This helper reduces code bloat.  If we instead put its logic inside
    994 // the previous ArrayEq() function, arrays with different sizes would
    995 // lead to different copies of the template code.
    996 template <typename T, typename U>
    997 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    998   for (size_t i = 0; i != size; i++) {
    999     if (!internal::ArrayEq(lhs[i], rhs[i]))
   1000       return false;
   1001   }
   1002   return true;
   1003 }
   1004 
   1005 // Finds the first element in the iterator range [begin, end) that
   1006 // equals elem.  Element may be a native array type itself.
   1007 template <typename Iter, typename Element>
   1008 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
   1009   for (Iter it = begin; it != end; ++it) {
   1010     if (internal::ArrayEq(*it, elem))
   1011       return it;
   1012   }
   1013   return end;
   1014 }
   1015 
   1016 // CopyArray() copies a k-dimensional native array using the elements'
   1017 // operator=, where k can be any integer >= 0.  When k is 0,
   1018 // CopyArray() degenerates into copying a single value.
   1019 
   1020 template <typename T, typename U>
   1021 void CopyArray(const T* from, size_t size, U* to);
   1022 
   1023 // This generic version is used when k is 0.
   1024 template <typename T, typename U>
   1025 inline void CopyArray(const T& from, U* to) { *to = from; }
   1026 
   1027 // This overload is used when k >= 1.
   1028 template <typename T, typename U, size_t N>
   1029 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1030   internal::CopyArray(from, N, *to);
   1031 }
   1032 
   1033 // This helper reduces code bloat.  If we instead put its logic inside
   1034 // the previous CopyArray() function, arrays with different sizes
   1035 // would lead to different copies of the template code.
   1036 template <typename T, typename U>
   1037 void CopyArray(const T* from, size_t size, U* to) {
   1038   for (size_t i = 0; i != size; i++) {
   1039     internal::CopyArray(from[i], to + i);
   1040   }
   1041 }
   1042 
   1043 // The relation between an NativeArray object (see below) and the
   1044 // native array it represents.
   1045 enum RelationToSource {
   1046   kReference,  // The NativeArray references the native array.
   1047   kCopy        // The NativeArray makes a copy of the native array and
   1048                // owns the copy.
   1049 };
   1050 
   1051 // Adapts a native array to a read-only STL-style container.  Instead
   1052 // of the complete STL container concept, this adaptor only implements
   1053 // members useful for Google Mock's container matchers.  New members
   1054 // should be added as needed.  To simplify the implementation, we only
   1055 // support Element being a raw type (i.e. having no top-level const or
   1056 // reference modifier).  It's the client's responsibility to satisfy
   1057 // this requirement.  Element can be an array type itself (hence
   1058 // multi-dimensional arrays are supported).
   1059 template <typename Element>
   1060 class NativeArray {
   1061  public:
   1062   // STL-style container typedefs.
   1063   typedef Element value_type;
   1064   typedef Element* iterator;
   1065   typedef const Element* const_iterator;
   1066 
   1067   // Constructs from a native array.
   1068   NativeArray(const Element* array, size_t count, RelationToSource relation) {
   1069     Init(array, count, relation);
   1070   }
   1071 
   1072   // Copy constructor.
   1073   NativeArray(const NativeArray& rhs) {
   1074     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
   1075   }
   1076 
   1077   ~NativeArray() {
   1078     // Ensures that the user doesn't instantiate NativeArray with a
   1079     // const or reference type.
   1080     static_cast<void>(StaticAssertTypeEqHelper<Element,
   1081         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
   1082     if (relation_to_source_ == kCopy)
   1083       delete[] array_;
   1084   }
   1085 
   1086   // STL-style container methods.
   1087   size_t size() const { return size_; }
   1088   const_iterator begin() const { return array_; }
   1089   const_iterator end() const { return array_ + size_; }
   1090   bool operator==(const NativeArray& rhs) const {
   1091     return size() == rhs.size() &&
   1092         ArrayEq(begin(), size(), rhs.begin());
   1093   }
   1094 
   1095  private:
   1096   // Initializes this object; makes a copy of the input array if
   1097   // 'relation' is kCopy.
   1098   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1099     if (relation == kReference) {
   1100       array_ = array;
   1101     } else {
   1102       Element* const copy = new Element[a_size];
   1103       CopyArray(array, a_size, copy);
   1104       array_ = copy;
   1105     }
   1106     size_ = a_size;
   1107     relation_to_source_ = relation;
   1108   }
   1109 
   1110   const Element* array_;
   1111   size_t size_;
   1112   RelationToSource relation_to_source_;
   1113 
   1114   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1115 };
   1116 
   1117 }  // namespace internal
   1118 }  // namespace testing
   1119 
   1120 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1121   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1122     = ::testing::Message()
   1123 
   1124 #define GTEST_MESSAGE_(message, result_type) \
   1125   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1126 
   1127 #define GTEST_FATAL_FAILURE_(message) \
   1128   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1129 
   1130 #define GTEST_NONFATAL_FAILURE_(message) \
   1131   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1132 
   1133 #define GTEST_SUCCESS_(message) \
   1134   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1135 
   1136 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1137 // statement if it returns or throws (or doesn't return or throw in some
   1138 // situations).
   1139 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1140   if (::testing::internal::AlwaysTrue()) { statement; }
   1141 
   1142 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1143   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1144   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1145     bool gtest_caught_expected = false; \
   1146     try { \
   1147       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1148     } \
   1149     catch (expected_exception const&) { \
   1150       gtest_caught_expected = true; \
   1151     } \
   1152     catch (...) { \
   1153       gtest_msg.value = \
   1154           "Expected: " #statement " throws an exception of type " \
   1155           #expected_exception ".\n  Actual: it throws a different type."; \
   1156       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1157     } \
   1158     if (!gtest_caught_expected) { \
   1159       gtest_msg.value = \
   1160           "Expected: " #statement " throws an exception of type " \
   1161           #expected_exception ".\n  Actual: it throws nothing."; \
   1162       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1163     } \
   1164   } else \
   1165     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1166       fail(gtest_msg.value)
   1167 
   1168 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1169   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1170   if (::testing::internal::AlwaysTrue()) { \
   1171     try { \
   1172       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1173     } \
   1174     catch (...) { \
   1175       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1176     } \
   1177   } else \
   1178     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1179       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1180            "  Actual: it throws.")
   1181 
   1182 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1183   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1184   if (::testing::internal::AlwaysTrue()) { \
   1185     bool gtest_caught_any = false; \
   1186     try { \
   1187       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1188     } \
   1189     catch (...) { \
   1190       gtest_caught_any = true; \
   1191     } \
   1192     if (!gtest_caught_any) { \
   1193       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1194     } \
   1195   } else \
   1196     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1197       fail("Expected: " #statement " throws an exception.\n" \
   1198            "  Actual: it doesn't.")
   1199 
   1200 
   1201 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1202 // either a boolean expression or an AssertionResult. text is a textual
   1203 // represenation of expression as it was passed into the EXPECT_TRUE.
   1204 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1205   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1206   if (const ::testing::AssertionResult gtest_ar_ = \
   1207       ::testing::AssertionResult(expression)) \
   1208     ; \
   1209   else \
   1210     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1211         gtest_ar_, text, #actual, #expected).c_str())
   1212 
   1213 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1214   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1215   if (::testing::internal::AlwaysTrue()) { \
   1216     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1217     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1218     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1219       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1220     } \
   1221   } else \
   1222     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1223       fail("Expected: " #statement " doesn't generate new fatal " \
   1224            "failures in the current thread.\n" \
   1225            "  Actual: it does.")
   1226 
   1227 // Expands to the name of the class that implements the given test.
   1228 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1229   test_case_name##_##test_name##_Test
   1230 
   1231 // Helper macro for defining tests.
   1232 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1233 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1234  public:\
   1235   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1236  private:\
   1237   virtual void TestBody();\
   1238   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1239   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1240       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1241 };\
   1242 \
   1243 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1244   ::test_info_ =\
   1245     ::testing::internal::MakeAndRegisterTestInfo(\
   1246         #test_case_name, #test_name, NULL, NULL, \
   1247         (parent_id), \
   1248         parent_class::SetUpTestCase, \
   1249         parent_class::TearDownTestCase, \
   1250         new ::testing::internal::TestFactoryImpl<\
   1251             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1252 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1253 
   1254 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1255