Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 
      3 # ====================================================================
      4 # [Re]written by Andy Polyakov <appro (at] fy.chalmers.se> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 
     10 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
     11 # functions were re-implemented to address P4 performance issue [see
     12 # commentary below], and in 2006 the rest was rewritten in order to
     13 # gain freedom to liberate licensing terms.
     14 
     15 # January, September 2004.
     16 #
     17 # It was noted that Intel IA-32 C compiler generates code which
     18 # performs ~30% *faster* on P4 CPU than original *hand-coded*
     19 # SHA1 assembler implementation. To address this problem (and
     20 # prove that humans are still better than machines:-), the
     21 # original code was overhauled, which resulted in following
     22 # performance changes:
     23 #
     24 #		compared with original	compared with Intel cc
     25 #		assembler impl.		generated code
     26 # Pentium	-16%			+48%
     27 # PIII/AMD	+8%			+16%
     28 # P4		+85%(!)			+45%
     29 #
     30 # As you can see Pentium came out as looser:-( Yet I reckoned that
     31 # improvement on P4 outweights the loss and incorporate this
     32 # re-tuned code to 0.9.7 and later.
     33 # ----------------------------------------------------------------
     34 #					<appro (at] fy.chalmers.se>
     35 
     36 # August 2009.
     37 #
     38 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
     39 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
     40 # and lighten "pressure" on scratch registers. This resulted in
     41 # >12% performance improvement on contemporary AMD cores (with no
     42 # degradation on other CPUs:-). Also, the code was revised to maximize
     43 # "distance" between instructions producing input to 'lea' instruction
     44 # and the 'lea' instruction itself, which is essential for Intel Atom
     45 # core and resulted in ~15% improvement.
     46 
     47 # October 2010.
     48 #
     49 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
     50 # is to offload message schedule denoted by Wt in NIST specification,
     51 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
     52 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
     53 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
     54 # have changed that made it interesting again:
     55 #
     56 # a) XMM units became faster and wider;
     57 # b) instruction set became more versatile;
     58 # c) an important observation was made by Max Locktykhin, which made
     59 #    it possible to reduce amount of instructions required to perform
     60 #    the operation in question, for further details see
     61 #    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
     62 
     63 # April 2011.
     64 #
     65 # Add AVX code path, probably most controversial... The thing is that
     66 # switch to AVX alone improves performance by as little as 4% in
     67 # comparison to SSSE3 code path. But below result doesn't look like
     68 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
     69 # pair of -ops, and it's the additional -ops, two per round, that
     70 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
     71 # as single -op by Sandy Bridge and it's replacing 'ro[rl]' with
     72 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
     73 # cycles per processed byte. But 'sh[rl]d' is not something that used
     74 # to be fast, nor does it appear to be fast in upcoming Bulldozer
     75 # [according to its optimization manual]. Which is why AVX code path
     76 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
     77 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
     78 # makes no sense to keep the AVX code path. If somebody feels that
     79 # strongly, it's probably more appropriate to discuss possibility of
     80 # using vector rotate XOP on AMD...
     81 
     82 ######################################################################
     83 # Current performance is summarized in following table. Numbers are
     84 # CPU clock cycles spent to process single byte (less is better).
     85 #
     86 #		x86		SSSE3		AVX
     87 # Pentium	15.7		-
     88 # PIII		11.5		-
     89 # P4		10.6		-
     90 # AMD K8	7.1		-
     91 # Core2		7.3		6.1/+20%	-
     92 # Atom		12.5		9.5(*)/+32%	-
     93 # Westmere	7.3		5.6/+30%	-
     94 # Sandy Bridge	8.8		6.2/+40%	5.1(**)/+70%
     95 #
     96 # (*)	Loop is 1056 instructions long and expected result is ~8.25.
     97 #	It remains mystery [to me] why ILP is limited to 1.7.
     98 #
     99 # (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
    100 
    101 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    102 push(@INC,"${dir}","${dir}../../perlasm");
    103 require "x86asm.pl";
    104 
    105 &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
    106 
    107 $xmm=$ymm=0;
    108 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
    109 
    110 $ymm=1 if ($xmm &&
    111 		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
    112 			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
    113 		$1>=2.19);	# first version supporting AVX
    114 
    115 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && 
    116 		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
    117 		$1>=2.03);	# first version supporting AVX
    118 
    119 &external_label("OPENSSL_ia32cap_P") if ($xmm);
    120 
    121 
    122 $A="eax";
    123 $B="ebx";
    124 $C="ecx";
    125 $D="edx";
    126 $E="edi";
    127 $T="esi";
    128 $tmp1="ebp";
    129 
    130 @V=($A,$B,$C,$D,$E,$T);
    131 
    132 $alt=0;	# 1 denotes alternative IALU implementation, which performs
    133 	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
    134 	# Sandy Bridge...
    135 
    136 sub BODY_00_15
    137 	{
    138 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    139 
    140 	&comment("00_15 $n");
    141 
    142 	&mov($f,$c);			# f to hold F_00_19(b,c,d)
    143 	 if ($n==0)  { &mov($tmp1,$a); }
    144 	 else        { &mov($a,$tmp1); }
    145 	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
    146 	 &xor($f,$d);
    147 	&add($tmp1,$e);			# tmp1+=e;
    148 	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
    149 	 				# with xi, also note that e becomes
    150 					# f in next round...
    151 	&and($f,$b);
    152 	&rotr($b,2);			# b=ROTATE(b,30)
    153 	 &xor($f,$d);			# f holds F_00_19(b,c,d)
    154 	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
    155 
    156 	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
    157 		      &add($f,$tmp1); }	# f+=tmp1
    158 	else        { &add($tmp1,$f); }	# f becomes a in next round
    159 	&mov($tmp1,$a)			if ($alt && $n==15);
    160 	}
    161 
    162 sub BODY_16_19
    163 	{
    164 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    165 
    166 	&comment("16_19 $n");
    167 
    168 if ($alt) {
    169 	&xor($c,$d);
    170 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    171 	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
    172 	 &xor($f,&swtmp(($n+8)%16));
    173 	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
    174 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    175 	&rotl($f,1);			# f=ROTATE(f,1)
    176 	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
    177 	&xor($c,$d);			# restore $c
    178 	 &mov($tmp1,$a);		# b in next round
    179 	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
    180 	 &mov(&swtmp($n%16),$f);	# xi=f
    181 	&rotl($a,5);			# ROTATE(a,5)
    182 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    183 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    184 	 &add($f,$a);			# f+=ROTATE(a,5)
    185 } else {
    186 	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
    187 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    188 	&xor($tmp1,$d);
    189 	 &xor($f,&swtmp(($n+8)%16));
    190 	&and($tmp1,$b);
    191 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    192 	&rotl($f,1);			# f=ROTATE(f,1)
    193 	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
    194 	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
    195 	 &mov($tmp1,$a);
    196 	&rotr($b,2);			# b=ROTATE(b,30)
    197 	 &mov(&swtmp($n%16),$f);	# xi=f
    198 	&rotl($tmp1,5);			# ROTATE(a,5)
    199 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    200 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    201 	 &add($f,$tmp1);		# f+=ROTATE(a,5)
    202 }
    203 	}
    204 
    205 sub BODY_20_39
    206 	{
    207 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    208 	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
    209 
    210 	&comment("20_39 $n");
    211 
    212 if ($alt) {
    213 	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
    214 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    215 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    216 	 &xor($f,&swtmp(($n+8)%16));
    217 	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
    218 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    219 	&rotl($f,1);			# f=ROTATE(f,1)
    220 	 &mov($tmp1,$a);		# b in next round
    221 	&rotr($b,7);			# b=ROTATE(b,30)
    222 	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
    223 	&rotl($a,5);			# ROTATE(a,5)
    224 	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
    225 	&and($tmp1,$b)			if($n==39);
    226 	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    227 	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
    228 	 &add($f,$a);			# f+=ROTATE(a,5)
    229 	&rotr($a,5)			if ($n==79);
    230 } else {
    231 	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
    232 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    233 	&xor($tmp1,$c);
    234 	 &xor($f,&swtmp(($n+8)%16));
    235 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    236 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    237 	&rotl($f,1);			# f=ROTATE(f,1)
    238 	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
    239 	&rotr($b,2);			# b=ROTATE(b,30)
    240 	 &mov($tmp1,$a);
    241 	&rotl($tmp1,5);			# ROTATE(a,5)
    242 	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
    243 	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    244 	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
    245 	&add($f,$tmp1);			# f+=ROTATE(a,5)
    246 }
    247 	}
    248 
    249 sub BODY_40_59
    250 	{
    251 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    252 
    253 	&comment("40_59 $n");
    254 
    255 if ($alt) {
    256 	&add($e,$tmp1);			# e+=b&(c^d)
    257 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    258 	&mov($tmp1,$d);
    259 	 &xor($f,&swtmp(($n+8)%16));
    260 	&xor($c,$d);			# restore $c
    261 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    262 	&rotl($f,1);			# f=ROTATE(f,1)
    263 	 &and($tmp1,$c);
    264 	&rotr($b,7);			# b=ROTATE(b,30)
    265 	 &add($e,$tmp1);		# e+=c&d
    266 	&mov($tmp1,$a);			# b in next round
    267 	 &mov(&swtmp($n%16),$f);	# xi=f
    268 	&rotl($a,5);			# ROTATE(a,5)
    269 	 &xor($b,$c)			if ($n<59);
    270 	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
    271 	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
    272 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    273 	 &add($f,$a);			# f+=ROTATE(a,5)
    274 } else {
    275 	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
    276 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    277 	&xor($tmp1,$d);
    278 	 &xor($f,&swtmp(($n+8)%16));
    279 	&and($tmp1,$b);
    280 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    281 	&rotl($f,1);			# f=ROTATE(f,1)
    282 	 &add($tmp1,$e);		# b&(c^d)+=e
    283 	&rotr($b,2);			# b=ROTATE(b,30)
    284 	 &mov($e,$a);			# e becomes volatile
    285 	&rotl($e,5);			# ROTATE(a,5)
    286 	 &mov(&swtmp($n%16),$f);	# xi=f
    287 	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
    288 	 &mov($tmp1,$c);
    289 	&add($f,$e);			# f+=ROTATE(a,5)
    290 	 &and($tmp1,$d);
    291 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    292 	 &add($f,$tmp1);		# f+=c&d
    293 }
    294 	}
    295 
    296 &function_begin("sha1_block_data_order");
    297 if ($xmm) {
    298   &static_label("ssse3_shortcut");
    299   &static_label("avx_shortcut")		if ($ymm);
    300   &static_label("K_XX_XX");
    301 
    302 	&call	(&label("pic_point"));	# make it PIC!
    303   &set_label("pic_point");
    304 	&blindpop($tmp1);
    305 	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
    306 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    307 
    308 	&mov	($A,&DWP(0,$T));
    309 	&mov	($D,&DWP(4,$T));
    310 	&test	($D,1<<9);		# check SSSE3 bit
    311 	&jz	(&label("x86"));
    312 	&test	($A,1<<24);		# check FXSR bit
    313 	&jz	(&label("x86"));
    314 	if ($ymm) {
    315 		&and	($D,1<<28);		# mask AVX bit
    316 		&and	($A,1<<30);		# mask "Intel CPU" bit
    317 		&or	($A,$D);
    318 		&cmp	($A,1<<28|1<<30);
    319 		&je	(&label("avx_shortcut"));
    320 	}
    321 	&jmp	(&label("ssse3_shortcut"));
    322   &set_label("x86",16);
    323 }
    324 	&mov($tmp1,&wparam(0));	# SHA_CTX *c
    325 	&mov($T,&wparam(1));	# const void *input
    326 	&mov($A,&wparam(2));	# size_t num
    327 	&stack_push(16+3);	# allocate X[16]
    328 	&shl($A,6);
    329 	&add($A,$T);
    330 	&mov(&wparam(2),$A);	# pointer beyond the end of input
    331 	&mov($E,&DWP(16,$tmp1));# pre-load E
    332 	&jmp(&label("loop"));
    333 
    334 &set_label("loop",16);
    335 
    336 	# copy input chunk to X, but reversing byte order!
    337 	for ($i=0; $i<16; $i+=4)
    338 		{
    339 		&mov($A,&DWP(4*($i+0),$T));
    340 		&mov($B,&DWP(4*($i+1),$T));
    341 		&mov($C,&DWP(4*($i+2),$T));
    342 		&mov($D,&DWP(4*($i+3),$T));
    343 		&bswap($A);
    344 		&bswap($B);
    345 		&bswap($C);
    346 		&bswap($D);
    347 		&mov(&swtmp($i+0),$A);
    348 		&mov(&swtmp($i+1),$B);
    349 		&mov(&swtmp($i+2),$C);
    350 		&mov(&swtmp($i+3),$D);
    351 		}
    352 	&mov(&wparam(1),$T);	# redundant in 1st spin
    353 
    354 	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
    355 	&mov($B,&DWP(4,$tmp1));
    356 	&mov($C,&DWP(8,$tmp1));
    357 	&mov($D,&DWP(12,$tmp1));
    358 	# E is pre-loaded
    359 
    360 	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
    361 	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
    362 	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    363 	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
    364 	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    365 
    366 	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
    367 
    368 	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
    369 	&mov($D,&wparam(1));	# D is last "T" and is discarded
    370 
    371 	&add($E,&DWP(0,$tmp1));	# E is last "A"...
    372 	&add($T,&DWP(4,$tmp1));
    373 	&add($A,&DWP(8,$tmp1));
    374 	&add($B,&DWP(12,$tmp1));
    375 	&add($C,&DWP(16,$tmp1));
    376 
    377 	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
    378 	 &add($D,64);		# advance input pointer
    379 	&mov(&DWP(4,$tmp1),$T);
    380 	 &cmp($D,&wparam(2));	# have we reached the end yet?
    381 	&mov(&DWP(8,$tmp1),$A);
    382 	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
    383 	&mov(&DWP(12,$tmp1),$B);
    384 	 &mov($T,$D);		# input pointer
    385 	&mov(&DWP(16,$tmp1),$C);
    386 	&jb(&label("loop"));
    387 
    388 	&stack_pop(16+3);
    389 &function_end("sha1_block_data_order");
    390 
    391 if ($xmm) {
    392 ######################################################################
    393 # The SSSE3 implementation.
    394 #
    395 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
    396 # 32 elements of the message schedule or Xupdate outputs. First 4
    397 # quadruples are simply byte-swapped input, next 4 are calculated
    398 # according to method originally suggested by Dean Gaudet (modulo
    399 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
    400 # collected, it switches to routine proposed by Max Locktyukhin.
    401 #
    402 # Calculations inevitably require temporary reqisters, and there are
    403 # no %xmm registers left to spare. For this reason part of the ring
    404 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
    405 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
    406 # X[-5], and X[4] - X[-4]...
    407 #
    408 # Another notable optimization is aggressive stack frame compression
    409 # aiming to minimize amount of 9-byte instructions...
    410 #
    411 # Yet another notable optimization is "jumping" $B variable. It means
    412 # that there is no register permanently allocated for $B value. This
    413 # allowed to eliminate one instruction from body_20_39...
    414 #
    415 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
    416 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
    417 my @V=($A,$B,$C,$D,$E);
    418 my $j=0;			# hash round
    419 my @T=($T,$tmp1);
    420 my $inp;
    421 
    422 my $_rol=sub { &rol(@_) };
    423 my $_ror=sub { &ror(@_) };
    424 
    425 &function_begin("_sha1_block_data_order_ssse3");
    426 	&call	(&label("pic_point"));	# make it PIC!
    427 	&set_label("pic_point");
    428 	&blindpop($tmp1);
    429 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    430 &set_label("ssse3_shortcut");
    431 
    432 	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
    433 	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
    434 	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
    435 	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
    436 	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
    437 
    438 	&mov	($E,&wparam(0));		# load argument block
    439 	&mov	($inp=@T[1],&wparam(1));
    440 	&mov	($D,&wparam(2));
    441 	&mov	(@T[0],"esp");
    442 
    443 	# stack frame layout
    444 	#
    445 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
    446 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
    447 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
    448 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
    449 	#
    450 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
    451 	#	X[4]	X[5]	X[6]	X[7]
    452 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
    453 	#
    454 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
    455 	#	K_40_59	K_40_59	K_40_59	K_40_59
    456 	#	K_60_79	K_60_79	K_60_79	K_60_79
    457 	#	K_00_19	K_00_19	K_00_19	K_00_19
    458 	#	pbswap mask
    459 	#
    460 	# +192	ctx				# argument block
    461 	# +196	inp
    462 	# +200	end
    463 	# +204	esp
    464 	&sub	("esp",208);
    465 	&and	("esp",-64);
    466 
    467 	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
    468 	&movdqa	(&QWP(112+16,"esp"),@X[5]);
    469 	&movdqa	(&QWP(112+32,"esp"),@X[6]);
    470 	&shl	($D,6);				# len*64
    471 	&movdqa	(&QWP(112+48,"esp"),@X[3]);
    472 	&add	($D,$inp);			# end of input
    473 	&movdqa	(&QWP(112+64,"esp"),@X[2]);
    474 	&add	($inp,64);
    475 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
    476 	&mov	(&DWP(192+4,"esp"),$inp);
    477 	&mov	(&DWP(192+8,"esp"),$D);
    478 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
    479 
    480 	&mov	($A,&DWP(0,$E));		# load context
    481 	&mov	($B,&DWP(4,$E));
    482 	&mov	($C,&DWP(8,$E));
    483 	&mov	($D,&DWP(12,$E));
    484 	&mov	($E,&DWP(16,$E));
    485 	&mov	(@T[0],$B);			# magic seed
    486 
    487 	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
    488 	&movdqu	(@X[-3&7],&QWP(-48,$inp));
    489 	&movdqu	(@X[-2&7],&QWP(-32,$inp));
    490 	&movdqu	(@X[-1&7],&QWP(-16,$inp));
    491 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    492 	&pshufb	(@X[-3&7],@X[2]);
    493 	&pshufb	(@X[-2&7],@X[2]);
    494 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    495 	&pshufb	(@X[-1&7],@X[2]);
    496 	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
    497 	&paddd	(@X[-3&7],@X[3]);
    498 	&paddd	(@X[-2&7],@X[3]);
    499 	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
    500 	&psubd	(@X[-4&7],@X[3]);		# restore X[]
    501 	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
    502 	&psubd	(@X[-3&7],@X[3]);
    503 	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
    504 	&psubd	(@X[-2&7],@X[3]);
    505 	&movdqa	(@X[0],@X[-3&7]);
    506 	&jmp	(&label("loop"));
    507 
    508 ######################################################################
    509 # SSE instruction sequence is first broken to groups of indepentent
    510 # instructions, independent in respect to their inputs and shifter
    511 # (not all architectures have more than one). Then IALU instructions
    512 # are "knitted in" between the SSE groups. Distance is maintained for
    513 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
    514 # [which allegedly also implements SSSE3]...
    515 #
    516 # Temporary registers usage. X[2] is volatile at the entry and at the
    517 # end is restored from backtrace ring buffer. X[3] is expected to
    518 # contain current K_XX_XX constant and is used to caclulate X[-1]+K
    519 # from previous round, it becomes volatile the moment the value is
    520 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
    521 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
    522 # end it is loaded with next K_XX_XX [which becomes X[3] in next
    523 # round]...
    524 #
    525 sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4
    526 { use integer;
    527   my $body = shift;
    528   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
    529   my ($a,$b,$c,$d,$e);
    530 
    531 	 eval(shift(@insns));
    532 	 eval(shift(@insns));
    533 	&palignr(@X[0],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
    534 	&movdqa	(@X[2],@X[-1&7]);
    535 	 eval(shift(@insns));
    536 	 eval(shift(@insns));
    537 
    538 	  &paddd	(@X[3],@X[-1&7]);
    539 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
    540 	 eval(shift(@insns));
    541 	 eval(shift(@insns));
    542 	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
    543 	 eval(shift(@insns));
    544 	 eval(shift(@insns));
    545 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
    546 	 eval(shift(@insns));
    547 	 eval(shift(@insns));
    548 
    549 	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
    550 	 eval(shift(@insns));
    551 	 eval(shift(@insns));
    552 	 eval(shift(@insns));
    553 	 eval(shift(@insns));
    554 
    555 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
    556 	 eval(shift(@insns));
    557 	 eval(shift(@insns));
    558 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    559 	 eval(shift(@insns));
    560 	 eval(shift(@insns));
    561 
    562 	&movdqa	(@X[4],@X[0]);
    563 	&movdqa	(@X[2],@X[0]);
    564 	 eval(shift(@insns));
    565 	 eval(shift(@insns));
    566 	 eval(shift(@insns));
    567 	 eval(shift(@insns));
    568 
    569 	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
    570 	&paddd	(@X[0],@X[0]);
    571 	 eval(shift(@insns));
    572 	 eval(shift(@insns));
    573 	 eval(shift(@insns));
    574 	 eval(shift(@insns));
    575 
    576 	&psrld	(@X[2],31);
    577 	 eval(shift(@insns));
    578 	 eval(shift(@insns));
    579 	&movdqa	(@X[3],@X[4]);
    580 	 eval(shift(@insns));
    581 	 eval(shift(@insns));
    582 
    583 	&psrld	(@X[4],30);
    584 	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
    585 	 eval(shift(@insns));
    586 	 eval(shift(@insns));
    587 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
    588 	 eval(shift(@insns));
    589 	 eval(shift(@insns));
    590 
    591 	&pslld	(@X[3],2);
    592 	&pxor	(@X[0],@X[4]);
    593 	 eval(shift(@insns));
    594 	 eval(shift(@insns));
    595 	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
    596 	 eval(shift(@insns));
    597 	 eval(shift(@insns));
    598 
    599 	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
    600 	  &movdqa	(@X[1],@X[-2&7])	if ($Xi<7);
    601 	 eval(shift(@insns));
    602 	 eval(shift(@insns));
    603 
    604 	 foreach (@insns) { eval; }	# remaining instructions [if any]
    605 
    606   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    607 }
    608 
    609 sub Xupdate_ssse3_32_79()
    610 { use integer;
    611   my $body = shift;
    612   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
    613   my ($a,$b,$c,$d,$e);
    614 
    615 	&movdqa	(@X[2],@X[-1&7])	if ($Xi==8);
    616 	 eval(shift(@insns));		# body_20_39
    617 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
    618 	&palignr(@X[2],@X[-2&7],8);	# compose "X[-6]"
    619 	 eval(shift(@insns));
    620 	 eval(shift(@insns));
    621 	 eval(shift(@insns));		# rol
    622 
    623 	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
    624 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
    625 	 eval(shift(@insns));
    626 	 eval(shift(@insns));
    627 	 if ($Xi%5) {
    628 	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
    629 	 } else {			# ... or load next one
    630 	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
    631 	 }
    632 	  &paddd	(@X[3],@X[-1&7]);
    633 	 eval(shift(@insns));		# ror
    634 	 eval(shift(@insns));
    635 
    636 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
    637 	 eval(shift(@insns));		# body_20_39
    638 	 eval(shift(@insns));
    639 	 eval(shift(@insns));
    640 	 eval(shift(@insns));		# rol
    641 
    642 	&movdqa	(@X[2],@X[0]);
    643 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    644 	 eval(shift(@insns));
    645 	 eval(shift(@insns));
    646 	 eval(shift(@insns));		# ror
    647 	 eval(shift(@insns));
    648 
    649 	&pslld	(@X[0],2);
    650 	 eval(shift(@insns));		# body_20_39
    651 	 eval(shift(@insns));
    652 	&psrld	(@X[2],30);
    653 	 eval(shift(@insns));
    654 	 eval(shift(@insns));		# rol
    655 	 eval(shift(@insns));
    656 	 eval(shift(@insns));
    657 	 eval(shift(@insns));		# ror
    658 	 eval(shift(@insns));
    659 
    660 	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
    661 	 eval(shift(@insns));		# body_20_39
    662 	 eval(shift(@insns));
    663 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
    664 	 eval(shift(@insns));
    665 	 eval(shift(@insns));		# rol
    666 	 eval(shift(@insns));
    667 	 eval(shift(@insns));
    668 	 eval(shift(@insns));		# ror
    669 	  &movdqa	(@X[3],@X[0])	if ($Xi<19);
    670 	 eval(shift(@insns));
    671 
    672 	 foreach (@insns) { eval; }	# remaining instructions
    673 
    674   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    675 }
    676 
    677 sub Xuplast_ssse3_80()
    678 { use integer;
    679   my $body = shift;
    680   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    681   my ($a,$b,$c,$d,$e);
    682 
    683 	 eval(shift(@insns));
    684 	  &paddd	(@X[3],@X[-1&7]);
    685 	 eval(shift(@insns));
    686 	 eval(shift(@insns));
    687 	 eval(shift(@insns));
    688 	 eval(shift(@insns));
    689 
    690 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
    691 
    692 	 foreach (@insns) { eval; }		# remaining instructions
    693 
    694 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
    695 	&cmp	($inp,&DWP(192+8,"esp"));
    696 	&je	(&label("done"));
    697 
    698 	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
    699 	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
    700 	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
    701 	&movdqu	(@X[-3&7],&QWP(16,$inp));
    702 	&movdqu	(@X[-2&7],&QWP(32,$inp));
    703 	&movdqu	(@X[-1&7],&QWP(48,$inp));
    704 	&add	($inp,64);
    705 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    706 	&mov	(&DWP(192+4,"esp"),$inp);
    707 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    708 
    709   $Xi=0;
    710 }
    711 
    712 sub Xloop_ssse3()
    713 { use integer;
    714   my $body = shift;
    715   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    716   my ($a,$b,$c,$d,$e);
    717 
    718 	 eval(shift(@insns));
    719 	 eval(shift(@insns));
    720 	&pshufb	(@X[($Xi-3)&7],@X[2]);
    721 	 eval(shift(@insns));
    722 	 eval(shift(@insns));
    723 	&paddd	(@X[($Xi-4)&7],@X[3]);
    724 	 eval(shift(@insns));
    725 	 eval(shift(@insns));
    726 	 eval(shift(@insns));
    727 	 eval(shift(@insns));
    728 	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
    729 	 eval(shift(@insns));
    730 	 eval(shift(@insns));
    731 	&psubd	(@X[($Xi-4)&7],@X[3]);
    732 
    733 	foreach (@insns) { eval; }
    734   $Xi++;
    735 }
    736 
    737 sub Xtail_ssse3()
    738 { use integer;
    739   my $body = shift;
    740   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    741   my ($a,$b,$c,$d,$e);
    742 
    743 	foreach (@insns) { eval; }
    744 }
    745 
    746 sub body_00_19 () {
    747 	(
    748 	'($a,$b,$c,$d,$e)=@V;'.
    749 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    750 	'&xor	($c,$d);',
    751 	'&mov	(@T[1],$a);',	# $b in next round
    752 	'&$_rol	($a,5);',
    753 	'&and	(@T[0],$c);',	# ($b&($c^$d))
    754 	'&xor	($c,$d);',	# restore $c
    755 	'&xor	(@T[0],$d);',
    756 	'&add	($e,$a);',
    757 	'&$_ror	($b,$j?7:2);',	# $b>>>2
    758 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    759 	);
    760 }
    761 
    762 sub body_20_39 () {
    763 	(
    764 	'($a,$b,$c,$d,$e)=@V;'.
    765 	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
    766 	'&xor	(@T[0],$d);',	# ($b^$d)
    767 	'&mov	(@T[1],$a);',	# $b in next round
    768 	'&$_rol	($a,5);',
    769 	'&xor	(@T[0],$c);',	# ($b^$d^$c)
    770 	'&add	($e,$a);',
    771 	'&$_ror	($b,7);',	# $b>>>2
    772 	'&add	($e,@T[0]);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    773 	);
    774 }
    775 
    776 sub body_40_59 () {
    777 	(
    778 	'($a,$b,$c,$d,$e)=@V;'.
    779 	'&mov	(@T[1],$c);',
    780 	'&xor	($c,$d);',
    781 	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
    782 	'&and	(@T[1],$d);',
    783 	'&and	(@T[0],$c);',	# ($b&($c^$d))
    784 	'&$_ror	($b,7);',	# $b>>>2
    785 	'&add	($e,@T[1]);',
    786 	'&mov	(@T[1],$a);',	# $b in next round
    787 	'&$_rol	($a,5);',
    788 	'&add	($e,@T[0]);',
    789 	'&xor	($c,$d);',	# restore $c
    790 	'&add	($e,$a);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    791 	);
    792 }
    793 
    794 &set_label("loop",16);
    795 	&Xupdate_ssse3_16_31(\&body_00_19);
    796 	&Xupdate_ssse3_16_31(\&body_00_19);
    797 	&Xupdate_ssse3_16_31(\&body_00_19);
    798 	&Xupdate_ssse3_16_31(\&body_00_19);
    799 	&Xupdate_ssse3_32_79(\&body_00_19);
    800 	&Xupdate_ssse3_32_79(\&body_20_39);
    801 	&Xupdate_ssse3_32_79(\&body_20_39);
    802 	&Xupdate_ssse3_32_79(\&body_20_39);
    803 	&Xupdate_ssse3_32_79(\&body_20_39);
    804 	&Xupdate_ssse3_32_79(\&body_20_39);
    805 	&Xupdate_ssse3_32_79(\&body_40_59);
    806 	&Xupdate_ssse3_32_79(\&body_40_59);
    807 	&Xupdate_ssse3_32_79(\&body_40_59);
    808 	&Xupdate_ssse3_32_79(\&body_40_59);
    809 	&Xupdate_ssse3_32_79(\&body_40_59);
    810 	&Xupdate_ssse3_32_79(\&body_20_39);
    811 	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
    812 
    813 				$saved_j=$j; @saved_V=@V;
    814 
    815 	&Xloop_ssse3(\&body_20_39);
    816 	&Xloop_ssse3(\&body_20_39);
    817 	&Xloop_ssse3(\&body_20_39);
    818 
    819 	&mov	(@T[1],&DWP(192,"esp"));	# update context
    820 	&add	($A,&DWP(0,@T[1]));
    821 	&add	(@T[0],&DWP(4,@T[1]));		# $b
    822 	&add	($C,&DWP(8,@T[1]));
    823 	&mov	(&DWP(0,@T[1]),$A);
    824 	&add	($D,&DWP(12,@T[1]));
    825 	&mov	(&DWP(4,@T[1]),@T[0]);
    826 	&add	($E,&DWP(16,@T[1]));
    827 	&mov	(&DWP(8,@T[1]),$C);
    828 	&mov	($B,@T[0]);
    829 	&mov	(&DWP(12,@T[1]),$D);
    830 	&mov	(&DWP(16,@T[1]),$E);
    831 	&movdqa	(@X[0],@X[-3&7]);
    832 
    833 	&jmp	(&label("loop"));
    834 
    835 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
    836 
    837 	&Xtail_ssse3(\&body_20_39);
    838 	&Xtail_ssse3(\&body_20_39);
    839 	&Xtail_ssse3(\&body_20_39);
    840 
    841 	&mov	(@T[1],&DWP(192,"esp"));	# update context
    842 	&add	($A,&DWP(0,@T[1]));
    843 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
    844 	&add	(@T[0],&DWP(4,@T[1]));		# $b
    845 	&add	($C,&DWP(8,@T[1]));
    846 	&mov	(&DWP(0,@T[1]),$A);
    847 	&add	($D,&DWP(12,@T[1]));
    848 	&mov	(&DWP(4,@T[1]),@T[0]);
    849 	&add	($E,&DWP(16,@T[1]));
    850 	&mov	(&DWP(8,@T[1]),$C);
    851 	&mov	(&DWP(12,@T[1]),$D);
    852 	&mov	(&DWP(16,@T[1]),$E);
    853 
    854 &function_end("_sha1_block_data_order_ssse3");
    855 
    856 if ($ymm) {
    857 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
    858 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
    859 my @V=($A,$B,$C,$D,$E);
    860 my $j=0;			# hash round
    861 my @T=($T,$tmp1);
    862 my $inp;
    863 
    864 my $_rol=sub { &shld(@_[0],@_) };
    865 my $_ror=sub { &shrd(@_[0],@_) };
    866 
    867 &function_begin("_sha1_block_data_order_avx");
    868 	&call	(&label("pic_point"));	# make it PIC!
    869 	&set_label("pic_point");
    870 	&blindpop($tmp1);
    871 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    872 &set_label("avx_shortcut");
    873 	&vzeroall();
    874 
    875 	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
    876 	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
    877 	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
    878 	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
    879 	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
    880 
    881 	&mov	($E,&wparam(0));		# load argument block
    882 	&mov	($inp=@T[1],&wparam(1));
    883 	&mov	($D,&wparam(2));
    884 	&mov	(@T[0],"esp");
    885 
    886 	# stack frame layout
    887 	#
    888 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
    889 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
    890 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
    891 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
    892 	#
    893 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
    894 	#	X[4]	X[5]	X[6]	X[7]
    895 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
    896 	#
    897 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
    898 	#	K_40_59	K_40_59	K_40_59	K_40_59
    899 	#	K_60_79	K_60_79	K_60_79	K_60_79
    900 	#	K_00_19	K_00_19	K_00_19	K_00_19
    901 	#	pbswap mask
    902 	#
    903 	# +192	ctx				# argument block
    904 	# +196	inp
    905 	# +200	end
    906 	# +204	esp
    907 	&sub	("esp",208);
    908 	&and	("esp",-64);
    909 
    910 	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
    911 	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
    912 	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
    913 	&shl	($D,6);				# len*64
    914 	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
    915 	&add	($D,$inp);			# end of input
    916 	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
    917 	&add	($inp,64);
    918 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
    919 	&mov	(&DWP(192+4,"esp"),$inp);
    920 	&mov	(&DWP(192+8,"esp"),$D);
    921 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
    922 
    923 	&mov	($A,&DWP(0,$E));		# load context
    924 	&mov	($B,&DWP(4,$E));
    925 	&mov	($C,&DWP(8,$E));
    926 	&mov	($D,&DWP(12,$E));
    927 	&mov	($E,&DWP(16,$E));
    928 	&mov	(@T[0],$B);			# magic seed
    929 
    930 	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
    931 	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
    932 	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
    933 	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
    934 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
    935 	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
    936 	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
    937 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    938 	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
    939 	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
    940 	&vpaddd	(@X[1],@X[-3&7],@X[3]);
    941 	&vpaddd	(@X[2],@X[-2&7],@X[3]);
    942 	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
    943 	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
    944 	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
    945 	&jmp	(&label("loop"));
    946 
    947 sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4
    948 { use integer;
    949   my $body = shift;
    950   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
    951   my ($a,$b,$c,$d,$e);
    952 
    953 	 eval(shift(@insns));
    954 	 eval(shift(@insns));
    955 	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
    956 	 eval(shift(@insns));
    957 	 eval(shift(@insns));
    958 
    959 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
    960 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
    961 	 eval(shift(@insns));
    962 	 eval(shift(@insns));
    963 	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
    964 	 eval(shift(@insns));
    965 	 eval(shift(@insns));
    966 	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
    967 	 eval(shift(@insns));
    968 	 eval(shift(@insns));
    969 
    970 	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
    971 	 eval(shift(@insns));
    972 	 eval(shift(@insns));
    973 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    974 	 eval(shift(@insns));
    975 	 eval(shift(@insns));
    976 
    977 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
    978 	 eval(shift(@insns));
    979 	 eval(shift(@insns));
    980 	 eval(shift(@insns));
    981 	 eval(shift(@insns));
    982 
    983 	&vpsrld	(@X[2],@X[0],31);
    984 	 eval(shift(@insns));
    985 	 eval(shift(@insns));
    986 	 eval(shift(@insns));
    987 	 eval(shift(@insns));
    988 
    989 	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
    990 	&vpaddd	(@X[0],@X[0],@X[0]);
    991 	 eval(shift(@insns));
    992 	 eval(shift(@insns));
    993 	 eval(shift(@insns));
    994 	 eval(shift(@insns));
    995 
    996 	&vpsrld	(@X[3],@X[4],30);
    997 	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
    998 	 eval(shift(@insns));
    999 	 eval(shift(@insns));
   1000 	 eval(shift(@insns));
   1001 	 eval(shift(@insns));
   1002 
   1003 	&vpslld	(@X[4],@X[4],2);
   1004 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
   1005 	 eval(shift(@insns));
   1006 	 eval(shift(@insns));
   1007 	&vpxor	(@X[0],@X[0],@X[3]);
   1008 	 eval(shift(@insns));
   1009 	 eval(shift(@insns));
   1010 	 eval(shift(@insns));
   1011 	 eval(shift(@insns));
   1012 
   1013 	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
   1014 	 eval(shift(@insns));
   1015 	 eval(shift(@insns));
   1016 	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
   1017 	 eval(shift(@insns));
   1018 	 eval(shift(@insns));
   1019 
   1020 	 foreach (@insns) { eval; }	# remaining instructions [if any]
   1021 
   1022   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1023 }
   1024 
   1025 sub Xupdate_avx_32_79()
   1026 { use integer;
   1027   my $body = shift;
   1028   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
   1029   my ($a,$b,$c,$d,$e);
   1030 
   1031 	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
   1032 	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
   1033 	 eval(shift(@insns));		# body_20_39
   1034 	 eval(shift(@insns));
   1035 	 eval(shift(@insns));
   1036 	 eval(shift(@insns));		# rol
   1037 
   1038 	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
   1039 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
   1040 	 eval(shift(@insns));
   1041 	 eval(shift(@insns));
   1042 	 if ($Xi%5) {
   1043 	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
   1044 	 } else {			# ... or load next one
   1045 	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
   1046 	 }
   1047 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1048 	 eval(shift(@insns));		# ror
   1049 	 eval(shift(@insns));
   1050 
   1051 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
   1052 	 eval(shift(@insns));		# body_20_39
   1053 	 eval(shift(@insns));
   1054 	 eval(shift(@insns));
   1055 	 eval(shift(@insns));		# rol
   1056 
   1057 	&vpsrld	(@X[2],@X[0],30);
   1058 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
   1059 	 eval(shift(@insns));
   1060 	 eval(shift(@insns));
   1061 	 eval(shift(@insns));		# ror
   1062 	 eval(shift(@insns));
   1063 
   1064 	&vpslld	(@X[0],@X[0],2);
   1065 	 eval(shift(@insns));		# body_20_39
   1066 	 eval(shift(@insns));
   1067 	 eval(shift(@insns));
   1068 	 eval(shift(@insns));		# rol
   1069 	 eval(shift(@insns));
   1070 	 eval(shift(@insns));
   1071 	 eval(shift(@insns));		# ror
   1072 	 eval(shift(@insns));
   1073 
   1074 	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
   1075 	 eval(shift(@insns));		# body_20_39
   1076 	 eval(shift(@insns));
   1077 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
   1078 	 eval(shift(@insns));
   1079 	 eval(shift(@insns));		# rol
   1080 	 eval(shift(@insns));
   1081 	 eval(shift(@insns));
   1082 	 eval(shift(@insns));		# ror
   1083 	 eval(shift(@insns));
   1084 
   1085 	 foreach (@insns) { eval; }	# remaining instructions
   1086 
   1087   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1088 }
   1089 
   1090 sub Xuplast_avx_80()
   1091 { use integer;
   1092   my $body = shift;
   1093   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1094   my ($a,$b,$c,$d,$e);
   1095 
   1096 	 eval(shift(@insns));
   1097 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1098 	 eval(shift(@insns));
   1099 	 eval(shift(@insns));
   1100 	 eval(shift(@insns));
   1101 	 eval(shift(@insns));
   1102 
   1103 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
   1104 
   1105 	 foreach (@insns) { eval; }		# remaining instructions
   1106 
   1107 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
   1108 	&cmp	($inp,&DWP(192+8,"esp"));
   1109 	&je	(&label("done"));
   1110 
   1111 	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
   1112 	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
   1113 	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
   1114 	&vmovdqu(@X[-3&7],&QWP(16,$inp));
   1115 	&vmovdqu(@X[-2&7],&QWP(32,$inp));
   1116 	&vmovdqu(@X[-1&7],&QWP(48,$inp));
   1117 	&add	($inp,64);
   1118 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
   1119 	&mov	(&DWP(192+4,"esp"),$inp);
   1120 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
   1121 
   1122   $Xi=0;
   1123 }
   1124 
   1125 sub Xloop_avx()
   1126 { use integer;
   1127   my $body = shift;
   1128   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1129   my ($a,$b,$c,$d,$e);
   1130 
   1131 	 eval(shift(@insns));
   1132 	 eval(shift(@insns));
   1133 	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
   1134 	 eval(shift(@insns));
   1135 	 eval(shift(@insns));
   1136 	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
   1137 	 eval(shift(@insns));
   1138 	 eval(shift(@insns));
   1139 	 eval(shift(@insns));
   1140 	 eval(shift(@insns));
   1141 	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
   1142 	 eval(shift(@insns));
   1143 	 eval(shift(@insns));
   1144 
   1145 	foreach (@insns) { eval; }
   1146   $Xi++;
   1147 }
   1148 
   1149 sub Xtail_avx()
   1150 { use integer;
   1151   my $body = shift;
   1152   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1153   my ($a,$b,$c,$d,$e);
   1154 
   1155 	foreach (@insns) { eval; }
   1156 }
   1157 
   1158 &set_label("loop",16);
   1159 	&Xupdate_avx_16_31(\&body_00_19);
   1160 	&Xupdate_avx_16_31(\&body_00_19);
   1161 	&Xupdate_avx_16_31(\&body_00_19);
   1162 	&Xupdate_avx_16_31(\&body_00_19);
   1163 	&Xupdate_avx_32_79(\&body_00_19);
   1164 	&Xupdate_avx_32_79(\&body_20_39);
   1165 	&Xupdate_avx_32_79(\&body_20_39);
   1166 	&Xupdate_avx_32_79(\&body_20_39);
   1167 	&Xupdate_avx_32_79(\&body_20_39);
   1168 	&Xupdate_avx_32_79(\&body_20_39);
   1169 	&Xupdate_avx_32_79(\&body_40_59);
   1170 	&Xupdate_avx_32_79(\&body_40_59);
   1171 	&Xupdate_avx_32_79(\&body_40_59);
   1172 	&Xupdate_avx_32_79(\&body_40_59);
   1173 	&Xupdate_avx_32_79(\&body_40_59);
   1174 	&Xupdate_avx_32_79(\&body_20_39);
   1175 	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
   1176 
   1177 				$saved_j=$j; @saved_V=@V;
   1178 
   1179 	&Xloop_avx(\&body_20_39);
   1180 	&Xloop_avx(\&body_20_39);
   1181 	&Xloop_avx(\&body_20_39);
   1182 
   1183 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1184 	&add	($A,&DWP(0,@T[1]));
   1185 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1186 	&add	($C,&DWP(8,@T[1]));
   1187 	&mov	(&DWP(0,@T[1]),$A);
   1188 	&add	($D,&DWP(12,@T[1]));
   1189 	&mov	(&DWP(4,@T[1]),@T[0]);
   1190 	&add	($E,&DWP(16,@T[1]));
   1191 	&mov	(&DWP(8,@T[1]),$C);
   1192 	&mov	($B,@T[0]);
   1193 	&mov	(&DWP(12,@T[1]),$D);
   1194 	&mov	(&DWP(16,@T[1]),$E);
   1195 
   1196 	&jmp	(&label("loop"));
   1197 
   1198 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
   1199 
   1200 	&Xtail_avx(\&body_20_39);
   1201 	&Xtail_avx(\&body_20_39);
   1202 	&Xtail_avx(\&body_20_39);
   1203 
   1204 	&vzeroall();
   1205 
   1206 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1207 	&add	($A,&DWP(0,@T[1]));
   1208 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
   1209 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1210 	&add	($C,&DWP(8,@T[1]));
   1211 	&mov	(&DWP(0,@T[1]),$A);
   1212 	&add	($D,&DWP(12,@T[1]));
   1213 	&mov	(&DWP(4,@T[1]),@T[0]);
   1214 	&add	($E,&DWP(16,@T[1]));
   1215 	&mov	(&DWP(8,@T[1]),$C);
   1216 	&mov	(&DWP(12,@T[1]),$D);
   1217 	&mov	(&DWP(16,@T[1]),$E);
   1218 &function_end("_sha1_block_data_order_avx");
   1219 }
   1220 &set_label("K_XX_XX",64);
   1221 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
   1222 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
   1223 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
   1224 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
   1225 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
   1226 }
   1227 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
   1228 
   1229 &asm_finish();
   1230