Home | History | Annotate | Download | only in opts
      1 /*
      2  * Copyright 2012 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include <tmmintrin.h>  // SSSE3
      9 #include "SkBitmapProcState_opts_SSSE3.h"
     10 #include "SkUtils.h"
     11 
     12 // adding anonymous namespace seemed to force gcc to inline directly the
     13 // instantiation, instead of creating the functions
     14 // S32_generic_D32_filter_DX_SSSE3<true> and
     15 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
     16 // external functions.
     17 namespace {
     18 // In this file, variations for alpha and non alpha versions are implemented
     19 // with a template, as it makes the code more compact and a bit easier to
     20 // maintain, while making the compiler generate the same exact code as with
     21 // two functions that only differ by a few lines.
     22 
     23 
     24 // Prepare all necessary constants for a round of processing for two pixel
     25 // pairs.
     26 // @param xy is the location where the xy parameters for four pixels should be
     27 //           read from. It is identical in concept with argument two of
     28 //           S32_{opaque}_D32_filter_DX methods.
     29 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
     30 //                  suitable to mask the bottom 14 bits of a XY value.
     31 // @param mask_000F vector of 32 bit constants containing 000F,
     32 //                  suitable to mask the bottom 4 bits of a XY value.
     33 // @param sixteen_8bit vector of 8 bit components containing the value 16.
     34 // @param mask_dist_select vector of 8 bit components containing the shuffling
     35 //                         parameters to reorder x[0-3] parameters.
     36 // @param all_x_result vector of 8 bit components that will contain the
     37 //              (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
     38 // @param sixteen_minus_x vector of 8 bit components, containing
     39 //              (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
     40 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
     41                                           const __m128i& mask_3FFF,
     42                                           const __m128i& mask_000F,
     43                                           const __m128i& sixteen_8bit,
     44                                           const __m128i& mask_dist_select,
     45                                           __m128i* all_x_result,
     46                                           __m128i* sixteen_minus_x,
     47                                           int* x0,
     48                                           int* x1) {
     49     const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
     50 
     51     // 4 delta X
     52     // (x03, x02, x01, x00)
     53     const __m128i x0_wide = _mm_srli_epi32(xx, 18);
     54     // (x13, x12, x11, x10)
     55     const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
     56 
     57     _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
     58     _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
     59 
     60     __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
     61 
     62     // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
     63     all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
     64 
     65     *all_x_result = all_x;
     66     // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
     67     *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
     68 }
     69 
     70 // Helper function used when processing one pixel pair.
     71 // @param pixel0..3 are the four input pixels
     72 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
     73 //                will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
     74 //                or (4x(x3, 16-x3), 4x(x2, 16-x2))
     75 // @return a vector of 16 bit components containing:
     76 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
     77 inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
     78                                       uint32_t pixel1,
     79                                       uint32_t pixel2,
     80                                       uint32_t pixel3,
     81                                       const __m128i& scale_x) {
     82     __m128i a0, a1, a2, a3;
     83     // Load 2 pairs of pixels
     84     a0 = _mm_cvtsi32_si128(pixel0);
     85     a1 = _mm_cvtsi32_si128(pixel1);
     86 
     87     // Interleave pixels.
     88     // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
     89     a0 = _mm_unpacklo_epi8(a0, a1);
     90 
     91     a2 = _mm_cvtsi32_si128(pixel2);
     92     a3 = _mm_cvtsi32_si128(pixel3);
     93     // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
     94     a2 = _mm_unpacklo_epi8(a2, a3);
     95 
     96     // two pairs of pixel pairs, interleaved.
     97     // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
     98     //  Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
     99     a0 = _mm_unpacklo_epi64(a0, a2);
    100 
    101     // multiply and sum to 16 bit components.
    102     // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
    103     // At that point, we use up a bit less than 12 bits for each 16 bit
    104     // component:
    105     // All components are less than 255. So,
    106     // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
    107     return _mm_maddubs_epi16(a0, scale_x);
    108 }
    109 
    110 // Scale back the results after multiplications to the [0:255] range, and scale
    111 // by alpha when has_alpha is true.
    112 // Depending on whether one set or two sets of multiplications had been applied,
    113 // the results have to be shifted by four places (dividing by 16), or shifted
    114 // by eight places (dividing by 256), since each multiplication is by a quantity
    115 // in the range [0:16].
    116 template<bool has_alpha, int scale>
    117 inline __m128i ScaleFourPixels(__m128i* pixels,
    118                                const __m128i& alpha) {
    119     // Divide each 16 bit component by 16 (or 256 depending on scale).
    120     *pixels = _mm_srli_epi16(*pixels, scale);
    121 
    122     if (has_alpha) {
    123         // Multiply by alpha.
    124         *pixels = _mm_mullo_epi16(*pixels, alpha);
    125 
    126         // Divide each 16 bit component by 256.
    127         *pixels = _mm_srli_epi16(*pixels, 8);
    128     }
    129     return *pixels;
    130 }
    131 
    132 // Wrapper to calculate two output pixels from four input pixels. The
    133 // arguments are the same as ProcessPixelPairHelper. Technically, there are
    134 // eight input pixels, but since sub_y == 0, the factors applied to half of the
    135 // pixels is zero (sub_y), and are therefore omitted here to save on some
    136 // processing.
    137 // @param alpha when has_alpha is true, scale all resulting components by this
    138 //              value.
    139 // @return a vector of 16 bit components containing:
    140 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
    141 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
    142 // otherwise
    143 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
    144 // In both cases, the results are renormalized (divided by 16) to match the
    145 // expected formats when storing back the results into memory.
    146 template<bool has_alpha>
    147 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
    148                                         uint32_t pixel1,
    149                                         uint32_t pixel2,
    150                                         uint32_t pixel3,
    151                                         const __m128i& scale_x,
    152                                         const __m128i& alpha) {
    153     __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
    154                                          scale_x);
    155     return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
    156 }
    157 
    158 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
    159 // time instead of two. As in the above function, only two pixels are needed
    160 // to generate a single pixel since sub_y == 0.
    161 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
    162 // 16 bit components are set.
    163 template<bool has_alpha>
    164 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
    165                                        uint32_t pixel1,
    166                                        __m128i scale_x,
    167                                        __m128i alpha) {
    168     __m128i a0 = _mm_cvtsi32_si128(pixel0);
    169     __m128i a1 = _mm_cvtsi32_si128(pixel1);
    170 
    171     // Interleave
    172     a0 = _mm_unpacklo_epi8(a0, a1);
    173 
    174     // (a0 * (16-x) + a1 * x)
    175     __m128i sum = _mm_maddubs_epi16(a0, scale_x);
    176 
    177     return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
    178 }
    179 
    180 // Methods when sub_y != 0
    181 
    182 
    183 // Same as ProcessPixelPairHelper, except that the values are scaled by y.
    184 // @param y vector of 16 bit components containing 'y' values. There are two
    185 //        cases in practice, where y will contain the sub_y constant, or will
    186 //        contain the 16 - sub_y constant.
    187 // @return vector of 16 bit components containing:
    188 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
    189 inline __m128i ProcessPixelPair(uint32_t pixel0,
    190                                 uint32_t pixel1,
    191                                 uint32_t pixel2,
    192                                 uint32_t pixel3,
    193                                 const __m128i& scale_x,
    194                                 const __m128i& y) {
    195     __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
    196                                          scale_x);
    197 
    198     // first row times 16-y or y depending on whether 'y' represents one or
    199     // the other.
    200     // Values will be up to 255 * 16 * 16 = 65280.
    201     // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
    202     //  y * (Ra0 * (16 - x0) + Ra1 * x0))
    203     sum = _mm_mullo_epi16(sum, y);
    204 
    205     return sum;
    206 }
    207 
    208 // Process two pixel pairs out of eight input pixels.
    209 // In other methods, the distinct pixels are passed one by one, but in this
    210 // case, the rows, and index offsets to the pixels into the row are passed
    211 // to generate the 8 pixels.
    212 // @param row0..1 top and bottom row where to find input pixels.
    213 // @param x0..1 offsets into the row for all eight input pixels.
    214 // @param all_y vector of 16 bit components containing the constant sub_y
    215 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y
    216 // @param alpha vector of 16 bit components containing the alpha value to scale
    217 //        the results by, when has_alpha is true.
    218 // @return
    219 // (alpha * ((16-y) * (Aa2  * (16-x1) + Aa3  * x1) +
    220 //             y    * (Aa2' * (16-x1) + Aa3' * x1)),
    221 // ...
    222 //  alpha * ((16-y) * (Ra0  * (16-x0) + Ra1 * x0) +
    223 //             y    * (Ra0' * (16-x0) + Ra1' * x0))
    224 // With the factor alpha removed when has_alpha is false.
    225 // The values are scaled back to 16 bit components, but with only the bottom
    226 // 8 bits being set.
    227 template<bool has_alpha>
    228 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
    229                                     const uint32_t* row1,
    230                                     const int* x0,
    231                                     const int* x1,
    232                                     const __m128i& scale_x,
    233                                     const __m128i& all_y,
    234                                     const __m128i& neg_y,
    235                                     const __m128i& alpha) {
    236     __m128i sum0 = ProcessPixelPair(
    237         row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
    238         scale_x, neg_y);
    239     __m128i sum1 = ProcessPixelPair(
    240         row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
    241         scale_x, all_y);
    242 
    243     // 2 samples fully summed.
    244     // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
    245     //  y * (Aa2' * (16-x1) + Aa3' * x1),
    246     // ...
    247     //  (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
    248     //  y * (Ra0' * (16-x0) + Ra1' * x0))
    249     // Each component, again can be at most 256 * 255 = 65280, so no overflow.
    250     sum0 = _mm_add_epi16(sum0, sum1);
    251 
    252     return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    253 }
    254 
    255 
    256 // Same as ProcessPixelPair, except that performing the math one output pixel
    257 // at a time. This means that only the bottom four 16 bit components are set.
    258 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
    259                                const __m128i& scale_x, const __m128i& y) {
    260     __m128i a0 = _mm_cvtsi32_si128(pixel0);
    261     __m128i a1 = _mm_cvtsi32_si128(pixel1);
    262 
    263     // Interleave
    264     // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
    265     a0 = _mm_unpacklo_epi8(a0, a1);
    266 
    267     // (a0 * (16-x) + a1 * x)
    268     a0 = _mm_maddubs_epi16(a0, scale_x);
    269 
    270     // scale row by y
    271     return _mm_mullo_epi16(a0, y);
    272 }
    273 
    274 // Notes about the various tricks that are used in this implementation:
    275 // - specialization for sub_y == 0.
    276 // Statistically, 1/16th of the samples will have sub_y == 0. When this
    277 // happens, the math goes from:
    278 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
    279 // to:
    280 // (16 - x)*a00 + 16*x*a01
    281 // much simpler. The simplification makes for an easy boost in performance.
    282 // - calculating 4 output pixels at a time.
    283 //  This allows loading the coefficients x0 and x1 and shuffling them to the
    284 // optimum location only once per loop, instead of twice per loop.
    285 // This also allows us to store the four pixels with a single store.
    286 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
    287 // version):
    288 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
    289 // in 32 bit values to 8 bit values repeated four times.
    290 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions
    291 // in one swoop of 8bit values storing the results in 16 bit values. This
    292 // instruction is actually crucial for the speed of the implementation since
    293 // as one can see in the SSE2 implementation, all inputs have to be used as
    294 // 16 bits because the results are 16 bits. This basically allows us to process
    295 // twice as many pixel components per iteration.
    296 //
    297 // As a result, this method behaves faster than the traditional SSE2. The actual
    298 // boost varies greatly on the underlying architecture.
    299 template<bool has_alpha>
    300 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    301                                      const uint32_t* xy,
    302                                      int count, uint32_t* colors) {
    303     SkASSERT(count > 0 && colors != NULL);
    304     SkASSERT(s.fDoFilter);
    305     SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
    306     if (has_alpha) {
    307         SkASSERT(s.fAlphaScale < 256);
    308     } else {
    309         SkASSERT(s.fAlphaScale == 256);
    310     }
    311 
    312     const uint8_t* src_addr =
    313             static_cast<const uint8_t*>(s.fBitmap->getPixels());
    314     const unsigned rb = s.fBitmap->rowBytes();
    315     const uint32_t XY = *xy++;
    316     const unsigned y0 = XY >> 14;
    317     const uint32_t* row0 =
    318             reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
    319     const uint32_t* row1 =
    320             reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
    321     const unsigned sub_y = y0 & 0xF;
    322 
    323     // vector constants
    324     const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
    325                                                   8,  8,  8,  8,
    326                                                   4,  4,  4,  4,
    327                                                   0,  0,  0,  0);
    328     const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
    329     const __m128i mask_000F = _mm_set1_epi32(0x000F);
    330     const __m128i sixteen_8bit = _mm_set1_epi8(16);
    331     // (0, 0, 0, 0, 0, 0, 0, 0)
    332     const __m128i zero = _mm_setzero_si128();
    333 
    334     __m128i alpha;
    335     if (has_alpha)
    336         // 8x(alpha)
    337         alpha = _mm_set1_epi16(s.fAlphaScale);
    338 
    339     if (sub_y == 0) {
    340         // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
    341         while (count > 3) {
    342             count -= 4;
    343 
    344             int x0[4];
    345             int x1[4];
    346             __m128i all_x, sixteen_minus_x;
    347             PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
    348                                           sixteen_8bit, mask_dist_select,
    349                                           &all_x, &sixteen_minus_x, x0, x1);
    350             xy += 4;
    351 
    352             // First pair of pixel pairs.
    353             // (4x(x1, 16-x1), 4x(x0, 16-x0))
    354             __m128i scale_x;
    355             scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
    356 
    357             __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
    358                 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
    359                 scale_x, alpha);
    360 
    361             // second pair of pixel pairs
    362             // (4x (x3, 16-x3), 4x (16-x2, x2))
    363             scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
    364 
    365             __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
    366                 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
    367                 scale_x, alpha);
    368 
    369             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    370             sum0 = _mm_packus_epi16(sum0, sum1);
    371 
    372             // Extract low int and store.
    373             _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
    374 
    375             colors += 4;
    376         }
    377 
    378         // handle remainder
    379         while (count-- > 0) {
    380             uint32_t xx = *xy++;  // x0:14 | 4 | x1:14
    381             unsigned x0 = xx >> 18;
    382             unsigned x1 = xx & 0x3FFF;
    383 
    384             // 16x(x)
    385             const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
    386 
    387             // (16x(16-x))
    388             __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
    389 
    390             scale_x = _mm_unpacklo_epi8(scale_x, all_x);
    391 
    392             __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
    393                 row0[x0], row0[x1],
    394                 scale_x, alpha);
    395 
    396             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    397             sum = _mm_packus_epi16(sum, zero);
    398 
    399             // Extract low int and store.
    400             *colors++ = _mm_cvtsi128_si32(sum);
    401         }
    402     } else {  // more general case, y != 0
    403         // 8x(16)
    404         const __m128i sixteen_16bit = _mm_set1_epi16(16);
    405 
    406         // 8x (y)
    407         const __m128i all_y = _mm_set1_epi16(sub_y);
    408 
    409         // 8x (16-y)
    410         const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
    411 
    412         // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
    413         while (count > 3) {
    414             count -= 4;
    415 
    416             int x0[4];
    417             int x1[4];
    418             __m128i all_x, sixteen_minus_x;
    419             PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
    420                                           sixteen_8bit, mask_dist_select,
    421                                           &all_x, &sixteen_minus_x, x0, x1);
    422             xy += 4;
    423 
    424             // First pair of pixel pairs
    425             // (4x(x1, 16-x1), 4x(x0, 16-x0))
    426             __m128i scale_x;
    427             scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
    428 
    429             __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
    430                 row0, row1, x0, x1,
    431                 scale_x, all_y, neg_y, alpha);
    432 
    433             // second pair of pixel pairs
    434             // (4x (x3, 16-x3), 4x (16-x2, x2))
    435             scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
    436 
    437             __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
    438                 row0, row1, x0 + 2, x1 + 2,
    439                 scale_x, all_y, neg_y, alpha);
    440 
    441             // Do the final packing of the two results
    442 
    443             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    444             sum0 = _mm_packus_epi16(sum0, sum1);
    445 
    446             // Extract low int and store.
    447             _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
    448 
    449             colors += 4;
    450         }
    451 
    452         // Left over.
    453         while (count-- > 0) {
    454             const uint32_t xx = *xy++;  // x0:14 | 4 | x1:14
    455             const unsigned x0 = xx >> 18;
    456             const unsigned x1 = xx & 0x3FFF;
    457 
    458             // 16x(x)
    459             const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
    460 
    461             // 16x (16-x)
    462             __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
    463 
    464             // (8x (x, 16-x))
    465             scale_x = _mm_unpacklo_epi8(scale_x, all_x);
    466 
    467             // first row.
    468             __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
    469             // second row.
    470             __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
    471 
    472             // Add both rows for full sample
    473             sum0 = _mm_add_epi16(sum0, sum1);
    474 
    475             sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
    476 
    477             // Pack lower 4 16 bit values of sum into lower 4 bytes.
    478             sum0 = _mm_packus_epi16(sum0, zero);
    479 
    480             // Extract low int and store.
    481             *colors++ = _mm_cvtsi128_si32(sum0);
    482         }
    483     }
    484 }
    485 }  // namepace
    486 
    487 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    488                                     const uint32_t* xy,
    489                                     int count, uint32_t* colors) {
    490     S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
    491 }
    492 
    493 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
    494                                    const uint32_t* xy,
    495                                    int count, uint32_t* colors) {
    496     S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
    497 }
    498