Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // #define LOG_NDEBUG 0
     18 #define LOG_TAG "libutils.threads"
     19 
     20 #include <utils/threads.h>
     21 #include <utils/Log.h>
     22 
     23 #include <cutils/sched_policy.h>
     24 #include <cutils/properties.h>
     25 
     26 #include <stdio.h>
     27 #include <stdlib.h>
     28 #include <memory.h>
     29 #include <errno.h>
     30 #include <assert.h>
     31 #include <unistd.h>
     32 
     33 #if defined(HAVE_PTHREADS)
     34 # include <pthread.h>
     35 # include <sched.h>
     36 # include <sys/resource.h>
     37 #ifdef HAVE_ANDROID_OS
     38 # include <bionic_pthread.h>
     39 #endif
     40 #elif defined(HAVE_WIN32_THREADS)
     41 # include <windows.h>
     42 # include <stdint.h>
     43 # include <process.h>
     44 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
     45 #endif
     46 
     47 #if defined(HAVE_PRCTL)
     48 #include <sys/prctl.h>
     49 #endif
     50 
     51 /*
     52  * ===========================================================================
     53  *      Thread wrappers
     54  * ===========================================================================
     55  */
     56 
     57 using namespace android;
     58 
     59 // ----------------------------------------------------------------------------
     60 #if defined(HAVE_PTHREADS)
     61 // ----------------------------------------------------------------------------
     62 
     63 /*
     64  * Create and run a new thread.
     65  *
     66  * We create it "detached", so it cleans up after itself.
     67  */
     68 
     69 typedef void* (*android_pthread_entry)(void*);
     70 
     71 static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
     72 static bool gDoSchedulingGroup = true;
     73 
     74 static void checkDoSchedulingGroup(void) {
     75     char buf[PROPERTY_VALUE_MAX];
     76     int len = property_get("debug.sys.noschedgroups", buf, "");
     77     if (len > 0) {
     78         int temp;
     79         if (sscanf(buf, "%d", &temp) == 1) {
     80             gDoSchedulingGroup = temp == 0;
     81         }
     82     }
     83 }
     84 
     85 struct thread_data_t {
     86     thread_func_t   entryFunction;
     87     void*           userData;
     88     int             priority;
     89     char *          threadName;
     90 
     91     // we use this trampoline when we need to set the priority with
     92     // nice/setpriority, and name with prctl.
     93     static int trampoline(const thread_data_t* t) {
     94         thread_func_t f = t->entryFunction;
     95         void* u = t->userData;
     96         int prio = t->priority;
     97         char * name = t->threadName;
     98         delete t;
     99         setpriority(PRIO_PROCESS, 0, prio);
    100         pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
    101         if (gDoSchedulingGroup) {
    102             if (prio >= ANDROID_PRIORITY_BACKGROUND) {
    103                 set_sched_policy(androidGetTid(), SP_BACKGROUND);
    104             } else if (prio > ANDROID_PRIORITY_AUDIO) {
    105                 set_sched_policy(androidGetTid(), SP_FOREGROUND);
    106             } else {
    107                 // defaults to that of parent, or as set by requestPriority()
    108             }
    109         }
    110 
    111         if (name) {
    112             androidSetThreadName(name);
    113             free(name);
    114         }
    115         return f(u);
    116     }
    117 };
    118 
    119 void androidSetThreadName(const char* name) {
    120 #if defined(HAVE_PRCTL)
    121     // Mac OS doesn't have this, and we build libutil for the host too
    122     int hasAt = 0;
    123     int hasDot = 0;
    124     const char *s = name;
    125     while (*s) {
    126         if (*s == '.') hasDot = 1;
    127         else if (*s == '@') hasAt = 1;
    128         s++;
    129     }
    130     int len = s - name;
    131     if (len < 15 || hasAt || !hasDot) {
    132         s = name;
    133     } else {
    134         s = name + len - 15;
    135     }
    136     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
    137 #endif
    138 }
    139 
    140 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
    141                                void *userData,
    142                                const char* threadName,
    143                                int32_t threadPriority,
    144                                size_t threadStackSize,
    145                                android_thread_id_t *threadId)
    146 {
    147     pthread_attr_t attr;
    148     pthread_attr_init(&attr);
    149     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    150 
    151 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
    152     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
    153         // Now that the pthread_t has a method to find the associated
    154         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
    155         // this trampoline in some cases as the parent could set the properties
    156         // for the child.  However, there would be a race condition because the
    157         // child becomes ready immediately, and it doesn't work for the name.
    158         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
    159         // proposed but not yet accepted.
    160         thread_data_t* t = new thread_data_t;
    161         t->priority = threadPriority;
    162         t->threadName = threadName ? strdup(threadName) : NULL;
    163         t->entryFunction = entryFunction;
    164         t->userData = userData;
    165         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
    166         userData = t;
    167     }
    168 #endif
    169 
    170     if (threadStackSize) {
    171         pthread_attr_setstacksize(&attr, threadStackSize);
    172     }
    173 
    174     errno = 0;
    175     pthread_t thread;
    176     int result = pthread_create(&thread, &attr,
    177                     (android_pthread_entry)entryFunction, userData);
    178     pthread_attr_destroy(&attr);
    179     if (result != 0) {
    180         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
    181              "(android threadPriority=%d)",
    182             entryFunction, result, errno, threadPriority);
    183         return 0;
    184     }
    185 
    186     // Note that *threadID is directly available to the parent only, as it is
    187     // assigned after the child starts.  Use memory barrier / lock if the child
    188     // or other threads also need access.
    189     if (threadId != NULL) {
    190         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
    191     }
    192     return 1;
    193 }
    194 
    195 #ifdef HAVE_ANDROID_OS
    196 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
    197 {
    198     return (pthread_t) thread;
    199 }
    200 #endif
    201 
    202 android_thread_id_t androidGetThreadId()
    203 {
    204     return (android_thread_id_t)pthread_self();
    205 }
    206 
    207 // ----------------------------------------------------------------------------
    208 #elif defined(HAVE_WIN32_THREADS)
    209 // ----------------------------------------------------------------------------
    210 
    211 /*
    212  * Trampoline to make us __stdcall-compliant.
    213  *
    214  * We're expected to delete "vDetails" when we're done.
    215  */
    216 struct threadDetails {
    217     int (*func)(void*);
    218     void* arg;
    219 };
    220 static __stdcall unsigned int threadIntermediary(void* vDetails)
    221 {
    222     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
    223     int result;
    224 
    225     result = (*(pDetails->func))(pDetails->arg);
    226 
    227     delete pDetails;
    228 
    229     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
    230     return (unsigned int) result;
    231 }
    232 
    233 /*
    234  * Create and run a new thread.
    235  */
    236 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
    237 {
    238     HANDLE hThread;
    239     struct threadDetails* pDetails = new threadDetails; // must be on heap
    240     unsigned int thrdaddr;
    241 
    242     pDetails->func = fn;
    243     pDetails->arg = arg;
    244 
    245 #if defined(HAVE__BEGINTHREADEX)
    246     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
    247                     &thrdaddr);
    248     if (hThread == 0)
    249 #elif defined(HAVE_CREATETHREAD)
    250     hThread = CreateThread(NULL, 0,
    251                     (LPTHREAD_START_ROUTINE) threadIntermediary,
    252                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
    253     if (hThread == NULL)
    254 #endif
    255     {
    256         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
    257         return false;
    258     }
    259 
    260 #if defined(HAVE_CREATETHREAD)
    261     /* close the management handle */
    262     CloseHandle(hThread);
    263 #endif
    264 
    265     if (id != NULL) {
    266       	*id = (android_thread_id_t)thrdaddr;
    267     }
    268 
    269     return true;
    270 }
    271 
    272 int androidCreateRawThreadEtc(android_thread_func_t fn,
    273                                void *userData,
    274                                const char* threadName,
    275                                int32_t threadPriority,
    276                                size_t threadStackSize,
    277                                android_thread_id_t *threadId)
    278 {
    279     return doCreateThread(  fn, userData, threadId);
    280 }
    281 
    282 android_thread_id_t androidGetThreadId()
    283 {
    284     return (android_thread_id_t)GetCurrentThreadId();
    285 }
    286 
    287 // ----------------------------------------------------------------------------
    288 #else
    289 #error "Threads not supported"
    290 #endif
    291 
    292 // ----------------------------------------------------------------------------
    293 
    294 int androidCreateThread(android_thread_func_t fn, void* arg)
    295 {
    296     return createThreadEtc(fn, arg);
    297 }
    298 
    299 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
    300 {
    301     return createThreadEtc(fn, arg, "android:unnamed_thread",
    302                            PRIORITY_DEFAULT, 0, id);
    303 }
    304 
    305 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
    306 
    307 int androidCreateThreadEtc(android_thread_func_t entryFunction,
    308                             void *userData,
    309                             const char* threadName,
    310                             int32_t threadPriority,
    311                             size_t threadStackSize,
    312                             android_thread_id_t *threadId)
    313 {
    314     return gCreateThreadFn(entryFunction, userData, threadName,
    315         threadPriority, threadStackSize, threadId);
    316 }
    317 
    318 void androidSetCreateThreadFunc(android_create_thread_fn func)
    319 {
    320     gCreateThreadFn = func;
    321 }
    322 
    323 pid_t androidGetTid()
    324 {
    325 #ifdef HAVE_GETTID
    326     return gettid();
    327 #else
    328     return getpid();
    329 #endif
    330 }
    331 
    332 #ifdef HAVE_ANDROID_OS
    333 int androidSetThreadPriority(pid_t tid, int pri)
    334 {
    335     int rc = 0;
    336 
    337 #if defined(HAVE_PTHREADS)
    338     int lasterr = 0;
    339 
    340     pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
    341     if (gDoSchedulingGroup) {
    342         // set_sched_policy does not support tid == 0
    343         int policy_tid;
    344         if (tid == 0) {
    345             policy_tid = androidGetTid();
    346         } else {
    347             policy_tid = tid;
    348         }
    349         if (pri >= ANDROID_PRIORITY_BACKGROUND) {
    350             rc = set_sched_policy(policy_tid, SP_BACKGROUND);
    351         } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
    352             rc = set_sched_policy(policy_tid, SP_FOREGROUND);
    353         }
    354     }
    355 
    356     if (rc) {
    357         lasterr = errno;
    358     }
    359 
    360     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
    361         rc = INVALID_OPERATION;
    362     } else {
    363         errno = lasterr;
    364     }
    365 #endif
    366 
    367     return rc;
    368 }
    369 
    370 int androidGetThreadPriority(pid_t tid) {
    371 #if defined(HAVE_PTHREADS)
    372     return getpriority(PRIO_PROCESS, tid);
    373 #else
    374     return ANDROID_PRIORITY_NORMAL;
    375 #endif
    376 }
    377 
    378 #endif
    379 
    380 namespace android {
    381 
    382 /*
    383  * ===========================================================================
    384  *      Mutex class
    385  * ===========================================================================
    386  */
    387 
    388 #if defined(HAVE_PTHREADS)
    389 // implemented as inlines in threads.h
    390 #elif defined(HAVE_WIN32_THREADS)
    391 
    392 Mutex::Mutex()
    393 {
    394     HANDLE hMutex;
    395 
    396     assert(sizeof(hMutex) == sizeof(mState));
    397 
    398     hMutex = CreateMutex(NULL, FALSE, NULL);
    399     mState = (void*) hMutex;
    400 }
    401 
    402 Mutex::Mutex(const char* name)
    403 {
    404     // XXX: name not used for now
    405     HANDLE hMutex;
    406 
    407     assert(sizeof(hMutex) == sizeof(mState));
    408 
    409     hMutex = CreateMutex(NULL, FALSE, NULL);
    410     mState = (void*) hMutex;
    411 }
    412 
    413 Mutex::Mutex(int type, const char* name)
    414 {
    415     // XXX: type and name not used for now
    416     HANDLE hMutex;
    417 
    418     assert(sizeof(hMutex) == sizeof(mState));
    419 
    420     hMutex = CreateMutex(NULL, FALSE, NULL);
    421     mState = (void*) hMutex;
    422 }
    423 
    424 Mutex::~Mutex()
    425 {
    426     CloseHandle((HANDLE) mState);
    427 }
    428 
    429 status_t Mutex::lock()
    430 {
    431     DWORD dwWaitResult;
    432     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
    433     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
    434 }
    435 
    436 void Mutex::unlock()
    437 {
    438     if (!ReleaseMutex((HANDLE) mState))
    439         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
    440 }
    441 
    442 status_t Mutex::tryLock()
    443 {
    444     DWORD dwWaitResult;
    445 
    446     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
    447     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
    448         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
    449     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
    450 }
    451 
    452 #else
    453 #error "Somebody forgot to implement threads for this platform."
    454 #endif
    455 
    456 
    457 /*
    458  * ===========================================================================
    459  *      Condition class
    460  * ===========================================================================
    461  */
    462 
    463 #if defined(HAVE_PTHREADS)
    464 // implemented as inlines in threads.h
    465 #elif defined(HAVE_WIN32_THREADS)
    466 
    467 /*
    468  * Windows doesn't have a condition variable solution.  It's possible
    469  * to create one, but it's easy to get it wrong.  For a discussion, and
    470  * the origin of this implementation, see:
    471  *
    472  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
    473  *
    474  * The implementation shown on the page does NOT follow POSIX semantics.
    475  * As an optimization they require acquiring the external mutex before
    476  * calling signal() and broadcast(), whereas POSIX only requires grabbing
    477  * it before calling wait().  The implementation here has been un-optimized
    478  * to have the correct behavior.
    479  */
    480 typedef struct WinCondition {
    481     // Number of waiting threads.
    482     int                 waitersCount;
    483 
    484     // Serialize access to waitersCount.
    485     CRITICAL_SECTION    waitersCountLock;
    486 
    487     // Semaphore used to queue up threads waiting for the condition to
    488     // become signaled.
    489     HANDLE              sema;
    490 
    491     // An auto-reset event used by the broadcast/signal thread to wait
    492     // for all the waiting thread(s) to wake up and be released from
    493     // the semaphore.
    494     HANDLE              waitersDone;
    495 
    496     // This mutex wouldn't be necessary if we required that the caller
    497     // lock the external mutex before calling signal() and broadcast().
    498     // I'm trying to mimic pthread semantics though.
    499     HANDLE              internalMutex;
    500 
    501     // Keeps track of whether we were broadcasting or signaling.  This
    502     // allows us to optimize the code if we're just signaling.
    503     bool                wasBroadcast;
    504 
    505     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
    506     {
    507         // Increment the wait count, avoiding race conditions.
    508         EnterCriticalSection(&condState->waitersCountLock);
    509         condState->waitersCount++;
    510         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
    511         //    condState->waitersCount, getThreadId());
    512         LeaveCriticalSection(&condState->waitersCountLock);
    513 
    514         DWORD timeout = INFINITE;
    515         if (abstime) {
    516             nsecs_t reltime = *abstime - systemTime();
    517             if (reltime < 0)
    518                 reltime = 0;
    519             timeout = reltime/1000000;
    520         }
    521 
    522         // Atomically release the external mutex and wait on the semaphore.
    523         DWORD res =
    524             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
    525 
    526         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
    527 
    528         // Reacquire lock to avoid race conditions.
    529         EnterCriticalSection(&condState->waitersCountLock);
    530 
    531         // No longer waiting.
    532         condState->waitersCount--;
    533 
    534         // Check to see if we're the last waiter after a broadcast.
    535         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
    536 
    537         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
    538         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
    539 
    540         LeaveCriticalSection(&condState->waitersCountLock);
    541 
    542         // If we're the last waiter thread during this particular broadcast
    543         // then signal broadcast() that we're all awake.  It'll drop the
    544         // internal mutex.
    545         if (lastWaiter) {
    546             // Atomically signal the "waitersDone" event and wait until we
    547             // can acquire the internal mutex.  We want to do this in one step
    548             // because it ensures that everybody is in the mutex FIFO before
    549             // any thread has a chance to run.  Without it, another thread
    550             // could wake up, do work, and hop back in ahead of us.
    551             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
    552                 INFINITE, FALSE);
    553         } else {
    554             // Grab the internal mutex.
    555             WaitForSingleObject(condState->internalMutex, INFINITE);
    556         }
    557 
    558         // Release the internal and grab the external.
    559         ReleaseMutex(condState->internalMutex);
    560         WaitForSingleObject(hMutex, INFINITE);
    561 
    562         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
    563     }
    564 } WinCondition;
    565 
    566 /*
    567  * Constructor.  Set up the WinCondition stuff.
    568  */
    569 Condition::Condition()
    570 {
    571     WinCondition* condState = new WinCondition;
    572 
    573     condState->waitersCount = 0;
    574     condState->wasBroadcast = false;
    575     // semaphore: no security, initial value of 0
    576     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
    577     InitializeCriticalSection(&condState->waitersCountLock);
    578     // auto-reset event, not signaled initially
    579     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
    580     // used so we don't have to lock external mutex on signal/broadcast
    581     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
    582 
    583     mState = condState;
    584 }
    585 
    586 /*
    587  * Destructor.  Free Windows resources as well as our allocated storage.
    588  */
    589 Condition::~Condition()
    590 {
    591     WinCondition* condState = (WinCondition*) mState;
    592     if (condState != NULL) {
    593         CloseHandle(condState->sema);
    594         CloseHandle(condState->waitersDone);
    595         delete condState;
    596     }
    597 }
    598 
    599 
    600 status_t Condition::wait(Mutex& mutex)
    601 {
    602     WinCondition* condState = (WinCondition*) mState;
    603     HANDLE hMutex = (HANDLE) mutex.mState;
    604 
    605     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
    606 }
    607 
    608 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
    609 {
    610     WinCondition* condState = (WinCondition*) mState;
    611     HANDLE hMutex = (HANDLE) mutex.mState;
    612     nsecs_t absTime = systemTime()+reltime;
    613 
    614     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
    615 }
    616 
    617 /*
    618  * Signal the condition variable, allowing one thread to continue.
    619  */
    620 void Condition::signal()
    621 {
    622     WinCondition* condState = (WinCondition*) mState;
    623 
    624     // Lock the internal mutex.  This ensures that we don't clash with
    625     // broadcast().
    626     WaitForSingleObject(condState->internalMutex, INFINITE);
    627 
    628     EnterCriticalSection(&condState->waitersCountLock);
    629     bool haveWaiters = (condState->waitersCount > 0);
    630     LeaveCriticalSection(&condState->waitersCountLock);
    631 
    632     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
    633     // down a notch.
    634     if (haveWaiters)
    635         ReleaseSemaphore(condState->sema, 1, 0);
    636 
    637     // Release internal mutex.
    638     ReleaseMutex(condState->internalMutex);
    639 }
    640 
    641 /*
    642  * Signal the condition variable, allowing all threads to continue.
    643  *
    644  * First we have to wake up all threads waiting on the semaphore, then
    645  * we wait until all of the threads have actually been woken before
    646  * releasing the internal mutex.  This ensures that all threads are woken.
    647  */
    648 void Condition::broadcast()
    649 {
    650     WinCondition* condState = (WinCondition*) mState;
    651 
    652     // Lock the internal mutex.  This keeps the guys we're waking up
    653     // from getting too far.
    654     WaitForSingleObject(condState->internalMutex, INFINITE);
    655 
    656     EnterCriticalSection(&condState->waitersCountLock);
    657     bool haveWaiters = false;
    658 
    659     if (condState->waitersCount > 0) {
    660         haveWaiters = true;
    661         condState->wasBroadcast = true;
    662     }
    663 
    664     if (haveWaiters) {
    665         // Wake up all the waiters.
    666         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
    667 
    668         LeaveCriticalSection(&condState->waitersCountLock);
    669 
    670         // Wait for all awakened threads to acquire the counting semaphore.
    671         // The last guy who was waiting sets this.
    672         WaitForSingleObject(condState->waitersDone, INFINITE);
    673 
    674         // Reset wasBroadcast.  (No crit section needed because nobody
    675         // else can wake up to poke at it.)
    676         condState->wasBroadcast = 0;
    677     } else {
    678         // nothing to do
    679         LeaveCriticalSection(&condState->waitersCountLock);
    680     }
    681 
    682     // Release internal mutex.
    683     ReleaseMutex(condState->internalMutex);
    684 }
    685 
    686 #else
    687 #error "condition variables not supported on this platform"
    688 #endif
    689 
    690 // ----------------------------------------------------------------------------
    691 
    692 /*
    693  * This is our thread object!
    694  */
    695 
    696 Thread::Thread(bool canCallJava)
    697     :   mCanCallJava(canCallJava),
    698         mThread(thread_id_t(-1)),
    699         mLock("Thread::mLock"),
    700         mStatus(NO_ERROR),
    701         mExitPending(false), mRunning(false)
    702 #ifdef HAVE_ANDROID_OS
    703         , mTid(-1)
    704 #endif
    705 {
    706 }
    707 
    708 Thread::~Thread()
    709 {
    710 }
    711 
    712 status_t Thread::readyToRun()
    713 {
    714     return NO_ERROR;
    715 }
    716 
    717 status_t Thread::run(const char* name, int32_t priority, size_t stack)
    718 {
    719     Mutex::Autolock _l(mLock);
    720 
    721     if (mRunning) {
    722         // thread already started
    723         return INVALID_OPERATION;
    724     }
    725 
    726     // reset status and exitPending to their default value, so we can
    727     // try again after an error happened (either below, or in readyToRun())
    728     mStatus = NO_ERROR;
    729     mExitPending = false;
    730     mThread = thread_id_t(-1);
    731 
    732     // hold a strong reference on ourself
    733     mHoldSelf = this;
    734 
    735     mRunning = true;
    736 
    737     bool res;
    738     if (mCanCallJava) {
    739         res = createThreadEtc(_threadLoop,
    740                 this, name, priority, stack, &mThread);
    741     } else {
    742         res = androidCreateRawThreadEtc(_threadLoop,
    743                 this, name, priority, stack, &mThread);
    744     }
    745 
    746     if (res == false) {
    747         mStatus = UNKNOWN_ERROR;   // something happened!
    748         mRunning = false;
    749         mThread = thread_id_t(-1);
    750         mHoldSelf.clear();  // "this" may have gone away after this.
    751 
    752         return UNKNOWN_ERROR;
    753     }
    754 
    755     // Do not refer to mStatus here: The thread is already running (may, in fact
    756     // already have exited with a valid mStatus result). The NO_ERROR indication
    757     // here merely indicates successfully starting the thread and does not
    758     // imply successful termination/execution.
    759     return NO_ERROR;
    760 
    761     // Exiting scope of mLock is a memory barrier and allows new thread to run
    762 }
    763 
    764 int Thread::_threadLoop(void* user)
    765 {
    766     Thread* const self = static_cast<Thread*>(user);
    767 
    768     sp<Thread> strong(self->mHoldSelf);
    769     wp<Thread> weak(strong);
    770     self->mHoldSelf.clear();
    771 
    772 #ifdef HAVE_ANDROID_OS
    773     // this is very useful for debugging with gdb
    774     self->mTid = gettid();
    775 #endif
    776 
    777     bool first = true;
    778 
    779     do {
    780         bool result;
    781         if (first) {
    782             first = false;
    783             self->mStatus = self->readyToRun();
    784             result = (self->mStatus == NO_ERROR);
    785 
    786             if (result && !self->exitPending()) {
    787                 // Binder threads (and maybe others) rely on threadLoop
    788                 // running at least once after a successful ::readyToRun()
    789                 // (unless, of course, the thread has already been asked to exit
    790                 // at that point).
    791                 // This is because threads are essentially used like this:
    792                 //   (new ThreadSubclass())->run();
    793                 // The caller therefore does not retain a strong reference to
    794                 // the thread and the thread would simply disappear after the
    795                 // successful ::readyToRun() call instead of entering the
    796                 // threadLoop at least once.
    797                 result = self->threadLoop();
    798             }
    799         } else {
    800             result = self->threadLoop();
    801         }
    802 
    803         // establish a scope for mLock
    804         {
    805         Mutex::Autolock _l(self->mLock);
    806         if (result == false || self->mExitPending) {
    807             self->mExitPending = true;
    808             self->mRunning = false;
    809             // clear thread ID so that requestExitAndWait() does not exit if
    810             // called by a new thread using the same thread ID as this one.
    811             self->mThread = thread_id_t(-1);
    812             // note that interested observers blocked in requestExitAndWait are
    813             // awoken by broadcast, but blocked on mLock until break exits scope
    814             self->mThreadExitedCondition.broadcast();
    815             break;
    816         }
    817         }
    818 
    819         // Release our strong reference, to let a chance to the thread
    820         // to die a peaceful death.
    821         strong.clear();
    822         // And immediately, re-acquire a strong reference for the next loop
    823         strong = weak.promote();
    824     } while(strong != 0);
    825 
    826     return 0;
    827 }
    828 
    829 void Thread::requestExit()
    830 {
    831     Mutex::Autolock _l(mLock);
    832     mExitPending = true;
    833 }
    834 
    835 status_t Thread::requestExitAndWait()
    836 {
    837     Mutex::Autolock _l(mLock);
    838     if (mThread == getThreadId()) {
    839         ALOGW(
    840         "Thread (this=%p): don't call waitForExit() from this "
    841         "Thread object's thread. It's a guaranteed deadlock!",
    842         this);
    843 
    844         return WOULD_BLOCK;
    845     }
    846 
    847     mExitPending = true;
    848 
    849     while (mRunning == true) {
    850         mThreadExitedCondition.wait(mLock);
    851     }
    852     // This next line is probably not needed any more, but is being left for
    853     // historical reference. Note that each interested party will clear flag.
    854     mExitPending = false;
    855 
    856     return mStatus;
    857 }
    858 
    859 status_t Thread::join()
    860 {
    861     Mutex::Autolock _l(mLock);
    862     if (mThread == getThreadId()) {
    863         ALOGW(
    864         "Thread (this=%p): don't call join() from this "
    865         "Thread object's thread. It's a guaranteed deadlock!",
    866         this);
    867 
    868         return WOULD_BLOCK;
    869     }
    870 
    871     while (mRunning == true) {
    872         mThreadExitedCondition.wait(mLock);
    873     }
    874 
    875     return mStatus;
    876 }
    877 
    878 bool Thread::isRunning() const {
    879     Mutex::Autolock _l(mLock);
    880     return mRunning;
    881 }
    882 
    883 #ifdef HAVE_ANDROID_OS
    884 pid_t Thread::getTid() const
    885 {
    886     // mTid is not defined until the child initializes it, and the caller may need it earlier
    887     Mutex::Autolock _l(mLock);
    888     pid_t tid;
    889     if (mRunning) {
    890         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
    891         tid = __pthread_gettid(pthread);
    892     } else {
    893         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
    894         tid = -1;
    895     }
    896     return tid;
    897 }
    898 #endif
    899 
    900 bool Thread::exitPending() const
    901 {
    902     Mutex::Autolock _l(mLock);
    903     return mExitPending;
    904 }
    905 
    906 
    907 
    908 };  // namespace android
    909