Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea with assistance from members of JCP JSR-166
      3  * Expert Group and released to the public domain, as explained at
      4  * http://creativecommons.org/publicdomain/zero/1.0/
      5  */
      6 
      7 package java.util.concurrent;
      8 
      9 import java.util.AbstractQueue;
     10 import java.util.Collection;
     11 import java.util.Iterator;
     12 import java.util.NoSuchElementException;
     13 import java.util.concurrent.locks.Condition;
     14 import java.util.concurrent.locks.ReentrantLock;
     15 
     16 // BEGIN android-note
     17 // removed link to collections framework docs
     18 // END android-note
     19 
     20 /**
     21  * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
     22  * linked nodes.
     23  *
     24  * <p> The optional capacity bound constructor argument serves as a
     25  * way to prevent excessive expansion. The capacity, if unspecified,
     26  * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
     27  * dynamically created upon each insertion unless this would bring the
     28  * deque above capacity.
     29  *
     30  * <p>Most operations run in constant time (ignoring time spent
     31  * blocking).  Exceptions include {@link #remove(Object) remove},
     32  * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
     33  * #removeLastOccurrence removeLastOccurrence}, {@link #contains
     34  * contains}, {@link #iterator iterator.remove()}, and the bulk
     35  * operations, all of which run in linear time.
     36  *
     37  * <p>This class and its iterator implement all of the
     38  * <em>optional</em> methods of the {@link Collection} and {@link
     39  * Iterator} interfaces.
     40  *
     41  * @since 1.6
     42  * @author  Doug Lea
     43  * @param <E> the type of elements held in this collection
     44  */
     45 public class LinkedBlockingDeque<E>
     46     extends AbstractQueue<E>
     47     implements BlockingDeque<E>,  java.io.Serializable {
     48 
     49     /*
     50      * Implemented as a simple doubly-linked list protected by a
     51      * single lock and using conditions to manage blocking.
     52      *
     53      * To implement weakly consistent iterators, it appears we need to
     54      * keep all Nodes GC-reachable from a predecessor dequeued Node.
     55      * That would cause two problems:
     56      * - allow a rogue Iterator to cause unbounded memory retention
     57      * - cause cross-generational linking of old Nodes to new Nodes if
     58      *   a Node was tenured while live, which generational GCs have a
     59      *   hard time dealing with, causing repeated major collections.
     60      * However, only non-deleted Nodes need to be reachable from
     61      * dequeued Nodes, and reachability does not necessarily have to
     62      * be of the kind understood by the GC.  We use the trick of
     63      * linking a Node that has just been dequeued to itself.  Such a
     64      * self-link implicitly means to jump to "first" (for next links)
     65      * or "last" (for prev links).
     66      */
     67 
     68     /*
     69      * We have "diamond" multiple interface/abstract class inheritance
     70      * here, and that introduces ambiguities. Often we want the
     71      * BlockingDeque javadoc combined with the AbstractQueue
     72      * implementation, so a lot of method specs are duplicated here.
     73      */
     74 
     75     private static final long serialVersionUID = -387911632671998426L;
     76 
     77     /** Doubly-linked list node class */
     78     static final class Node<E> {
     79         /**
     80          * The item, or null if this node has been removed.
     81          */
     82         E item;
     83 
     84         /**
     85          * One of:
     86          * - the real predecessor Node
     87          * - this Node, meaning the predecessor is tail
     88          * - null, meaning there is no predecessor
     89          */
     90         Node<E> prev;
     91 
     92         /**
     93          * One of:
     94          * - the real successor Node
     95          * - this Node, meaning the successor is head
     96          * - null, meaning there is no successor
     97          */
     98         Node<E> next;
     99 
    100         Node(E x) {
    101             item = x;
    102         }
    103     }
    104 
    105     /**
    106      * Pointer to first node.
    107      * Invariant: (first == null && last == null) ||
    108      *            (first.prev == null && first.item != null)
    109      */
    110     transient Node<E> first;
    111 
    112     /**
    113      * Pointer to last node.
    114      * Invariant: (first == null && last == null) ||
    115      *            (last.next == null && last.item != null)
    116      */
    117     transient Node<E> last;
    118 
    119     /** Number of items in the deque */
    120     private transient int count;
    121 
    122     /** Maximum number of items in the deque */
    123     private final int capacity;
    124 
    125     /** Main lock guarding all access */
    126     final ReentrantLock lock = new ReentrantLock();
    127 
    128     /** Condition for waiting takes */
    129     private final Condition notEmpty = lock.newCondition();
    130 
    131     /** Condition for waiting puts */
    132     private final Condition notFull = lock.newCondition();
    133 
    134     /**
    135      * Creates a {@code LinkedBlockingDeque} with a capacity of
    136      * {@link Integer#MAX_VALUE}.
    137      */
    138     public LinkedBlockingDeque() {
    139         this(Integer.MAX_VALUE);
    140     }
    141 
    142     /**
    143      * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
    144      *
    145      * @param capacity the capacity of this deque
    146      * @throws IllegalArgumentException if {@code capacity} is less than 1
    147      */
    148     public LinkedBlockingDeque(int capacity) {
    149         if (capacity <= 0) throw new IllegalArgumentException();
    150         this.capacity = capacity;
    151     }
    152 
    153     /**
    154      * Creates a {@code LinkedBlockingDeque} with a capacity of
    155      * {@link Integer#MAX_VALUE}, initially containing the elements of
    156      * the given collection, added in traversal order of the
    157      * collection's iterator.
    158      *
    159      * @param c the collection of elements to initially contain
    160      * @throws NullPointerException if the specified collection or any
    161      *         of its elements are null
    162      */
    163     public LinkedBlockingDeque(Collection<? extends E> c) {
    164         this(Integer.MAX_VALUE);
    165         final ReentrantLock lock = this.lock;
    166         lock.lock(); // Never contended, but necessary for visibility
    167         try {
    168             for (E e : c) {
    169                 if (e == null)
    170                     throw new NullPointerException();
    171                 if (!linkLast(new Node<E>(e)))
    172                     throw new IllegalStateException("Deque full");
    173             }
    174         } finally {
    175             lock.unlock();
    176         }
    177     }
    178 
    179 
    180     // Basic linking and unlinking operations, called only while holding lock
    181 
    182     /**
    183      * Links node as first element, or returns false if full.
    184      */
    185     private boolean linkFirst(Node<E> node) {
    186         // assert lock.isHeldByCurrentThread();
    187         if (count >= capacity)
    188             return false;
    189         Node<E> f = first;
    190         node.next = f;
    191         first = node;
    192         if (last == null)
    193             last = node;
    194         else
    195             f.prev = node;
    196         ++count;
    197         notEmpty.signal();
    198         return true;
    199     }
    200 
    201     /**
    202      * Links node as last element, or returns false if full.
    203      */
    204     private boolean linkLast(Node<E> node) {
    205         // assert lock.isHeldByCurrentThread();
    206         if (count >= capacity)
    207             return false;
    208         Node<E> l = last;
    209         node.prev = l;
    210         last = node;
    211         if (first == null)
    212             first = node;
    213         else
    214             l.next = node;
    215         ++count;
    216         notEmpty.signal();
    217         return true;
    218     }
    219 
    220     /**
    221      * Removes and returns first element, or null if empty.
    222      */
    223     private E unlinkFirst() {
    224         // assert lock.isHeldByCurrentThread();
    225         Node<E> f = first;
    226         if (f == null)
    227             return null;
    228         Node<E> n = f.next;
    229         E item = f.item;
    230         f.item = null;
    231         f.next = f; // help GC
    232         first = n;
    233         if (n == null)
    234             last = null;
    235         else
    236             n.prev = null;
    237         --count;
    238         notFull.signal();
    239         return item;
    240     }
    241 
    242     /**
    243      * Removes and returns last element, or null if empty.
    244      */
    245     private E unlinkLast() {
    246         // assert lock.isHeldByCurrentThread();
    247         Node<E> l = last;
    248         if (l == null)
    249             return null;
    250         Node<E> p = l.prev;
    251         E item = l.item;
    252         l.item = null;
    253         l.prev = l; // help GC
    254         last = p;
    255         if (p == null)
    256             first = null;
    257         else
    258             p.next = null;
    259         --count;
    260         notFull.signal();
    261         return item;
    262     }
    263 
    264     /**
    265      * Unlinks x.
    266      */
    267     void unlink(Node<E> x) {
    268         // assert lock.isHeldByCurrentThread();
    269         Node<E> p = x.prev;
    270         Node<E> n = x.next;
    271         if (p == null) {
    272             unlinkFirst();
    273         } else if (n == null) {
    274             unlinkLast();
    275         } else {
    276             p.next = n;
    277             n.prev = p;
    278             x.item = null;
    279             // Don't mess with x's links.  They may still be in use by
    280             // an iterator.
    281             --count;
    282             notFull.signal();
    283         }
    284     }
    285 
    286     // BlockingDeque methods
    287 
    288     /**
    289      * @throws IllegalStateException {@inheritDoc}
    290      * @throws NullPointerException  {@inheritDoc}
    291      */
    292     public void addFirst(E e) {
    293         if (!offerFirst(e))
    294             throw new IllegalStateException("Deque full");
    295     }
    296 
    297     /**
    298      * @throws IllegalStateException {@inheritDoc}
    299      * @throws NullPointerException  {@inheritDoc}
    300      */
    301     public void addLast(E e) {
    302         if (!offerLast(e))
    303             throw new IllegalStateException("Deque full");
    304     }
    305 
    306     /**
    307      * @throws NullPointerException {@inheritDoc}
    308      */
    309     public boolean offerFirst(E e) {
    310         if (e == null) throw new NullPointerException();
    311         Node<E> node = new Node<E>(e);
    312         final ReentrantLock lock = this.lock;
    313         lock.lock();
    314         try {
    315             return linkFirst(node);
    316         } finally {
    317             lock.unlock();
    318         }
    319     }
    320 
    321     /**
    322      * @throws NullPointerException {@inheritDoc}
    323      */
    324     public boolean offerLast(E e) {
    325         if (e == null) throw new NullPointerException();
    326         Node<E> node = new Node<E>(e);
    327         final ReentrantLock lock = this.lock;
    328         lock.lock();
    329         try {
    330             return linkLast(node);
    331         } finally {
    332             lock.unlock();
    333         }
    334     }
    335 
    336     /**
    337      * @throws NullPointerException {@inheritDoc}
    338      * @throws InterruptedException {@inheritDoc}
    339      */
    340     public void putFirst(E e) throws InterruptedException {
    341         if (e == null) throw new NullPointerException();
    342         Node<E> node = new Node<E>(e);
    343         final ReentrantLock lock = this.lock;
    344         lock.lock();
    345         try {
    346             while (!linkFirst(node))
    347                 notFull.await();
    348         } finally {
    349             lock.unlock();
    350         }
    351     }
    352 
    353     /**
    354      * @throws NullPointerException {@inheritDoc}
    355      * @throws InterruptedException {@inheritDoc}
    356      */
    357     public void putLast(E e) throws InterruptedException {
    358         if (e == null) throw new NullPointerException();
    359         Node<E> node = new Node<E>(e);
    360         final ReentrantLock lock = this.lock;
    361         lock.lock();
    362         try {
    363             while (!linkLast(node))
    364                 notFull.await();
    365         } finally {
    366             lock.unlock();
    367         }
    368     }
    369 
    370     /**
    371      * @throws NullPointerException {@inheritDoc}
    372      * @throws InterruptedException {@inheritDoc}
    373      */
    374     public boolean offerFirst(E e, long timeout, TimeUnit unit)
    375         throws InterruptedException {
    376         if (e == null) throw new NullPointerException();
    377         Node<E> node = new Node<E>(e);
    378         long nanos = unit.toNanos(timeout);
    379         final ReentrantLock lock = this.lock;
    380         lock.lockInterruptibly();
    381         try {
    382             while (!linkFirst(node)) {
    383                 if (nanos <= 0)
    384                     return false;
    385                 nanos = notFull.awaitNanos(nanos);
    386             }
    387             return true;
    388         } finally {
    389             lock.unlock();
    390         }
    391     }
    392 
    393     /**
    394      * @throws NullPointerException {@inheritDoc}
    395      * @throws InterruptedException {@inheritDoc}
    396      */
    397     public boolean offerLast(E e, long timeout, TimeUnit unit)
    398         throws InterruptedException {
    399         if (e == null) throw new NullPointerException();
    400         Node<E> node = new Node<E>(e);
    401         long nanos = unit.toNanos(timeout);
    402         final ReentrantLock lock = this.lock;
    403         lock.lockInterruptibly();
    404         try {
    405             while (!linkLast(node)) {
    406                 if (nanos <= 0)
    407                     return false;
    408                 nanos = notFull.awaitNanos(nanos);
    409             }
    410             return true;
    411         } finally {
    412             lock.unlock();
    413         }
    414     }
    415 
    416     /**
    417      * @throws NoSuchElementException {@inheritDoc}
    418      */
    419     public E removeFirst() {
    420         E x = pollFirst();
    421         if (x == null) throw new NoSuchElementException();
    422         return x;
    423     }
    424 
    425     /**
    426      * @throws NoSuchElementException {@inheritDoc}
    427      */
    428     public E removeLast() {
    429         E x = pollLast();
    430         if (x == null) throw new NoSuchElementException();
    431         return x;
    432     }
    433 
    434     public E pollFirst() {
    435         final ReentrantLock lock = this.lock;
    436         lock.lock();
    437         try {
    438             return unlinkFirst();
    439         } finally {
    440             lock.unlock();
    441         }
    442     }
    443 
    444     public E pollLast() {
    445         final ReentrantLock lock = this.lock;
    446         lock.lock();
    447         try {
    448             return unlinkLast();
    449         } finally {
    450             lock.unlock();
    451         }
    452     }
    453 
    454     public E takeFirst() throws InterruptedException {
    455         final ReentrantLock lock = this.lock;
    456         lock.lock();
    457         try {
    458             E x;
    459             while ( (x = unlinkFirst()) == null)
    460                 notEmpty.await();
    461             return x;
    462         } finally {
    463             lock.unlock();
    464         }
    465     }
    466 
    467     public E takeLast() throws InterruptedException {
    468         final ReentrantLock lock = this.lock;
    469         lock.lock();
    470         try {
    471             E x;
    472             while ( (x = unlinkLast()) == null)
    473                 notEmpty.await();
    474             return x;
    475         } finally {
    476             lock.unlock();
    477         }
    478     }
    479 
    480     public E pollFirst(long timeout, TimeUnit unit)
    481         throws InterruptedException {
    482         long nanos = unit.toNanos(timeout);
    483         final ReentrantLock lock = this.lock;
    484         lock.lockInterruptibly();
    485         try {
    486             E x;
    487             while ( (x = unlinkFirst()) == null) {
    488                 if (nanos <= 0)
    489                     return null;
    490                 nanos = notEmpty.awaitNanos(nanos);
    491             }
    492             return x;
    493         } finally {
    494             lock.unlock();
    495         }
    496     }
    497 
    498     public E pollLast(long timeout, TimeUnit unit)
    499         throws InterruptedException {
    500         long nanos = unit.toNanos(timeout);
    501         final ReentrantLock lock = this.lock;
    502         lock.lockInterruptibly();
    503         try {
    504             E x;
    505             while ( (x = unlinkLast()) == null) {
    506                 if (nanos <= 0)
    507                     return null;
    508                 nanos = notEmpty.awaitNanos(nanos);
    509             }
    510             return x;
    511         } finally {
    512             lock.unlock();
    513         }
    514     }
    515 
    516     /**
    517      * @throws NoSuchElementException {@inheritDoc}
    518      */
    519     public E getFirst() {
    520         E x = peekFirst();
    521         if (x == null) throw new NoSuchElementException();
    522         return x;
    523     }
    524 
    525     /**
    526      * @throws NoSuchElementException {@inheritDoc}
    527      */
    528     public E getLast() {
    529         E x = peekLast();
    530         if (x == null) throw new NoSuchElementException();
    531         return x;
    532     }
    533 
    534     public E peekFirst() {
    535         final ReentrantLock lock = this.lock;
    536         lock.lock();
    537         try {
    538             return (first == null) ? null : first.item;
    539         } finally {
    540             lock.unlock();
    541         }
    542     }
    543 
    544     public E peekLast() {
    545         final ReentrantLock lock = this.lock;
    546         lock.lock();
    547         try {
    548             return (last == null) ? null : last.item;
    549         } finally {
    550             lock.unlock();
    551         }
    552     }
    553 
    554     public boolean removeFirstOccurrence(Object o) {
    555         if (o == null) return false;
    556         final ReentrantLock lock = this.lock;
    557         lock.lock();
    558         try {
    559             for (Node<E> p = first; p != null; p = p.next) {
    560                 if (o.equals(p.item)) {
    561                     unlink(p);
    562                     return true;
    563                 }
    564             }
    565             return false;
    566         } finally {
    567             lock.unlock();
    568         }
    569     }
    570 
    571     public boolean removeLastOccurrence(Object o) {
    572         if (o == null) return false;
    573         final ReentrantLock lock = this.lock;
    574         lock.lock();
    575         try {
    576             for (Node<E> p = last; p != null; p = p.prev) {
    577                 if (o.equals(p.item)) {
    578                     unlink(p);
    579                     return true;
    580                 }
    581             }
    582             return false;
    583         } finally {
    584             lock.unlock();
    585         }
    586     }
    587 
    588     // BlockingQueue methods
    589 
    590     /**
    591      * Inserts the specified element at the end of this deque unless it would
    592      * violate capacity restrictions.  When using a capacity-restricted deque,
    593      * it is generally preferable to use method {@link #offer(Object) offer}.
    594      *
    595      * <p>This method is equivalent to {@link #addLast}.
    596      *
    597      * @throws IllegalStateException if the element cannot be added at this
    598      *         time due to capacity restrictions
    599      * @throws NullPointerException if the specified element is null
    600      */
    601     public boolean add(E e) {
    602         addLast(e);
    603         return true;
    604     }
    605 
    606     /**
    607      * @throws NullPointerException if the specified element is null
    608      */
    609     public boolean offer(E e) {
    610         return offerLast(e);
    611     }
    612 
    613     /**
    614      * @throws NullPointerException {@inheritDoc}
    615      * @throws InterruptedException {@inheritDoc}
    616      */
    617     public void put(E e) throws InterruptedException {
    618         putLast(e);
    619     }
    620 
    621     /**
    622      * @throws NullPointerException {@inheritDoc}
    623      * @throws InterruptedException {@inheritDoc}
    624      */
    625     public boolean offer(E e, long timeout, TimeUnit unit)
    626         throws InterruptedException {
    627         return offerLast(e, timeout, unit);
    628     }
    629 
    630     /**
    631      * Retrieves and removes the head of the queue represented by this deque.
    632      * This method differs from {@link #poll poll} only in that it throws an
    633      * exception if this deque is empty.
    634      *
    635      * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
    636      *
    637      * @return the head of the queue represented by this deque
    638      * @throws NoSuchElementException if this deque is empty
    639      */
    640     public E remove() {
    641         return removeFirst();
    642     }
    643 
    644     public E poll() {
    645         return pollFirst();
    646     }
    647 
    648     public E take() throws InterruptedException {
    649         return takeFirst();
    650     }
    651 
    652     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
    653         return pollFirst(timeout, unit);
    654     }
    655 
    656     /**
    657      * Retrieves, but does not remove, the head of the queue represented by
    658      * this deque.  This method differs from {@link #peek peek} only in that
    659      * it throws an exception if this deque is empty.
    660      *
    661      * <p>This method is equivalent to {@link #getFirst() getFirst}.
    662      *
    663      * @return the head of the queue represented by this deque
    664      * @throws NoSuchElementException if this deque is empty
    665      */
    666     public E element() {
    667         return getFirst();
    668     }
    669 
    670     public E peek() {
    671         return peekFirst();
    672     }
    673 
    674     /**
    675      * Returns the number of additional elements that this deque can ideally
    676      * (in the absence of memory or resource constraints) accept without
    677      * blocking. This is always equal to the initial capacity of this deque
    678      * less the current {@code size} of this deque.
    679      *
    680      * <p>Note that you <em>cannot</em> always tell if an attempt to insert
    681      * an element will succeed by inspecting {@code remainingCapacity}
    682      * because it may be the case that another thread is about to
    683      * insert or remove an element.
    684      */
    685     public int remainingCapacity() {
    686         final ReentrantLock lock = this.lock;
    687         lock.lock();
    688         try {
    689             return capacity - count;
    690         } finally {
    691             lock.unlock();
    692         }
    693     }
    694 
    695     /**
    696      * @throws UnsupportedOperationException {@inheritDoc}
    697      * @throws ClassCastException            {@inheritDoc}
    698      * @throws NullPointerException          {@inheritDoc}
    699      * @throws IllegalArgumentException      {@inheritDoc}
    700      */
    701     public int drainTo(Collection<? super E> c) {
    702         return drainTo(c, Integer.MAX_VALUE);
    703     }
    704 
    705     /**
    706      * @throws UnsupportedOperationException {@inheritDoc}
    707      * @throws ClassCastException            {@inheritDoc}
    708      * @throws NullPointerException          {@inheritDoc}
    709      * @throws IllegalArgumentException      {@inheritDoc}
    710      */
    711     public int drainTo(Collection<? super E> c, int maxElements) {
    712         if (c == null)
    713             throw new NullPointerException();
    714         if (c == this)
    715             throw new IllegalArgumentException();
    716         if (maxElements <= 0)
    717             return 0;
    718         final ReentrantLock lock = this.lock;
    719         lock.lock();
    720         try {
    721             int n = Math.min(maxElements, count);
    722             for (int i = 0; i < n; i++) {
    723                 c.add(first.item);   // In this order, in case add() throws.
    724                 unlinkFirst();
    725             }
    726             return n;
    727         } finally {
    728             lock.unlock();
    729         }
    730     }
    731 
    732     // Stack methods
    733 
    734     /**
    735      * @throws IllegalStateException {@inheritDoc}
    736      * @throws NullPointerException  {@inheritDoc}
    737      */
    738     public void push(E e) {
    739         addFirst(e);
    740     }
    741 
    742     /**
    743      * @throws NoSuchElementException {@inheritDoc}
    744      */
    745     public E pop() {
    746         return removeFirst();
    747     }
    748 
    749     // Collection methods
    750 
    751     /**
    752      * Removes the first occurrence of the specified element from this deque.
    753      * If the deque does not contain the element, it is unchanged.
    754      * More formally, removes the first element {@code e} such that
    755      * {@code o.equals(e)} (if such an element exists).
    756      * Returns {@code true} if this deque contained the specified element
    757      * (or equivalently, if this deque changed as a result of the call).
    758      *
    759      * <p>This method is equivalent to
    760      * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
    761      *
    762      * @param o element to be removed from this deque, if present
    763      * @return {@code true} if this deque changed as a result of the call
    764      */
    765     public boolean remove(Object o) {
    766         return removeFirstOccurrence(o);
    767     }
    768 
    769     /**
    770      * Returns the number of elements in this deque.
    771      *
    772      * @return the number of elements in this deque
    773      */
    774     public int size() {
    775         final ReentrantLock lock = this.lock;
    776         lock.lock();
    777         try {
    778             return count;
    779         } finally {
    780             lock.unlock();
    781         }
    782     }
    783 
    784     /**
    785      * Returns {@code true} if this deque contains the specified element.
    786      * More formally, returns {@code true} if and only if this deque contains
    787      * at least one element {@code e} such that {@code o.equals(e)}.
    788      *
    789      * @param o object to be checked for containment in this deque
    790      * @return {@code true} if this deque contains the specified element
    791      */
    792     public boolean contains(Object o) {
    793         if (o == null) return false;
    794         final ReentrantLock lock = this.lock;
    795         lock.lock();
    796         try {
    797             for (Node<E> p = first; p != null; p = p.next)
    798                 if (o.equals(p.item))
    799                     return true;
    800             return false;
    801         } finally {
    802             lock.unlock();
    803         }
    804     }
    805 
    806     /*
    807      * TODO: Add support for more efficient bulk operations.
    808      *
    809      * We don't want to acquire the lock for every iteration, but we
    810      * also want other threads a chance to interact with the
    811      * collection, especially when count is close to capacity.
    812      */
    813 
    814 //     /**
    815 //      * Adds all of the elements in the specified collection to this
    816 //      * queue.  Attempts to addAll of a queue to itself result in
    817 //      * {@code IllegalArgumentException}. Further, the behavior of
    818 //      * this operation is undefined if the specified collection is
    819 //      * modified while the operation is in progress.
    820 //      *
    821 //      * @param c collection containing elements to be added to this queue
    822 //      * @return {@code true} if this queue changed as a result of the call
    823 //      * @throws ClassCastException            {@inheritDoc}
    824 //      * @throws NullPointerException          {@inheritDoc}
    825 //      * @throws IllegalArgumentException      {@inheritDoc}
    826 //      * @throws IllegalStateException         {@inheritDoc}
    827 //      * @see #add(Object)
    828 //      */
    829 //     public boolean addAll(Collection<? extends E> c) {
    830 //         if (c == null)
    831 //             throw new NullPointerException();
    832 //         if (c == this)
    833 //             throw new IllegalArgumentException();
    834 //         final ReentrantLock lock = this.lock;
    835 //         lock.lock();
    836 //         try {
    837 //             boolean modified = false;
    838 //             for (E e : c)
    839 //                 if (linkLast(e))
    840 //                     modified = true;
    841 //             return modified;
    842 //         } finally {
    843 //             lock.unlock();
    844 //         }
    845 //     }
    846 
    847     /**
    848      * Returns an array containing all of the elements in this deque, in
    849      * proper sequence (from first to last element).
    850      *
    851      * <p>The returned array will be "safe" in that no references to it are
    852      * maintained by this deque.  (In other words, this method must allocate
    853      * a new array).  The caller is thus free to modify the returned array.
    854      *
    855      * <p>This method acts as bridge between array-based and collection-based
    856      * APIs.
    857      *
    858      * @return an array containing all of the elements in this deque
    859      */
    860     @SuppressWarnings("unchecked")
    861     public Object[] toArray() {
    862         final ReentrantLock lock = this.lock;
    863         lock.lock();
    864         try {
    865             Object[] a = new Object[count];
    866             int k = 0;
    867             for (Node<E> p = first; p != null; p = p.next)
    868                 a[k++] = p.item;
    869             return a;
    870         } finally {
    871             lock.unlock();
    872         }
    873     }
    874 
    875     /**
    876      * Returns an array containing all of the elements in this deque, in
    877      * proper sequence; the runtime type of the returned array is that of
    878      * the specified array.  If the deque fits in the specified array, it
    879      * is returned therein.  Otherwise, a new array is allocated with the
    880      * runtime type of the specified array and the size of this deque.
    881      *
    882      * <p>If this deque fits in the specified array with room to spare
    883      * (i.e., the array has more elements than this deque), the element in
    884      * the array immediately following the end of the deque is set to
    885      * {@code null}.
    886      *
    887      * <p>Like the {@link #toArray()} method, this method acts as bridge between
    888      * array-based and collection-based APIs.  Further, this method allows
    889      * precise control over the runtime type of the output array, and may,
    890      * under certain circumstances, be used to save allocation costs.
    891      *
    892      * <p>Suppose {@code x} is a deque known to contain only strings.
    893      * The following code can be used to dump the deque into a newly
    894      * allocated array of {@code String}:
    895      *
    896      *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
    897      *
    898      * Note that {@code toArray(new Object[0])} is identical in function to
    899      * {@code toArray()}.
    900      *
    901      * @param a the array into which the elements of the deque are to
    902      *          be stored, if it is big enough; otherwise, a new array of the
    903      *          same runtime type is allocated for this purpose
    904      * @return an array containing all of the elements in this deque
    905      * @throws ArrayStoreException if the runtime type of the specified array
    906      *         is not a supertype of the runtime type of every element in
    907      *         this deque
    908      * @throws NullPointerException if the specified array is null
    909      */
    910     @SuppressWarnings("unchecked")
    911     public <T> T[] toArray(T[] a) {
    912         final ReentrantLock lock = this.lock;
    913         lock.lock();
    914         try {
    915             if (a.length < count)
    916                 a = (T[])java.lang.reflect.Array.newInstance
    917                     (a.getClass().getComponentType(), count);
    918 
    919             int k = 0;
    920             for (Node<E> p = first; p != null; p = p.next)
    921                 a[k++] = (T)p.item;
    922             if (a.length > k)
    923                 a[k] = null;
    924             return a;
    925         } finally {
    926             lock.unlock();
    927         }
    928     }
    929 
    930     public String toString() {
    931         final ReentrantLock lock = this.lock;
    932         lock.lock();
    933         try {
    934             Node<E> p = first;
    935             if (p == null)
    936                 return "[]";
    937 
    938             StringBuilder sb = new StringBuilder();
    939             sb.append('[');
    940             for (;;) {
    941                 E e = p.item;
    942                 sb.append(e == this ? "(this Collection)" : e);
    943                 p = p.next;
    944                 if (p == null)
    945                     return sb.append(']').toString();
    946                 sb.append(',').append(' ');
    947             }
    948         } finally {
    949             lock.unlock();
    950         }
    951     }
    952 
    953     /**
    954      * Atomically removes all of the elements from this deque.
    955      * The deque will be empty after this call returns.
    956      */
    957     public void clear() {
    958         final ReentrantLock lock = this.lock;
    959         lock.lock();
    960         try {
    961             for (Node<E> f = first; f != null; ) {
    962                 f.item = null;
    963                 Node<E> n = f.next;
    964                 f.prev = null;
    965                 f.next = null;
    966                 f = n;
    967             }
    968             first = last = null;
    969             count = 0;
    970             notFull.signalAll();
    971         } finally {
    972             lock.unlock();
    973         }
    974     }
    975 
    976     /**
    977      * Returns an iterator over the elements in this deque in proper sequence.
    978      * The elements will be returned in order from first (head) to last (tail).
    979      *
    980      * <p>The returned iterator is a "weakly consistent" iterator that
    981      * will never throw {@link java.util.ConcurrentModificationException
    982      * ConcurrentModificationException}, and guarantees to traverse
    983      * elements as they existed upon construction of the iterator, and
    984      * may (but is not guaranteed to) reflect any modifications
    985      * subsequent to construction.
    986      *
    987      * @return an iterator over the elements in this deque in proper sequence
    988      */
    989     public Iterator<E> iterator() {
    990         return new Itr();
    991     }
    992 
    993     /**
    994      * Returns an iterator over the elements in this deque in reverse
    995      * sequential order.  The elements will be returned in order from
    996      * last (tail) to first (head).
    997      *
    998      * <p>The returned iterator is a "weakly consistent" iterator that
    999      * will never throw {@link java.util.ConcurrentModificationException
   1000      * ConcurrentModificationException}, and guarantees to traverse
   1001      * elements as they existed upon construction of the iterator, and
   1002      * may (but is not guaranteed to) reflect any modifications
   1003      * subsequent to construction.
   1004      *
   1005      * @return an iterator over the elements in this deque in reverse order
   1006      */
   1007     public Iterator<E> descendingIterator() {
   1008         return new DescendingItr();
   1009     }
   1010 
   1011     /**
   1012      * Base class for Iterators for LinkedBlockingDeque
   1013      */
   1014     private abstract class AbstractItr implements Iterator<E> {
   1015         /**
   1016          * The next node to return in next()
   1017          */
   1018         Node<E> next;
   1019 
   1020         /**
   1021          * nextItem holds on to item fields because once we claim that
   1022          * an element exists in hasNext(), we must return item read
   1023          * under lock (in advance()) even if it was in the process of
   1024          * being removed when hasNext() was called.
   1025          */
   1026         E nextItem;
   1027 
   1028         /**
   1029          * Node returned by most recent call to next. Needed by remove.
   1030          * Reset to null if this element is deleted by a call to remove.
   1031          */
   1032         private Node<E> lastRet;
   1033 
   1034         abstract Node<E> firstNode();
   1035         abstract Node<E> nextNode(Node<E> n);
   1036 
   1037         AbstractItr() {
   1038             // set to initial position
   1039             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
   1040             lock.lock();
   1041             try {
   1042                 next = firstNode();
   1043                 nextItem = (next == null) ? null : next.item;
   1044             } finally {
   1045                 lock.unlock();
   1046             }
   1047         }
   1048 
   1049         /**
   1050          * Returns the successor node of the given non-null, but
   1051          * possibly previously deleted, node.
   1052          */
   1053         private Node<E> succ(Node<E> n) {
   1054             // Chains of deleted nodes ending in null or self-links
   1055             // are possible if multiple interior nodes are removed.
   1056             for (;;) {
   1057                 Node<E> s = nextNode(n);
   1058                 if (s == null)
   1059                     return null;
   1060                 else if (s.item != null)
   1061                     return s;
   1062                 else if (s == n)
   1063                     return firstNode();
   1064                 else
   1065                     n = s;
   1066             }
   1067         }
   1068 
   1069         /**
   1070          * Advances next.
   1071          */
   1072         void advance() {
   1073             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
   1074             lock.lock();
   1075             try {
   1076                 // assert next != null;
   1077                 next = succ(next);
   1078                 nextItem = (next == null) ? null : next.item;
   1079             } finally {
   1080                 lock.unlock();
   1081             }
   1082         }
   1083 
   1084         public boolean hasNext() {
   1085             return next != null;
   1086         }
   1087 
   1088         public E next() {
   1089             if (next == null)
   1090                 throw new NoSuchElementException();
   1091             lastRet = next;
   1092             E x = nextItem;
   1093             advance();
   1094             return x;
   1095         }
   1096 
   1097         public void remove() {
   1098             Node<E> n = lastRet;
   1099             if (n == null)
   1100                 throw new IllegalStateException();
   1101             lastRet = null;
   1102             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
   1103             lock.lock();
   1104             try {
   1105                 if (n.item != null)
   1106                     unlink(n);
   1107             } finally {
   1108                 lock.unlock();
   1109             }
   1110         }
   1111     }
   1112 
   1113     /** Forward iterator */
   1114     private class Itr extends AbstractItr {
   1115         Node<E> firstNode() { return first; }
   1116         Node<E> nextNode(Node<E> n) { return n.next; }
   1117     }
   1118 
   1119     /** Descending iterator */
   1120     private class DescendingItr extends AbstractItr {
   1121         Node<E> firstNode() { return last; }
   1122         Node<E> nextNode(Node<E> n) { return n.prev; }
   1123     }
   1124 
   1125     /**
   1126      * Saves the state of this deque to a stream (that is, serializes it).
   1127      *
   1128      * @serialData The capacity (int), followed by elements (each an
   1129      * {@code Object}) in the proper order, followed by a null
   1130      * @param s the stream
   1131      */
   1132     private void writeObject(java.io.ObjectOutputStream s)
   1133         throws java.io.IOException {
   1134         final ReentrantLock lock = this.lock;
   1135         lock.lock();
   1136         try {
   1137             // Write out capacity and any hidden stuff
   1138             s.defaultWriteObject();
   1139             // Write out all elements in the proper order.
   1140             for (Node<E> p = first; p != null; p = p.next)
   1141                 s.writeObject(p.item);
   1142             // Use trailing null as sentinel
   1143             s.writeObject(null);
   1144         } finally {
   1145             lock.unlock();
   1146         }
   1147     }
   1148 
   1149     /**
   1150      * Reconstitutes this deque from a stream (that is, deserializes it).
   1151      *
   1152      * @param s the stream
   1153      */
   1154     private void readObject(java.io.ObjectInputStream s)
   1155         throws java.io.IOException, ClassNotFoundException {
   1156         s.defaultReadObject();
   1157         count = 0;
   1158         first = null;
   1159         last = null;
   1160         // Read in all elements and place in queue
   1161         for (;;) {
   1162             @SuppressWarnings("unchecked")
   1163             E item = (E)s.readObject();
   1164             if (item == null)
   1165                 break;
   1166             add(item);
   1167         }
   1168     }
   1169 
   1170 }
   1171