Home | History | Annotate | Download | only in linux
      1 /*
      2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
      3  */
      4 
      5 				/* this file has an amazingly stupid
      6 				   name, yura please fix it to be
      7 				   reiserfs.h, and merge all the rest
      8 				   of our .h files that are in this
      9 				   directory into it.  */
     10 
     11 #ifndef _LINUX_REISER_FS_H
     12 #define _LINUX_REISER_FS_H
     13 
     14 #include <linux/types.h>
     15 #include <linux/magic.h>
     16 
     17 
     18 struct fid;
     19 
     20 /*
     21  *  include/linux/reiser_fs.h
     22  *
     23  *  Reiser File System constants and structures
     24  *
     25  */
     26 
     27 /* in reading the #defines, it may help to understand that they employ
     28    the following abbreviations:
     29 
     30    B = Buffer
     31    I = Item header
     32    H = Height within the tree (should be changed to LEV)
     33    N = Number of the item in the node
     34    STAT = stat data
     35    DEH = Directory Entry Header
     36    EC = Entry Count
     37    E = Entry number
     38    UL = Unsigned Long
     39    BLKH = BLocK Header
     40    UNFM = UNForMatted node
     41    DC = Disk Child
     42    P = Path
     43 
     44    These #defines are named by concatenating these abbreviations,
     45    where first comes the arguments, and last comes the return value,
     46    of the macro.
     47 
     48 */
     49 
     50 #define USE_INODE_GENERATION_COUNTER
     51 
     52 #define REISERFS_PREALLOCATE
     53 #define DISPLACE_NEW_PACKING_LOCALITIES
     54 #define PREALLOCATION_SIZE 9
     55 
     56 /* n must be power of 2 */
     57 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
     58 
     59 // to be ok for alpha and others we have to align structures to 8 byte
     60 // boundary.
     61 // FIXME: do not change 4 by anything else: there is code which relies on that
     62 #define ROUND_UP(x) _ROUND_UP(x,8LL)
     63 
     64 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
     65 ** messages.
     66 */
     67 #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
     68 
     69 void reiserfs_warning(struct super_block *s, const char *fmt, ...);
     70 /* assertions handling */
     71 
     72 /** always check a condition and panic if it's false. */
     73 #define __RASSERT( cond, scond, format, args... )					\
     74 if( !( cond ) ) 								\
     75   reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at "	\
     76 		  __FILE__ ":%i:%s: " format "\n",		\
     77 		  in_interrupt() ? -1 : task_pid_nr(current), __LINE__ , __FUNCTION__ , ##args )
     78 
     79 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
     80 
     81 #if defined( CONFIG_REISERFS_CHECK )
     82 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
     83 #else
     84 #define RFALSE( cond, format, args... ) do {;} while( 0 )
     85 #endif
     86 
     87 #define CONSTF
     88 /*
     89  * Disk Data Structures
     90  */
     91 
     92 /***************************************************************************/
     93 /*                             SUPER BLOCK                                 */
     94 /***************************************************************************/
     95 
     96 /*
     97  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
     98  * the version in RAM is part of a larger structure containing fields never written to disk.
     99  */
    100 #define UNSET_HASH 0		// read_super will guess about, what hash names
    101 		     // in directories were sorted with
    102 #define TEA_HASH  1
    103 #define YURA_HASH 2
    104 #define R5_HASH   3
    105 #define DEFAULT_HASH R5_HASH
    106 
    107 struct journal_params {
    108 	__le32 jp_journal_1st_block;	/* where does journal start from on its
    109 					 * device */
    110 	__le32 jp_journal_dev;	/* journal device st_rdev */
    111 	__le32 jp_journal_size;	/* size of the journal */
    112 	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
    113 	__le32 jp_journal_magic;	/* random value made on fs creation (this
    114 					 * was sb_journal_block_count) */
    115 	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
    116 					 * trans */
    117 	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
    118 						 * commit be */
    119 	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
    120 						 * be */
    121 };
    122 
    123 /* this is the super from 3.5.X, where X >= 10 */
    124 struct reiserfs_super_block_v1 {
    125 	__le32 s_block_count;	/* blocks count         */
    126 	__le32 s_free_blocks;	/* free blocks count    */
    127 	__le32 s_root_block;	/* root block number    */
    128 	struct journal_params s_journal;
    129 	__le16 s_blocksize;	/* block size */
    130 	__le16 s_oid_maxsize;	/* max size of object id array, see
    131 				 * get_objectid() commentary  */
    132 	__le16 s_oid_cursize;	/* current size of object id array */
    133 	__le16 s_umount_state;	/* this is set to 1 when filesystem was
    134 				 * umounted, to 2 - when not */
    135 	char s_magic[10];	/* reiserfs magic string indicates that
    136 				 * file system is reiserfs:
    137 				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
    138 	__le16 s_fs_state;	/* it is set to used by fsck to mark which
    139 				 * phase of rebuilding is done */
    140 	__le32 s_hash_function_code;	/* indicate, what hash function is being use
    141 					 * to sort names in a directory*/
    142 	__le16 s_tree_height;	/* height of disk tree */
    143 	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
    144 				 * each block of file system */
    145 	__le16 s_version;	/* this field is only reliable on filesystem
    146 				 * with non-standard journal */
    147 	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
    148 					 * device, we need to keep after
    149 					 * making fs with non-standard journal */
    150 } __attribute__ ((__packed__));
    151 
    152 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
    153 
    154 /* this is the on disk super block */
    155 struct reiserfs_super_block {
    156 	struct reiserfs_super_block_v1 s_v1;
    157 	__le32 s_inode_generation;
    158 	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
    159 	unsigned char s_uuid[16];	/* filesystem unique identifier */
    160 	unsigned char s_label[16];	/* filesystem volume label */
    161 	char s_unused[88];	/* zero filled by mkreiserfs and
    162 				 * reiserfs_convert_objectid_map_v1()
    163 				 * so any additions must be updated
    164 				 * there as well. */
    165 } __attribute__ ((__packed__));
    166 
    167 #define SB_SIZE (sizeof(struct reiserfs_super_block))
    168 
    169 #define REISERFS_VERSION_1 0
    170 #define REISERFS_VERSION_2 2
    171 
    172 // on-disk super block fields converted to cpu form
    173 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
    174 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
    175 #define SB_BLOCKSIZE(s) \
    176         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
    177 #define SB_BLOCK_COUNT(s) \
    178         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
    179 #define SB_FREE_BLOCKS(s) \
    180         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
    181 #define SB_REISERFS_MAGIC(s) \
    182         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
    183 #define SB_ROOT_BLOCK(s) \
    184         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
    185 #define SB_TREE_HEIGHT(s) \
    186         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
    187 #define SB_REISERFS_STATE(s) \
    188         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
    189 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
    190 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
    191 
    192 #define PUT_SB_BLOCK_COUNT(s, val) \
    193    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
    194 #define PUT_SB_FREE_BLOCKS(s, val) \
    195    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
    196 #define PUT_SB_ROOT_BLOCK(s, val) \
    197    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
    198 #define PUT_SB_TREE_HEIGHT(s, val) \
    199    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
    200 #define PUT_SB_REISERFS_STATE(s, val) \
    201    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
    202 #define PUT_SB_VERSION(s, val) \
    203    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
    204 #define PUT_SB_BMAP_NR(s, val) \
    205    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
    206 
    207 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
    208 #define SB_ONDISK_JOURNAL_SIZE(s) \
    209          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
    210 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
    211          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
    212 #define SB_ONDISK_JOURNAL_DEVICE(s) \
    213          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
    214 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
    215          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
    216 
    217 #define is_block_in_log_or_reserved_area(s, block) \
    218          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
    219          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
    220          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
    221          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
    222 
    223 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
    224 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
    225 int is_reiserfs_jr(struct reiserfs_super_block *rs);
    226 
    227 /* ReiserFS leaves the first 64k unused, so that partition labels have
    228    enough space.  If someone wants to write a fancy bootloader that
    229    needs more than 64k, let us know, and this will be increased in size.
    230    This number must be larger than than the largest block size on any
    231    platform, or code will break.  -Hans */
    232 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
    233 #define REISERFS_FIRST_BLOCK unused_define
    234 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
    235 
    236 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
    237 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
    238 
    239 // reiserfs internal error code (used by search_by_key adn fix_nodes))
    240 #define CARRY_ON      0
    241 #define REPEAT_SEARCH -1
    242 #define IO_ERROR      -2
    243 #define NO_DISK_SPACE -3
    244 #define NO_BALANCING_NEEDED  (-4)
    245 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
    246 #define QUOTA_EXCEEDED -6
    247 
    248 typedef __u32 b_blocknr_t;
    249 typedef __le32 unp_t;
    250 
    251 struct unfm_nodeinfo {
    252 	unp_t unfm_nodenum;
    253 	unsigned short unfm_freespace;
    254 };
    255 
    256 /* there are two formats of keys: 3.5 and 3.6
    257  */
    258 #define KEY_FORMAT_3_5 0
    259 #define KEY_FORMAT_3_6 1
    260 
    261 /* there are two stat datas */
    262 #define STAT_DATA_V1 0
    263 #define STAT_DATA_V2 1
    264 
    265 static __inline__ struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
    266 {
    267 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
    268 }
    269 
    270 static __inline__ struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
    271 {
    272 	return sb->s_fs_info;
    273 }
    274 
    275 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
    276  * which overflows on large file systems. */
    277 static __inline__ u32 reiserfs_bmap_count(struct super_block *sb)
    278 {
    279 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
    280 }
    281 
    282 static __inline__ int bmap_would_wrap(unsigned bmap_nr)
    283 {
    284 	return bmap_nr > ((1LL << 16) - 1);
    285 }
    286 
    287 /** this says about version of key of all items (but stat data) the
    288     object consists of */
    289 #define get_inode_item_key_version( inode )                                    \
    290     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
    291 
    292 #define set_inode_item_key_version( inode, version )                           \
    293          ({ if((version)==KEY_FORMAT_3_6)                                      \
    294                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
    295             else                                                               \
    296                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
    297 
    298 #define get_inode_sd_version(inode)                                            \
    299     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
    300 
    301 #define set_inode_sd_version(inode, version)                                   \
    302          ({ if((version)==STAT_DATA_V2)                                        \
    303                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
    304             else                                                               \
    305                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
    306 
    307 /* This is an aggressive tail suppression policy, I am hoping it
    308    improves our benchmarks. The principle behind it is that percentage
    309    space saving is what matters, not absolute space saving.  This is
    310    non-intuitive, but it helps to understand it if you consider that the
    311    cost to access 4 blocks is not much more than the cost to access 1
    312    block, if you have to do a seek and rotate.  A tail risks a
    313    non-linear disk access that is significant as a percentage of total
    314    time cost for a 4 block file and saves an amount of space that is
    315    less significant as a percentage of space, or so goes the hypothesis.
    316    -Hans */
    317 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
    318 (\
    319   (!(n_tail_size)) || \
    320   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
    321    ( (n_file_size) >= (n_block_size) * 4 ) || \
    322    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
    323      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
    324    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
    325      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
    326    ( ( (n_file_size) >= (n_block_size) ) && \
    327      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
    328 )
    329 
    330 /* Another strategy for tails, this one means only create a tail if all the
    331    file would fit into one DIRECT item.
    332    Primary intention for this one is to increase performance by decreasing
    333    seeking.
    334 */
    335 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
    336 (\
    337   (!(n_tail_size)) || \
    338   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
    339 )
    340 
    341 /*
    342  * values for s_umount_state field
    343  */
    344 #define REISERFS_VALID_FS    1
    345 #define REISERFS_ERROR_FS    2
    346 
    347 //
    348 // there are 5 item types currently
    349 //
    350 #define TYPE_STAT_DATA 0
    351 #define TYPE_INDIRECT 1
    352 #define TYPE_DIRECT 2
    353 #define TYPE_DIRENTRY 3
    354 #define TYPE_MAXTYPE 3
    355 #define TYPE_ANY 15		// FIXME: comment is required
    356 
    357 /***************************************************************************/
    358 /*                       KEY & ITEM HEAD                                   */
    359 /***************************************************************************/
    360 
    361 //
    362 // directories use this key as well as old files
    363 //
    364 struct offset_v1 {
    365 	__le32 k_offset;
    366 	__le32 k_uniqueness;
    367 } __attribute__ ((__packed__));
    368 
    369 struct offset_v2 {
    370 	__le64 v;
    371 } __attribute__ ((__packed__));
    372 
    373 static __inline__ __u16 offset_v2_k_type(const struct offset_v2 *v2)
    374 {
    375 	__u8 type = le64_to_cpu(v2->v) >> 60;
    376 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
    377 }
    378 
    379 static __inline__ void set_offset_v2_k_type(struct offset_v2 *v2, int type)
    380 {
    381 	v2->v =
    382 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
    383 }
    384 
    385 static __inline__ loff_t offset_v2_k_offset(const struct offset_v2 *v2)
    386 {
    387 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
    388 }
    389 
    390 static __inline__ void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
    391 {
    392 	offset &= (~0ULL >> 4);
    393 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
    394 }
    395 
    396 /* Key of an item determines its location in the S+tree, and
    397    is composed of 4 components */
    398 struct reiserfs_key {
    399 	__le32 k_dir_id;	/* packing locality: by default parent
    400 				   directory object id */
    401 	__le32 k_objectid;	/* object identifier */
    402 	union {
    403 		struct offset_v1 k_offset_v1;
    404 		struct offset_v2 k_offset_v2;
    405 	} __attribute__ ((__packed__)) u;
    406 } __attribute__ ((__packed__));
    407 
    408 struct in_core_key {
    409 	__u32 k_dir_id;		/* packing locality: by default parent
    410 				   directory object id */
    411 	__u32 k_objectid;	/* object identifier */
    412 	__u64 k_offset;
    413 	__u8 k_type;
    414 };
    415 
    416 struct cpu_key {
    417 	struct in_core_key on_disk_key;
    418 	int version;
    419 	int key_length;		/* 3 in all cases but direct2indirect and
    420 				   indirect2direct conversion */
    421 };
    422 
    423 /* Our function for comparing keys can compare keys of different
    424    lengths.  It takes as a parameter the length of the keys it is to
    425    compare.  These defines are used in determining what is to be passed
    426    to it as that parameter. */
    427 #define REISERFS_FULL_KEY_LEN     4
    428 #define REISERFS_SHORT_KEY_LEN    2
    429 
    430 /* The result of the key compare */
    431 #define FIRST_GREATER 1
    432 #define SECOND_GREATER -1
    433 #define KEYS_IDENTICAL 0
    434 #define KEY_FOUND 1
    435 #define KEY_NOT_FOUND 0
    436 
    437 #define KEY_SIZE (sizeof(struct reiserfs_key))
    438 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
    439 
    440 /* return values for search_by_key and clones */
    441 #define ITEM_FOUND 1
    442 #define ITEM_NOT_FOUND 0
    443 #define ENTRY_FOUND 1
    444 #define ENTRY_NOT_FOUND 0
    445 #define DIRECTORY_NOT_FOUND -1
    446 #define REGULAR_FILE_FOUND -2
    447 #define DIRECTORY_FOUND -3
    448 #define BYTE_FOUND 1
    449 #define BYTE_NOT_FOUND 0
    450 #define FILE_NOT_FOUND -1
    451 
    452 #define POSITION_FOUND 1
    453 #define POSITION_NOT_FOUND 0
    454 
    455 // return values for reiserfs_find_entry and search_by_entry_key
    456 #define NAME_FOUND 1
    457 #define NAME_NOT_FOUND 0
    458 #define GOTO_PREVIOUS_ITEM 2
    459 #define NAME_FOUND_INVISIBLE 3
    460 
    461 /*  Everything in the filesystem is stored as a set of items.  The
    462     item head contains the key of the item, its free space (for
    463     indirect items) and specifies the location of the item itself
    464     within the block.  */
    465 
    466 struct item_head {
    467 	/* Everything in the tree is found by searching for it based on
    468 	 * its key.*/
    469 	struct reiserfs_key ih_key;
    470 	union {
    471 		/* The free space in the last unformatted node of an
    472 		   indirect item if this is an indirect item.  This
    473 		   equals 0xFFFF iff this is a direct item or stat data
    474 		   item. Note that the key, not this field, is used to
    475 		   determine the item type, and thus which field this
    476 		   union contains. */
    477 		__le16 ih_free_space_reserved;
    478 		/* Iff this is a directory item, this field equals the
    479 		   number of directory entries in the directory item. */
    480 		__le16 ih_entry_count;
    481 	} __attribute__ ((__packed__)) u;
    482 	__le16 ih_item_len;	/* total size of the item body */
    483 	__le16 ih_item_location;	/* an offset to the item body
    484 					 * within the block */
    485 	__le16 ih_version;	/* 0 for all old items, 2 for new
    486 				   ones. Highest bit is set by fsck
    487 				   temporary, cleaned after all
    488 				   done */
    489 } __attribute__ ((__packed__));
    490 /* size of item header     */
    491 #define IH_SIZE (sizeof(struct item_head))
    492 
    493 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
    494 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
    495 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
    496 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
    497 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
    498 
    499 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
    500 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
    501 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
    502 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
    503 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
    504 
    505 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
    506 
    507 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
    508 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
    509 
    510 /* these operate on indirect items, where you've got an array of ints
    511 ** at a possibly unaligned location.  These are a noop on ia32
    512 **
    513 ** p is the array of __u32, i is the index into the array, v is the value
    514 ** to store there.
    515 */
    516 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
    517 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
    518 
    519 //
    520 // in old version uniqueness field shows key type
    521 //
    522 #define V1_SD_UNIQUENESS 0
    523 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
    524 #define V1_DIRECT_UNIQUENESS 0xffffffff
    525 #define V1_DIRENTRY_UNIQUENESS 500
    526 #define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
    527 
    528 //
    529 // here are conversion routines
    530 //
    531 static __inline__ int uniqueness2type(__u32 uniqueness) CONSTF;
    532 static __inline__ int uniqueness2type(__u32 uniqueness)
    533 {
    534 	switch ((int)uniqueness) {
    535 	case V1_SD_UNIQUENESS:
    536 		return TYPE_STAT_DATA;
    537 	case V1_INDIRECT_UNIQUENESS:
    538 		return TYPE_INDIRECT;
    539 	case V1_DIRECT_UNIQUENESS:
    540 		return TYPE_DIRECT;
    541 	case V1_DIRENTRY_UNIQUENESS:
    542 		return TYPE_DIRENTRY;
    543 	default:
    544 		reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
    545 				 uniqueness);
    546 	case V1_ANY_UNIQUENESS:
    547 		return TYPE_ANY;
    548 	}
    549 }
    550 
    551 static __inline__ __u32 type2uniqueness(int type) CONSTF;
    552 static __inline__ __u32 type2uniqueness(int type)
    553 {
    554 	switch (type) {
    555 	case TYPE_STAT_DATA:
    556 		return V1_SD_UNIQUENESS;
    557 	case TYPE_INDIRECT:
    558 		return V1_INDIRECT_UNIQUENESS;
    559 	case TYPE_DIRECT:
    560 		return V1_DIRECT_UNIQUENESS;
    561 	case TYPE_DIRENTRY:
    562 		return V1_DIRENTRY_UNIQUENESS;
    563 	default:
    564 		reiserfs_warning(NULL, "vs-501: unknown type %d", type);
    565 	case TYPE_ANY:
    566 		return V1_ANY_UNIQUENESS;
    567 	}
    568 }
    569 
    570 //
    571 // key is pointer to on disk key which is stored in le, result is cpu,
    572 // there is no way to get version of object from key, so, provide
    573 // version to these defines
    574 //
    575 static __inline__ loff_t le_key_k_offset(int version,
    576 				     const struct reiserfs_key *key)
    577 {
    578 	return (version == KEY_FORMAT_3_5) ?
    579 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
    580 	    offset_v2_k_offset(&(key->u.k_offset_v2));
    581 }
    582 
    583 static __inline__ loff_t le_ih_k_offset(const struct item_head *ih)
    584 {
    585 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
    586 }
    587 
    588 static __inline__ loff_t le_key_k_type(int version, const struct reiserfs_key *key)
    589 {
    590 	return (version == KEY_FORMAT_3_5) ?
    591 	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
    592 	    offset_v2_k_type(&(key->u.k_offset_v2));
    593 }
    594 
    595 static __inline__ loff_t le_ih_k_type(const struct item_head *ih)
    596 {
    597 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
    598 }
    599 
    600 static __inline__ void set_le_key_k_offset(int version, struct reiserfs_key *key,
    601 				       loff_t offset)
    602 {
    603 	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
    604 	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
    605 }
    606 
    607 static __inline__ void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
    608 {
    609 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
    610 }
    611 
    612 static __inline__ void set_le_key_k_type(int version, struct reiserfs_key *key,
    613 				     int type)
    614 {
    615 	(version == KEY_FORMAT_3_5) ?
    616 	    (void)(key->u.k_offset_v1.k_uniqueness =
    617 		   cpu_to_le32(type2uniqueness(type)))
    618 	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
    619 }
    620 static __inline__ void set_le_ih_k_type(struct item_head *ih, int type)
    621 {
    622 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
    623 }
    624 
    625 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
    626 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
    627 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
    628 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
    629 
    630 //
    631 // item header has version.
    632 //
    633 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
    634 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
    635 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
    636 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
    637 
    638 //
    639 // key is pointer to cpu key, result is cpu
    640 //
    641 static __inline__ loff_t cpu_key_k_offset(const struct cpu_key *key)
    642 {
    643 	return key->on_disk_key.k_offset;
    644 }
    645 
    646 static __inline__ loff_t cpu_key_k_type(const struct cpu_key *key)
    647 {
    648 	return key->on_disk_key.k_type;
    649 }
    650 
    651 static __inline__ void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
    652 {
    653 	key->on_disk_key.k_offset = offset;
    654 }
    655 
    656 static __inline__ void set_cpu_key_k_type(struct cpu_key *key, int type)
    657 {
    658 	key->on_disk_key.k_type = type;
    659 }
    660 
    661 static __inline__ void cpu_key_k_offset_dec(struct cpu_key *key)
    662 {
    663 	key->on_disk_key.k_offset--;
    664 }
    665 
    666 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
    667 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
    668 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
    669 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
    670 
    671 /* are these used ? */
    672 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
    673 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
    674 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
    675 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
    676 
    677 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
    678     ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
    679           I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
    680 
    681 /* maximal length of item */
    682 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
    683 #define MIN_ITEM_LEN 1
    684 
    685 /* object identifier for root dir */
    686 #define REISERFS_ROOT_OBJECTID 2
    687 #define REISERFS_ROOT_PARENT_OBJECTID 1
    688 extern struct reiserfs_key root_key;
    689 
    690 /*
    691  * Picture represents a leaf of the S+tree
    692  *  ______________________________________________________
    693  * |      |  Array of     |                   |           |
    694  * |Block |  Object-Item  |      F r e e      |  Objects- |
    695  * | head |  Headers      |     S p a c e     |   Items   |
    696  * |______|_______________|___________________|___________|
    697  */
    698 
    699 /* Header of a disk block.  More precisely, header of a formatted leaf
    700    or internal node, and not the header of an unformatted node. */
    701 struct block_head {
    702 	__le16 blk_level;	/* Level of a block in the tree. */
    703 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
    704 	__le16 blk_free_space;	/* Block free space in bytes. */
    705 	__le16 blk_reserved;
    706 	/* dump this in v4/planA */
    707 	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
    708 };
    709 
    710 #define BLKH_SIZE                     (sizeof(struct block_head))
    711 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
    712 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
    713 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
    714 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
    715 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
    716 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
    717 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
    718 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
    719 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
    720 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
    721 
    722 /*
    723  * values for blk_level field of the struct block_head
    724  */
    725 
    726 #define FREE_LEVEL 0		/* when node gets removed from the tree its
    727 				   blk_level is set to FREE_LEVEL. It is then
    728 				   used to see whether the node is still in the
    729 				   tree */
    730 
    731 #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
    732 
    733 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
    734 #define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
    735 /* Number of items that are in buffer. */
    736 #define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
    737 #define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
    738 #define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
    739 
    740 #define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
    741 #define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
    742 #define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
    743 
    744 /* Get right delimiting key. -- little endian */
    745 #define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
    746 
    747 /* Does the buffer contain a disk leaf. */
    748 #define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
    749 
    750 /* Does the buffer contain a disk internal node */
    751 #define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
    752                                             && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
    753 
    754 /***************************************************************************/
    755 /*                             STAT DATA                                   */
    756 /***************************************************************************/
    757 
    758 //
    759 // old stat data is 32 bytes long. We are going to distinguish new one by
    760 // different size
    761 //
    762 struct stat_data_v1 {
    763 	__le16 sd_mode;		/* file type, permissions */
    764 	__le16 sd_nlink;	/* number of hard links */
    765 	__le16 sd_uid;		/* owner */
    766 	__le16 sd_gid;		/* group */
    767 	__le32 sd_size;		/* file size */
    768 	__le32 sd_atime;	/* time of last access */
    769 	__le32 sd_mtime;	/* time file was last modified  */
    770 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
    771 	union {
    772 		__le32 sd_rdev;
    773 		__le32 sd_blocks;	/* number of blocks file uses */
    774 	} __attribute__ ((__packed__)) u;
    775 	__le32 sd_first_direct_byte;	/* first byte of file which is stored
    776 					   in a direct item: except that if it
    777 					   equals 1 it is a symlink and if it
    778 					   equals ~(__u32)0 there is no
    779 					   direct item.  The existence of this
    780 					   field really grates on me. Let's
    781 					   replace it with a macro based on
    782 					   sd_size and our tail suppression
    783 					   policy.  Someday.  -Hans */
    784 } __attribute__ ((__packed__));
    785 
    786 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
    787 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
    788 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
    789 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
    790 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
    791 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
    792 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
    793 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
    794 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
    795 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
    796 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
    797 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
    798 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
    799 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
    800 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
    801 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
    802 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
    803 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
    804 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
    805 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
    806 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
    807 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
    808 #define sd_v1_first_direct_byte(sdp) \
    809                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
    810 #define set_sd_v1_first_direct_byte(sdp,v) \
    811                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
    812 
    813 /* inode flags stored in sd_attrs (nee sd_reserved) */
    814 
    815 /* we want common flags to have the same values as in ext2,
    816    so chattr(1) will work without problems */
    817 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
    818 #define REISERFS_APPEND_FL    FS_APPEND_FL
    819 #define REISERFS_SYNC_FL      FS_SYNC_FL
    820 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
    821 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
    822 #define REISERFS_SECRM_FL     FS_SECRM_FL
    823 #define REISERFS_UNRM_FL      FS_UNRM_FL
    824 #define REISERFS_COMPR_FL     FS_COMPR_FL
    825 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
    826 
    827 /* persistent flags that file inherits from the parent directory */
    828 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
    829 				REISERFS_SYNC_FL |	\
    830 				REISERFS_NOATIME_FL |	\
    831 				REISERFS_NODUMP_FL |	\
    832 				REISERFS_SECRM_FL |	\
    833 				REISERFS_COMPR_FL |	\
    834 				REISERFS_NOTAIL_FL )
    835 
    836 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
    837    address blocks) */
    838 struct stat_data {
    839 	__le16 sd_mode;		/* file type, permissions */
    840 	__le16 sd_attrs;	/* persistent inode flags */
    841 	__le32 sd_nlink;	/* number of hard links */
    842 	__le64 sd_size;		/* file size */
    843 	__le32 sd_uid;		/* owner */
    844 	__le32 sd_gid;		/* group */
    845 	__le32 sd_atime;	/* time of last access */
    846 	__le32 sd_mtime;	/* time file was last modified  */
    847 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
    848 	__le32 sd_blocks;
    849 	union {
    850 		__le32 sd_rdev;
    851 		__le32 sd_generation;
    852 		//__le32 sd_first_direct_byte;
    853 		/* first byte of file which is stored in a
    854 		   direct item: except that if it equals 1
    855 		   it is a symlink and if it equals
    856 		   ~(__u32)0 there is no direct item.  The
    857 		   existence of this field really grates
    858 		   on me. Let's replace it with a macro
    859 		   based on sd_size and our tail
    860 		   suppression policy? */
    861 	} __attribute__ ((__packed__)) u;
    862 } __attribute__ ((__packed__));
    863 //
    864 // this is 44 bytes long
    865 //
    866 #define SD_SIZE (sizeof(struct stat_data))
    867 #define SD_V2_SIZE              SD_SIZE
    868 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
    869 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
    870 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
    871 /* sd_reserved */
    872 /* set_sd_reserved */
    873 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
    874 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
    875 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
    876 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
    877 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
    878 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
    879 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
    880 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
    881 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
    882 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
    883 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
    884 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
    885 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
    886 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
    887 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
    888 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
    889 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
    890 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
    891 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
    892 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
    893 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
    894 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
    895 
    896 /***************************************************************************/
    897 /*                      DIRECTORY STRUCTURE                                */
    898 /***************************************************************************/
    899 /*
    900    Picture represents the structure of directory items
    901    ________________________________________________
    902    |  Array of     |   |     |        |       |   |
    903    | directory     |N-1| N-2 | ....   |   1st |0th|
    904    | entry headers |   |     |        |       |   |
    905    |_______________|___|_____|________|_______|___|
    906                     <----   directory entries         ------>
    907 
    908  First directory item has k_offset component 1. We store "." and ".."
    909  in one item, always, we never split "." and ".." into differing
    910  items.  This makes, among other things, the code for removing
    911  directories simpler. */
    912 #define SD_OFFSET  0
    913 #define SD_UNIQUENESS 0
    914 #define DOT_OFFSET 1
    915 #define DOT_DOT_OFFSET 2
    916 #define DIRENTRY_UNIQUENESS 500
    917 
    918 /* */
    919 #define FIRST_ITEM_OFFSET 1
    920 
    921 /*
    922    Q: How to get key of object pointed to by entry from entry?
    923 
    924    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
    925       of object, entry points to */
    926 
    927 /* NOT IMPLEMENTED:
    928    Directory will someday contain stat data of object */
    929 
    930 struct reiserfs_de_head {
    931 	__le32 deh_offset;	/* third component of the directory entry key */
    932 	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
    933 				   by directory entry */
    934 	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
    935 	__le16 deh_location;	/* offset of name in the whole item */
    936 	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
    937 				   entry is hidden (unlinked) */
    938 } __attribute__ ((__packed__));
    939 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
    940 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
    941 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
    942 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
    943 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
    944 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
    945 
    946 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
    947 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
    948 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
    949 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
    950 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
    951 
    952 /* empty directory contains two entries "." and ".." and their headers */
    953 #define EMPTY_DIR_SIZE \
    954 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
    955 
    956 /* old format directories have this size when empty */
    957 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
    958 
    959 #define DEH_Statdata 0		/* not used now */
    960 #define DEH_Visible 2
    961 
    962 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
    963 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
    964 #   define ADDR_UNALIGNED_BITS  (3)
    965 #endif
    966 
    967 /* These are only used to manipulate deh_state.
    968  * Because of this, we'll use the ext2_ bit routines,
    969  * since they are little endian */
    970 #ifdef ADDR_UNALIGNED_BITS
    971 
    972 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
    973 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
    974 
    975 #   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
    976 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
    977 #   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
    978 
    979 #else
    980 
    981 #   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
    982 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
    983 #   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
    984 
    985 #endif
    986 
    987 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
    988 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
    989 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
    990 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
    991 
    992 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
    993 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
    994 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
    995 
    996 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
    997 				   __le32 par_dirid, __le32 par_objid);
    998 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
    999 				__le32 par_dirid, __le32 par_objid);
   1000 
   1001 /* array of the entry headers */
   1002  /* get item body */
   1003 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
   1004 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
   1005 
   1006 /* length of the directory entry in directory item. This define
   1007    calculates length of i-th directory entry using directory entry
   1008    locations from dir entry head. When it calculates length of 0-th
   1009    directory entry, it uses length of whole item in place of entry
   1010    location of the non-existent following entry in the calculation.
   1011    See picture above.*/
   1012 /*
   1013 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
   1014 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
   1015 */
   1016 static __inline__ int entry_length(const struct buffer_head *bh,
   1017 			       const struct item_head *ih, int pos_in_item)
   1018 {
   1019 	struct reiserfs_de_head *deh;
   1020 
   1021 	deh = B_I_DEH(bh, ih) + pos_in_item;
   1022 	if (pos_in_item)
   1023 		return deh_location(deh - 1) - deh_location(deh);
   1024 
   1025 	return ih_item_len(ih) - deh_location(deh);
   1026 }
   1027 
   1028 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
   1029 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
   1030 
   1031 /* name by bh, ih and entry_num */
   1032 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
   1033 
   1034 // two entries per block (at least)
   1035 #define REISERFS_MAX_NAME(block_size) 255
   1036 
   1037 /* this structure is used for operations on directory entries. It is
   1038    not a disk structure. */
   1039 /* When reiserfs_find_entry or search_by_entry_key find directory
   1040    entry, they return filled reiserfs_dir_entry structure */
   1041 struct reiserfs_dir_entry {
   1042 	struct buffer_head *de_bh;
   1043 	int de_item_num;
   1044 	struct item_head *de_ih;
   1045 	int de_entry_num;
   1046 	struct reiserfs_de_head *de_deh;
   1047 	int de_entrylen;
   1048 	int de_namelen;
   1049 	char *de_name;
   1050 	unsigned long *de_gen_number_bit_string;
   1051 
   1052 	__u32 de_dir_id;
   1053 	__u32 de_objectid;
   1054 
   1055 	struct cpu_key de_entry_key;
   1056 };
   1057 
   1058 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
   1059 
   1060 /* pointer to file name, stored in entry */
   1061 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
   1062 
   1063 /* length of name */
   1064 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
   1065 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
   1066 
   1067 /* hash value occupies bits from 7 up to 30 */
   1068 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
   1069 /* generation number occupies 7 bits starting from 0 up to 6 */
   1070 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
   1071 #define MAX_GENERATION_NUMBER  127
   1072 
   1073 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
   1074 
   1075 /*
   1076  * Picture represents an internal node of the reiserfs tree
   1077  *  ______________________________________________________
   1078  * |      |  Array of     |  Array of         |  Free     |
   1079  * |block |    keys       |  pointers         | space     |
   1080  * | head |      N        |      N+1          |           |
   1081  * |______|_______________|___________________|___________|
   1082  */
   1083 
   1084 /***************************************************************************/
   1085 /*                      DISK CHILD                                         */
   1086 /***************************************************************************/
   1087 /* Disk child pointer: The pointer from an internal node of the tree
   1088    to a node that is on disk. */
   1089 struct disk_child {
   1090 	__le32 dc_block_number;	/* Disk child's block number. */
   1091 	__le16 dc_size;		/* Disk child's used space.   */
   1092 	__le16 dc_reserved;
   1093 };
   1094 
   1095 #define DC_SIZE (sizeof(struct disk_child))
   1096 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
   1097 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
   1098 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
   1099 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
   1100 
   1101 /* Get disk child by buffer header and position in the tree node. */
   1102 #define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
   1103 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
   1104 
   1105 /* Get disk child number by buffer header and position in the tree node. */
   1106 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
   1107 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
   1108 
   1109  /* maximal value of field child_size in structure disk_child */
   1110  /* child size is the combined size of all items and their headers */
   1111 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
   1112 
   1113 /* amount of used space in buffer (not including block head) */
   1114 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
   1115 
   1116 /* max and min number of keys in internal node */
   1117 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
   1118 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
   1119 
   1120 /***************************************************************************/
   1121 /*                      PATH STRUCTURES AND DEFINES                        */
   1122 /***************************************************************************/
   1123 
   1124 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
   1125    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
   1126    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
   1127    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
   1128    position of the block_number of the next node if it is looking through an internal node.  If it
   1129    is looking through a leaf node bin_search will find the position of the item which has key either
   1130    equal to given key, or which is the maximal key less than the given key. */
   1131 
   1132 struct path_element {
   1133 	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
   1134 	int pe_position;	/* Position in the tree node which is placed in the */
   1135 	/* buffer above.                                  */
   1136 };
   1137 
   1138 #define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
   1139 #define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
   1140 #define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
   1141 
   1142 #define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
   1143 #define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
   1144 
   1145 /* We need to keep track of who the ancestors of nodes are.  When we
   1146    perform a search we record which nodes were visited while
   1147    descending the tree looking for the node we searched for. This list
   1148    of nodes is called the path.  This information is used while
   1149    performing balancing.  Note that this path information may become
   1150    invalid, and this means we must check it when using it to see if it
   1151    is still valid. You'll need to read search_by_key and the comments
   1152    in it, especially about decrement_counters_in_path(), to understand
   1153    this structure.
   1154 
   1155 Paths make the code so much harder to work with and debug.... An
   1156 enormous number of bugs are due to them, and trying to write or modify
   1157 code that uses them just makes my head hurt.  They are based on an
   1158 excessive effort to avoid disturbing the precious VFS code.:-( The
   1159 gods only know how we are going to SMP the code that uses them.
   1160 znodes are the way! */
   1161 
   1162 #define PATH_READA	0x1	/* do read ahead */
   1163 #define PATH_READA_BACK 0x2	/* read backwards */
   1164 
   1165 struct treepath {
   1166 	int path_length;	/* Length of the array above.   */
   1167 	int reada;
   1168 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
   1169 	int pos_in_item;
   1170 };
   1171 
   1172 #define pos_in_item(path) ((path)->pos_in_item)
   1173 
   1174 #define INITIALIZE_PATH(var) \
   1175 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
   1176 
   1177 /* Get path element by path and path position. */
   1178 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
   1179 
   1180 /* Get buffer header at the path by path and path position. */
   1181 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
   1182 
   1183 /* Get position in the element at the path by path and path position. */
   1184 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
   1185 
   1186 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
   1187 				/* you know, to the person who didn't
   1188 				   write this the macro name does not
   1189 				   at first suggest what it does.
   1190 				   Maybe POSITION_FROM_PATH_END? Or
   1191 				   maybe we should just focus on
   1192 				   dumping paths... -Hans */
   1193 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
   1194 
   1195 #define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
   1196 
   1197 /* in do_balance leaf has h == 0 in contrast with path structure,
   1198    where root has level == 0. That is why we need these defines */
   1199 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
   1200 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
   1201 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
   1202 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
   1203 
   1204 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
   1205 
   1206 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
   1207 #define get_ih(path) PATH_PITEM_HEAD(path)
   1208 #define get_item_pos(path) PATH_LAST_POSITION(path)
   1209 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
   1210 #define item_moved(ih,path) comp_items(ih, path)
   1211 #define path_changed(ih,path) comp_items (ih, path)
   1212 
   1213 /***************************************************************************/
   1214 /*                       MISC                                              */
   1215 /***************************************************************************/
   1216 
   1217 /* Size of pointer to the unformatted node. */
   1218 #define UNFM_P_SIZE (sizeof(unp_t))
   1219 #define UNFM_P_SHIFT 2
   1220 
   1221 // in in-core inode key is stored on le form
   1222 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
   1223 
   1224 #define MAX_UL_INT 0xffffffff
   1225 #define MAX_INT    0x7ffffff
   1226 #define MAX_US_INT 0xffff
   1227 
   1228 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
   1229 #define U32_MAX (~(__u32)0)
   1230 
   1231 static __inline__ loff_t max_reiserfs_offset(struct inode *inode)
   1232 {
   1233 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
   1234 		return (loff_t) U32_MAX;
   1235 
   1236 	return (loff_t) ((~(__u64) 0) >> 4);
   1237 }
   1238 
   1239 /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
   1240 #define MAX_KEY_OBJECTID	MAX_UL_INT
   1241 
   1242 #define MAX_B_NUM  MAX_UL_INT
   1243 #define MAX_FC_NUM MAX_US_INT
   1244 
   1245 /* the purpose is to detect overflow of an unsigned short */
   1246 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
   1247 
   1248 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
   1249 #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
   1250 #define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
   1251 
   1252 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
   1253 #define get_generation(s) atomic_read (&fs_generation(s))
   1254 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
   1255 #define __fs_changed(gen,s) (gen != get_generation (s))
   1256 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
   1257 
   1258 /***************************************************************************/
   1259 /*                  FIXATE NODES                                           */
   1260 /***************************************************************************/
   1261 
   1262 #define VI_TYPE_LEFT_MERGEABLE 1
   1263 #define VI_TYPE_RIGHT_MERGEABLE 2
   1264 
   1265 /* To make any changes in the tree we always first find node, that
   1266    contains item to be changed/deleted or place to insert a new
   1267    item. We call this node S. To do balancing we need to decide what
   1268    we will shift to left/right neighbor, or to a new node, where new
   1269    item will be etc. To make this analysis simpler we build virtual
   1270    node. Virtual node is an array of items, that will replace items of
   1271    node S. (For instance if we are going to delete an item, virtual
   1272    node does not contain it). Virtual node keeps information about
   1273    item sizes and types, mergeability of first and last items, sizes
   1274    of all entries in directory item. We use this array of items when
   1275    calculating what we can shift to neighbors and how many nodes we
   1276    have to have if we do not any shiftings, if we shift to left/right
   1277    neighbor or to both. */
   1278 struct virtual_item {
   1279 	int vi_index;		// index in the array of item operations
   1280 	unsigned short vi_type;	// left/right mergeability
   1281 	unsigned short vi_item_len;	/* length of item that it will have after balancing */
   1282 	struct item_head *vi_ih;
   1283 	const char *vi_item;	// body of item (old or new)
   1284 	const void *vi_new_data;	// 0 always but paste mode
   1285 	void *vi_uarea;		// item specific area
   1286 };
   1287 
   1288 struct virtual_node {
   1289 	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
   1290 	unsigned short vn_nr_item;	/* number of items in virtual node */
   1291 	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
   1292 	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
   1293 	short vn_affected_item_num;
   1294 	short vn_pos_in_item;
   1295 	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
   1296 	const void *vn_data;
   1297 	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
   1298 };
   1299 
   1300 /* used by directory items when creating virtual nodes */
   1301 struct direntry_uarea {
   1302 	int flags;
   1303 	__u16 entry_count;
   1304 	__u16 entry_sizes[1];
   1305 } __attribute__ ((__packed__));
   1306 
   1307 /***************************************************************************/
   1308 /*                  TREE BALANCE                                           */
   1309 /***************************************************************************/
   1310 
   1311 /* This temporary structure is used in tree balance algorithms, and
   1312    constructed as we go to the extent that its various parts are
   1313    needed.  It contains arrays of nodes that can potentially be
   1314    involved in the balancing of node S, and parameters that define how
   1315    each of the nodes must be balanced.  Note that in these algorithms
   1316    for balancing the worst case is to need to balance the current node
   1317    S and the left and right neighbors and all of their parents plus
   1318    create a new node.  We implement S1 balancing for the leaf nodes
   1319    and S0 balancing for the internal nodes (S1 and S0 are defined in
   1320    our papers.)*/
   1321 
   1322 #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
   1323 
   1324 /* maximum number of FEB blocknrs on a single level */
   1325 #define MAX_AMOUNT_NEEDED 2
   1326 
   1327 /* someday somebody will prefix every field in this struct with tb_ */
   1328 struct tree_balance {
   1329 	int tb_mode;
   1330 	int need_balance_dirty;
   1331 	struct super_block *tb_sb;
   1332 	struct reiserfs_transaction_handle *transaction_handle;
   1333 	struct treepath *tb_path;
   1334 	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
   1335 	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
   1336 	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
   1337 	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
   1338 	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
   1339 	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
   1340 
   1341 	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
   1342 						   cur_blknum. */
   1343 	struct buffer_head *used[MAX_FEB_SIZE];
   1344 	struct buffer_head *thrown[MAX_FEB_SIZE];
   1345 	int lnum[MAX_HEIGHT];	/* array of number of items which must be
   1346 				   shifted to the left in order to balance the
   1347 				   current node; for leaves includes item that
   1348 				   will be partially shifted; for internal
   1349 				   nodes, it is the number of child pointers
   1350 				   rather than items. It includes the new item
   1351 				   being created. The code sometimes subtracts
   1352 				   one to get the number of wholly shifted
   1353 				   items for other purposes. */
   1354 	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
   1355 	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
   1356 				   S[h] to its item number within the node CFL[h] */
   1357 	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
   1358 	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
   1359 					   S[h]. A negative value means removing.  */
   1360 	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
   1361 				   balancing on the level h of the tree.  If 0 then S is
   1362 				   being deleted, if 1 then S is remaining and no new nodes
   1363 				   are being created, if 2 or 3 then 1 or 2 new nodes is
   1364 				   being created */
   1365 
   1366 	/* fields that are used only for balancing leaves of the tree */
   1367 	int cur_blknum;		/* number of empty blocks having been already allocated                 */
   1368 	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
   1369 	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
   1370 	int s2num;		/* number of items that fall into second new node when S[0] splits     */
   1371 	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
   1372 	/* most liquid item that cannot be shifted from S[0] entirely         */
   1373 	/* if -1 then nothing will be partially shifted */
   1374 	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
   1375 	/* most liquid item that cannot be shifted from S[0] entirely         */
   1376 	/* if -1 then nothing will be partially shifted                           */
   1377 	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
   1378 	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
   1379 	int s2bytes;
   1380 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
   1381 	char *vn_buf;		/* kmalloced memory. Used to create
   1382 				   virtual node and keep map of
   1383 				   dirtied bitmap blocks */
   1384 	int vn_buf_size;	/* size of the vn_buf */
   1385 	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
   1386 
   1387 	int fs_gen;		/* saved value of `reiserfs_generation' counter
   1388 				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
   1389 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
   1390 	struct in_core_key key;	/* key pointer, to pass to block allocator or
   1391 				   another low-level subsystem */
   1392 #endif
   1393 };
   1394 
   1395 /* These are modes of balancing */
   1396 
   1397 /* When inserting an item. */
   1398 #define M_INSERT	'i'
   1399 /* When inserting into (directories only) or appending onto an already
   1400    existant item. */
   1401 #define M_PASTE		'p'
   1402 /* When deleting an item. */
   1403 #define M_DELETE	'd'
   1404 /* When truncating an item or removing an entry from a (directory) item. */
   1405 #define M_CUT 		'c'
   1406 
   1407 /* used when balancing on leaf level skipped (in reiserfsck) */
   1408 #define M_INTERNAL	'n'
   1409 
   1410 /* When further balancing is not needed, then do_balance does not need
   1411    to be called. */
   1412 #define M_SKIP_BALANCING 		's'
   1413 #define M_CONVERT	'v'
   1414 
   1415 /* modes of leaf_move_items */
   1416 #define LEAF_FROM_S_TO_L 0
   1417 #define LEAF_FROM_S_TO_R 1
   1418 #define LEAF_FROM_R_TO_L 2
   1419 #define LEAF_FROM_L_TO_R 3
   1420 #define LEAF_FROM_S_TO_SNEW 4
   1421 
   1422 #define FIRST_TO_LAST 0
   1423 #define LAST_TO_FIRST 1
   1424 
   1425 /* used in do_balance for passing parent of node information that has
   1426    been gotten from tb struct */
   1427 struct buffer_info {
   1428 	struct tree_balance *tb;
   1429 	struct buffer_head *bi_bh;
   1430 	struct buffer_head *bi_parent;
   1431 	int bi_position;
   1432 };
   1433 
   1434 /* there are 4 types of items: stat data, directory item, indirect, direct.
   1435 +-------------------+------------+--------------+------------+
   1436 |	            |  k_offset  | k_uniqueness | mergeable? |
   1437 +-------------------+------------+--------------+------------+
   1438 |     stat data     |	0        |      0       |   no       |
   1439 +-------------------+------------+--------------+------------+
   1440 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
   1441 | non 1st directory | hash value |              |   yes      |
   1442 |     item          |            |              |            |
   1443 +-------------------+------------+--------------+------------+
   1444 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
   1445 +-------------------+------------+--------------+------------+
   1446 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
   1447 +-------------------+------------+--------------+------------+
   1448 */
   1449 
   1450 struct item_operations {
   1451 	int (*bytes_number) (struct item_head * ih, int block_size);
   1452 	void (*decrement_key) (struct cpu_key *);
   1453 	int (*is_left_mergeable) (struct reiserfs_key * ih,
   1454 				  unsigned long bsize);
   1455 	void (*print_item) (struct item_head *, char *item);
   1456 	void (*check_item) (struct item_head *, char *item);
   1457 
   1458 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
   1459 			  int is_affected, int insert_size);
   1460 	int (*check_left) (struct virtual_item * vi, int free,
   1461 			   int start_skip, int end_skip);
   1462 	int (*check_right) (struct virtual_item * vi, int free);
   1463 	int (*part_size) (struct virtual_item * vi, int from, int to);
   1464 	int (*unit_num) (struct virtual_item * vi);
   1465 	void (*print_vi) (struct virtual_item * vi);
   1466 };
   1467 
   1468 extern struct item_operations *item_ops[TYPE_ANY + 1];
   1469 
   1470 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
   1471 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
   1472 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
   1473 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
   1474 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
   1475 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
   1476 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
   1477 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
   1478 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
   1479 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
   1480 
   1481 #define COMP_SHORT_KEYS comp_short_keys
   1482 
   1483 /* number of blocks pointed to by the indirect item */
   1484 #define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )
   1485 
   1486 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
   1487 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
   1488 
   1489 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
   1490 
   1491 /* get the item header */
   1492 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
   1493 
   1494 /* get key */
   1495 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
   1496 
   1497 /* get the key */
   1498 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
   1499 
   1500 /* get item body */
   1501 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
   1502 
   1503 /* get the stat data by the buffer header and the item order */
   1504 #define B_N_STAT_DATA(bh,nr) \
   1505 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
   1506 
   1507     /* following defines use reiserfs buffer header and item header */
   1508 
   1509 /* get stat-data */
   1510 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
   1511 
   1512 // this is 3976 for size==4096
   1513 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
   1514 
   1515 /* indirect items consist of entries which contain blocknrs, pos
   1516    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
   1517    blocknr contained by the entry pos points to */
   1518 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
   1519 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
   1520 
   1521 struct reiserfs_iget_args {
   1522 	__u32 objectid;
   1523 	__u32 dirid;
   1524 };
   1525 
   1526 /***************************************************************************/
   1527 /*                    FUNCTION DECLARATIONS                                */
   1528 /***************************************************************************/
   1529 
   1530 /*#ifdef __KERNEL__*/
   1531 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
   1532 
   1533 #define journal_trans_half(blocksize) \
   1534 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
   1535 
   1536 /* journal.c see journal.c for all the comments here */
   1537 
   1538 /* first block written in a commit.  */
   1539 struct reiserfs_journal_desc {
   1540 	__le32 j_trans_id;	/* id of commit */
   1541 	__le32 j_len;		/* length of commit. len +1 is the commit block */
   1542 	__le32 j_mount_id;	/* mount id of this trans */
   1543 	__le32 j_realblock[1];	/* real locations for each block */
   1544 };
   1545 
   1546 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
   1547 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
   1548 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
   1549 
   1550 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
   1551 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
   1552 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
   1553 
   1554 /* last block written in a commit */
   1555 struct reiserfs_journal_commit {
   1556 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
   1557 	__le32 j_len;		/* ditto */
   1558 	__le32 j_realblock[1];	/* real locations for each block */
   1559 };
   1560 
   1561 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
   1562 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
   1563 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
   1564 
   1565 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
   1566 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
   1567 
   1568 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
   1569 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
   1570 ** and this transaction does not need to be replayed.
   1571 */
   1572 struct reiserfs_journal_header {
   1573 	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
   1574 	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
   1575 	__le32 j_mount_id;
   1576 	/* 12 */ struct journal_params jh_journal;
   1577 };
   1578 
   1579 /* biggest tunable defines are right here */
   1580 #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
   1581 #define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
   1582 #define JOURNAL_TRANS_MIN_DEFAULT 256
   1583 #define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
   1584 #define JOURNAL_MIN_RATIO 2
   1585 #define JOURNAL_MAX_COMMIT_AGE 30
   1586 #define JOURNAL_MAX_TRANS_AGE 30
   1587 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
   1588 #ifdef CONFIG_QUOTA
   1589 /* We need to update data and inode (atime) */
   1590 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
   1591 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
   1592 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
   1593 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
   1594 /* same as with INIT */
   1595 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
   1596 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
   1597 #else
   1598 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
   1599 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
   1600 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
   1601 #endif
   1602 
   1603 /* both of these can be as low as 1, or as high as you want.  The min is the
   1604 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
   1605 ** as needed, and released when transactions are committed.  On release, if
   1606 ** the current number of nodes is > max, the node is freed, otherwise,
   1607 ** it is put on a free list for faster use later.
   1608 */
   1609 #define REISERFS_MIN_BITMAP_NODES 10
   1610 #define REISERFS_MAX_BITMAP_NODES 100
   1611 
   1612 #define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
   1613 #define JBH_HASH_MASK 8191
   1614 
   1615 #define _jhashfn(sb,block)	\
   1616 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
   1617 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
   1618 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
   1619 
   1620 // We need these to make journal.c code more readable
   1621 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   1622 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   1623 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   1624 
   1625 enum reiserfs_bh_state_bits {
   1626 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
   1627 	BH_JDirty_wait,
   1628 	BH_JNew,		/* disk block was taken off free list before
   1629 				 * being in a finished transaction, or
   1630 				 * written to disk. Can be reused immed. */
   1631 	BH_JPrepared,
   1632 	BH_JRestore_dirty,
   1633 	BH_JTest,		// debugging only will go away
   1634 };
   1635 
   1636 BUFFER_FNS(JDirty, journaled);
   1637 TAS_BUFFER_FNS(JDirty, journaled);
   1638 BUFFER_FNS(JDirty_wait, journal_dirty);
   1639 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
   1640 BUFFER_FNS(JNew, journal_new);
   1641 TAS_BUFFER_FNS(JNew, journal_new);
   1642 BUFFER_FNS(JPrepared, journal_prepared);
   1643 TAS_BUFFER_FNS(JPrepared, journal_prepared);
   1644 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
   1645 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
   1646 BUFFER_FNS(JTest, journal_test);
   1647 TAS_BUFFER_FNS(JTest, journal_test);
   1648 
   1649 /*
   1650 ** transaction handle which is passed around for all journal calls
   1651 */
   1652 struct reiserfs_transaction_handle {
   1653 	struct super_block *t_super;	/* super for this FS when journal_begin was
   1654 					   called. saves calls to reiserfs_get_super
   1655 					   also used by nested transactions to make
   1656 					   sure they are nesting on the right FS
   1657 					   _must_ be first in the handle
   1658 					 */
   1659 	int t_refcount;
   1660 	int t_blocks_logged;	/* number of blocks this writer has logged */
   1661 	int t_blocks_allocated;	/* number of blocks this writer allocated */
   1662 	unsigned long t_trans_id;	/* sanity check, equals the current trans id */
   1663 	void *t_handle_save;	/* save existing current->journal_info */
   1664 	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
   1665 					   should be displaced from others */
   1666 	struct list_head t_list;
   1667 };
   1668 
   1669 /* used to keep track of ordered and tail writes, attached to the buffer
   1670  * head through b_journal_head.
   1671  */
   1672 struct reiserfs_jh {
   1673 	struct reiserfs_journal_list *jl;
   1674 	struct buffer_head *bh;
   1675 	struct list_head list;
   1676 };
   1677 
   1678 void reiserfs_free_jh(struct buffer_head *bh);
   1679 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
   1680 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
   1681 int journal_mark_dirty(struct reiserfs_transaction_handle *,
   1682 		       struct super_block *, struct buffer_head *bh);
   1683 
   1684 static __inline__ int reiserfs_file_data_log(struct inode *inode)
   1685 {
   1686 	if (reiserfs_data_log(inode->i_sb) ||
   1687 	    (REISERFS_I(inode)->i_flags & i_data_log))
   1688 		return 1;
   1689 	return 0;
   1690 }
   1691 
   1692 static __inline__ int reiserfs_transaction_running(struct super_block *s)
   1693 {
   1694 	struct reiserfs_transaction_handle *th = current->journal_info;
   1695 	if (th && th->t_super == s)
   1696 		return 1;
   1697 	if (th && th->t_super == NULL)
   1698 		BUG();
   1699 	return 0;
   1700 }
   1701 
   1702 static __inline__ int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
   1703 {
   1704 	return th->t_blocks_allocated - th->t_blocks_logged;
   1705 }
   1706 
   1707 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
   1708 								    super_block
   1709 								    *,
   1710 								    int count);
   1711 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
   1712 int reiserfs_commit_page(struct inode *inode, struct page *page,
   1713 			 unsigned from, unsigned to);
   1714 int reiserfs_flush_old_commits(struct super_block *);
   1715 int reiserfs_commit_for_inode(struct inode *);
   1716 int reiserfs_inode_needs_commit(struct inode *);
   1717 void reiserfs_update_inode_transaction(struct inode *);
   1718 void reiserfs_wait_on_write_block(struct super_block *s);
   1719 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
   1720 void reiserfs_allow_writes(struct super_block *s);
   1721 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
   1722 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
   1723 				 int wait);
   1724 void reiserfs_restore_prepared_buffer(struct super_block *,
   1725 				      struct buffer_head *bh);
   1726 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
   1727 		 unsigned int);
   1728 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
   1729 int journal_release_error(struct reiserfs_transaction_handle *,
   1730 			  struct super_block *);
   1731 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
   1732 		unsigned long);
   1733 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
   1734 		     unsigned long);
   1735 int journal_mark_freed(struct reiserfs_transaction_handle *,
   1736 		       struct super_block *, b_blocknr_t blocknr);
   1737 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
   1738 int reiserfs_in_journal(struct super_block *p_s_sb, unsigned int bmap_nr,
   1739 			int bit_nr, int searchall, b_blocknr_t *next);
   1740 int journal_begin(struct reiserfs_transaction_handle *,
   1741 		  struct super_block *p_s_sb, unsigned long);
   1742 int journal_join_abort(struct reiserfs_transaction_handle *,
   1743 		       struct super_block *p_s_sb, unsigned long);
   1744 void reiserfs_journal_abort(struct super_block *sb, int errno);
   1745 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
   1746 int reiserfs_allocate_list_bitmaps(struct super_block *s,
   1747 				   struct reiserfs_list_bitmap *, unsigned int);
   1748 
   1749 void add_save_link(struct reiserfs_transaction_handle *th,
   1750 		   struct inode *inode, int truncate);
   1751 int remove_save_link(struct inode *inode, int truncate);
   1752 
   1753 /* objectid.c */
   1754 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
   1755 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
   1756 			       __u32 objectid_to_release);
   1757 int reiserfs_convert_objectid_map_v1(struct super_block *);
   1758 
   1759 /* stree.c */
   1760 int B_IS_IN_TREE(const struct buffer_head *);
   1761 extern void copy_item_head(struct item_head *p_v_to,
   1762 			   const struct item_head *p_v_from);
   1763 
   1764 // first key is in cpu form, second - le
   1765 extern int comp_short_keys(const struct reiserfs_key *le_key,
   1766 			   const struct cpu_key *cpu_key);
   1767 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
   1768 
   1769 // both are in le form
   1770 extern int comp_le_keys(const struct reiserfs_key *,
   1771 			const struct reiserfs_key *);
   1772 extern int comp_short_le_keys(const struct reiserfs_key *,
   1773 			      const struct reiserfs_key *);
   1774 
   1775 //
   1776 // get key version from on disk key - kludge
   1777 //
   1778 static __inline__ int le_key_version(const struct reiserfs_key *key)
   1779 {
   1780 	int type;
   1781 
   1782 	type = offset_v2_k_type(&(key->u.k_offset_v2));
   1783 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
   1784 	    && type != TYPE_DIRENTRY)
   1785 		return KEY_FORMAT_3_5;
   1786 
   1787 	return KEY_FORMAT_3_6;
   1788 
   1789 }
   1790 
   1791 static __inline__ void copy_key(struct reiserfs_key *to,
   1792 			    const struct reiserfs_key *from)
   1793 {
   1794 	memcpy(to, from, KEY_SIZE);
   1795 }
   1796 
   1797 int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
   1798 const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
   1799 				    const struct super_block *p_s_sb);
   1800 int search_by_key(struct super_block *, const struct cpu_key *,
   1801 		  struct treepath *, int);
   1802 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
   1803 int search_for_position_by_key(struct super_block *p_s_sb,
   1804 			       const struct cpu_key *p_s_cpu_key,
   1805 			       struct treepath *p_s_search_path);
   1806 extern void decrement_bcount(struct buffer_head *p_s_bh);
   1807 void decrement_counters_in_path(struct treepath *p_s_search_path);
   1808 void pathrelse(struct treepath *p_s_search_path);
   1809 int reiserfs_check_path(struct treepath *p);
   1810 void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
   1811 
   1812 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
   1813 			 struct treepath *path,
   1814 			 const struct cpu_key *key,
   1815 			 struct item_head *ih,
   1816 			 struct inode *inode, const char *body);
   1817 
   1818 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
   1819 			     struct treepath *path,
   1820 			     const struct cpu_key *key,
   1821 			     struct inode *inode,
   1822 			     const char *body, int paste_size);
   1823 
   1824 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
   1825 			   struct treepath *path,
   1826 			   struct cpu_key *key,
   1827 			   struct inode *inode,
   1828 			   struct page *page, loff_t new_file_size);
   1829 
   1830 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
   1831 			 struct treepath *path,
   1832 			 const struct cpu_key *key,
   1833 			 struct inode *inode, struct buffer_head *p_s_un_bh);
   1834 
   1835 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
   1836 				struct inode *inode, struct reiserfs_key *key);
   1837 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
   1838 			   struct inode *p_s_inode);
   1839 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
   1840 			 struct inode *p_s_inode, struct page *,
   1841 			 int update_timestamps);
   1842 
   1843 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
   1844 #define file_size(inode) ((inode)->i_size)
   1845 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
   1846 
   1847 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
   1848 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
   1849 
   1850 void padd_item(char *item, int total_length, int length);
   1851 
   1852 /* inode.c */
   1853 /* args for the create parameter of reiserfs_get_block */
   1854 #define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
   1855 #define GET_BLOCK_CREATE 1	/* add anything you need to find block */
   1856 #define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
   1857 #define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
   1858 #define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
   1859 #define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
   1860 
   1861 void reiserfs_read_locked_inode(struct inode *inode,
   1862 				struct reiserfs_iget_args *args);
   1863 int reiserfs_find_actor(struct inode *inode, void *p);
   1864 int reiserfs_init_locked_inode(struct inode *inode, void *p);
   1865 void reiserfs_delete_inode(struct inode *inode);
   1866 int reiserfs_write_inode(struct inode *inode, int);
   1867 int reiserfs_get_block(struct inode *inode, sector_t block,
   1868 		       struct buffer_head *bh_result, int create);
   1869 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
   1870 				     int fh_len, int fh_type);
   1871 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
   1872 				     int fh_len, int fh_type);
   1873 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
   1874 		       int connectable);
   1875 
   1876 int reiserfs_truncate_file(struct inode *, int update_timestamps);
   1877 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
   1878 		  int type, int key_length);
   1879 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
   1880 		       int version,
   1881 		       loff_t offset, int type, int length, int entry_count);
   1882 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
   1883 
   1884 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
   1885 		       struct inode *dir, int mode,
   1886 		       const char *symname, loff_t i_size,
   1887 		       struct dentry *dentry, struct inode *inode);
   1888 
   1889 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
   1890 			     struct inode *inode, loff_t size);
   1891 
   1892 static __inline__ void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
   1893 				      struct inode *inode)
   1894 {
   1895 	reiserfs_update_sd_size(th, inode, inode->i_size);
   1896 }
   1897 
   1898 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
   1899 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
   1900 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
   1901 
   1902 /* namei.c */
   1903 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
   1904 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
   1905 			struct treepath *path, struct reiserfs_dir_entry *de);
   1906 struct dentry *reiserfs_get_parent(struct dentry *);
   1907 /* procfs.c */
   1908 
   1909 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
   1910 #define REISERFS_PROC_INFO
   1911 #else
   1912 #undef REISERFS_PROC_INFO
   1913 #endif
   1914 
   1915 int reiserfs_proc_info_init(struct super_block *sb);
   1916 int reiserfs_proc_info_done(struct super_block *sb);
   1917 struct proc_dir_entry *reiserfs_proc_register_global(char *name,
   1918 						     read_proc_t * func);
   1919 void reiserfs_proc_unregister_global(const char *name);
   1920 int reiserfs_proc_info_global_init(void);
   1921 int reiserfs_proc_info_global_done(void);
   1922 int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
   1923 				    int count, int *eof, void *data);
   1924 
   1925 #if defined( REISERFS_PROC_INFO )
   1926 
   1927 #define PROC_EXP( e )   e
   1928 
   1929 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
   1930 #define PROC_INFO_MAX( sb, field, value )								\
   1931     __PINFO( sb ).field =												\
   1932         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
   1933 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
   1934 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
   1935 #define PROC_INFO_BH_STAT( sb, bh, level )							\
   1936     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
   1937     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
   1938     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
   1939 #else
   1940 #define PROC_EXP( e )
   1941 #define VOID_V ( ( void ) 0 )
   1942 #define PROC_INFO_MAX( sb, field, value ) VOID_V
   1943 #define PROC_INFO_INC( sb, field ) VOID_V
   1944 #define PROC_INFO_ADD( sb, field, val ) VOID_V
   1945 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
   1946 #endif
   1947 
   1948 /* dir.c */
   1949 extern const struct inode_operations reiserfs_dir_inode_operations;
   1950 extern const struct inode_operations reiserfs_symlink_inode_operations;
   1951 extern const struct inode_operations reiserfs_special_inode_operations;
   1952 extern const struct file_operations reiserfs_dir_operations;
   1953 
   1954 /* tail_conversion.c */
   1955 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
   1956 		    struct treepath *, struct buffer_head *, loff_t);
   1957 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
   1958 		    struct page *, struct treepath *, const struct cpu_key *,
   1959 		    loff_t, char *);
   1960 void reiserfs_unmap_buffer(struct buffer_head *);
   1961 
   1962 /* file.c */
   1963 extern const struct inode_operations reiserfs_file_inode_operations;
   1964 extern const struct file_operations reiserfs_file_operations;
   1965 extern const struct address_space_operations reiserfs_address_space_operations;
   1966 
   1967 /* fix_nodes.c */
   1968 
   1969 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
   1970 	      struct item_head *p_s_ins_ih, const void *);
   1971 void unfix_nodes(struct tree_balance *);
   1972 
   1973 /* prints.c */
   1974 void reiserfs_panic(struct super_block *s, const char *fmt, ...)
   1975     __attribute__ ((noreturn));
   1976 void reiserfs_info(struct super_block *s, const char *fmt, ...);
   1977 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
   1978 void print_indirect_item(struct buffer_head *bh, int item_num);
   1979 void store_print_tb(struct tree_balance *tb);
   1980 void print_cur_tb(char *mes);
   1981 void print_de(struct reiserfs_dir_entry *de);
   1982 void print_bi(struct buffer_info *bi, char *mes);
   1983 #define PRINT_LEAF_ITEMS 1	/* print all items */
   1984 #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
   1985 #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
   1986 void print_block(struct buffer_head *bh, ...);
   1987 void print_bmap(struct super_block *s, int silent);
   1988 void print_bmap_block(int i, char *data, int size, int silent);
   1989 /*void print_super_block (struct super_block * s, char * mes);*/
   1990 void print_objectid_map(struct super_block *s);
   1991 void print_block_head(struct buffer_head *bh, char *mes);
   1992 void check_leaf(struct buffer_head *bh);
   1993 void check_internal(struct buffer_head *bh);
   1994 void print_statistics(struct super_block *s);
   1995 char *reiserfs_hashname(int code);
   1996 
   1997 /* lbalance.c */
   1998 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
   1999 		    int mov_bytes, struct buffer_head *Snew);
   2000 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
   2001 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
   2002 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
   2003 		       int del_num, int del_bytes);
   2004 void leaf_insert_into_buf(struct buffer_info *bi, int before,
   2005 			  struct item_head *inserted_item_ih,
   2006 			  const char *inserted_item_body, int zeros_number);
   2007 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
   2008 			  int pos_in_item, int paste_size, const char *body,
   2009 			  int zeros_number);
   2010 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
   2011 			  int pos_in_item, int cut_size);
   2012 void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
   2013 			int new_entry_count, struct reiserfs_de_head *new_dehs,
   2014 			const char *records, int paste_size);
   2015 /* ibalance.c */
   2016 int balance_internal(struct tree_balance *, int, int, struct item_head *,
   2017 		     struct buffer_head **);
   2018 
   2019 /* do_balance.c */
   2020 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
   2021 				struct buffer_head *bh, int flag);
   2022 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
   2023 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
   2024 
   2025 void do_balance(struct tree_balance *tb, struct item_head *ih,
   2026 		const char *body, int flag);
   2027 void reiserfs_invalidate_buffer(struct tree_balance *tb,
   2028 				struct buffer_head *bh);
   2029 
   2030 int get_left_neighbor_position(struct tree_balance *tb, int h);
   2031 int get_right_neighbor_position(struct tree_balance *tb, int h);
   2032 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
   2033 		 struct buffer_head *, int);
   2034 void make_empty_node(struct buffer_info *);
   2035 struct buffer_head *get_FEB(struct tree_balance *);
   2036 
   2037 /* bitmap.c */
   2038 
   2039 /* structure contains hints for block allocator, and it is a container for
   2040  * arguments, such as node, search path, transaction_handle, etc. */
   2041 struct __reiserfs_blocknr_hint {
   2042 	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
   2043 	sector_t block;		/* file offset, in blocks */
   2044 	struct in_core_key key;
   2045 	struct treepath *path;	/* search path, used by allocator to deternine search_start by
   2046 				 * various ways */
   2047 	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
   2048 						 * bitmap blocks changes  */
   2049 	b_blocknr_t beg, end;
   2050 	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
   2051 					 * between different block allocator procedures
   2052 					 * (determine_search_start() and others) */
   2053 	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
   2054 				 * function that do actual allocation */
   2055 
   2056 	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
   2057 					 * formatted/unformatted blocks with/without preallocation */
   2058 	unsigned preallocate:1;
   2059 };
   2060 
   2061 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
   2062 
   2063 int reiserfs_parse_alloc_options(struct super_block *, char *);
   2064 void reiserfs_init_alloc_options(struct super_block *s);
   2065 
   2066 /*
   2067  * given a directory, this will tell you what packing locality
   2068  * to use for a new object underneat it.  The locality is returned
   2069  * in disk byte order (le).
   2070  */
   2071 __le32 reiserfs_choose_packing(struct inode *dir);
   2072 
   2073 int reiserfs_init_bitmap_cache(struct super_block *sb);
   2074 void reiserfs_free_bitmap_cache(struct super_block *sb);
   2075 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
   2076 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
   2077 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
   2078 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
   2079 			 b_blocknr_t, int for_unformatted);
   2080 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
   2081 			       int);
   2082 static __inline__ int reiserfs_new_form_blocknrs(struct tree_balance *tb,
   2083 					     b_blocknr_t * new_blocknrs,
   2084 					     int amount_needed)
   2085 {
   2086 	reiserfs_blocknr_hint_t hint = {
   2087 		.th = tb->transaction_handle,
   2088 		.path = tb->tb_path,
   2089 		.inode = NULL,
   2090 		.key = tb->key,
   2091 		.block = 0,
   2092 		.formatted_node = 1
   2093 	};
   2094 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
   2095 					  0);
   2096 }
   2097 
   2098 static __inline__ int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
   2099 					    *th, struct inode *inode,
   2100 					    b_blocknr_t * new_blocknrs,
   2101 					    struct treepath *path,
   2102 					    sector_t block)
   2103 {
   2104 	reiserfs_blocknr_hint_t hint = {
   2105 		.th = th,
   2106 		.path = path,
   2107 		.inode = inode,
   2108 		.block = block,
   2109 		.formatted_node = 0,
   2110 		.preallocate = 0
   2111 	};
   2112 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
   2113 }
   2114 
   2115 #ifdef REISERFS_PREALLOCATE
   2116 static __inline__ int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
   2117 					     *th, struct inode *inode,
   2118 					     b_blocknr_t * new_blocknrs,
   2119 					     struct treepath *path,
   2120 					     sector_t block)
   2121 {
   2122 	reiserfs_blocknr_hint_t hint = {
   2123 		.th = th,
   2124 		.path = path,
   2125 		.inode = inode,
   2126 		.block = block,
   2127 		.formatted_node = 0,
   2128 		.preallocate = 1
   2129 	};
   2130 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
   2131 }
   2132 
   2133 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
   2134 			       struct inode *inode);
   2135 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
   2136 #endif
   2137 
   2138 /* hashes.c */
   2139 __u32 keyed_hash(const signed char *msg, int len);
   2140 __u32 yura_hash(const signed char *msg, int len);
   2141 __u32 r5_hash(const signed char *msg, int len);
   2142 
   2143 /* the ext2 bit routines adjust for big or little endian as
   2144 ** appropriate for the arch, so in our laziness we use them rather
   2145 ** than using the bit routines they call more directly.  These
   2146 ** routines must be used when changing on disk bitmaps.  */
   2147 #define reiserfs_test_and_set_le_bit   ext2_set_bit
   2148 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
   2149 #define reiserfs_test_le_bit           ext2_test_bit
   2150 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
   2151 
   2152 /* sometimes reiserfs_truncate may require to allocate few new blocks
   2153    to perform indirect2direct conversion. People probably used to
   2154    think, that truncate should work without problems on a filesystem
   2155    without free disk space. They may complain that they can not
   2156    truncate due to lack of free disk space. This spare space allows us
   2157    to not worry about it. 500 is probably too much, but it should be
   2158    absolutely safe */
   2159 #define SPARE_SPACE 500
   2160 
   2161 /* prototypes from ioctl.c */
   2162 int reiserfs_ioctl(struct inode *inode, struct file *filp,
   2163 		   unsigned int cmd, unsigned long arg);
   2164 long reiserfs_compat_ioctl(struct file *filp,
   2165 		   unsigned int cmd, unsigned long arg);
   2166 
   2167 /* ioctl's command */
   2168 #define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
   2169 /* define following flags to be the same as in ext2, so that chattr(1),
   2170    lsattr(1) will work with us. */
   2171 #define REISERFS_IOC_GETFLAGS		FS_IOC_GETFLAGS
   2172 #define REISERFS_IOC_SETFLAGS		FS_IOC_SETFLAGS
   2173 #define REISERFS_IOC_GETVERSION		FS_IOC_GETVERSION
   2174 #define REISERFS_IOC_SETVERSION		FS_IOC_SETVERSION
   2175 
   2176 /* the 32 bit compat definitions with int argument */
   2177 #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
   2178 #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
   2179 #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
   2180 #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
   2181 #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
   2182 
   2183 /* Locking primitives */
   2184 /* Right now we are still falling back to (un)lock_kernel, but eventually that
   2185    would evolve into real per-fs locks */
   2186 #define reiserfs_write_lock( sb ) lock_kernel()
   2187 #define reiserfs_write_unlock( sb ) unlock_kernel()
   2188 
   2189 /* xattr stuff */
   2190 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
   2191 
   2192 #endif				/* _LINUX_REISER_FS_H */
   2193