Home | History | Annotate | Download | only in AST
      1 //===-- CanonicalType.h - C Language Family Type Representation -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CanQual class template, which provides access to
     11 //  canonical types.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_AST_CANONICAL_TYPE_H
     16 #define LLVM_CLANG_AST_CANONICAL_TYPE_H
     17 
     18 #include "clang/AST/Type.h"
     19 #include "llvm/Support/Casting.h"
     20 #include "llvm/Support/type_traits.h"
     21 #include <iterator>
     22 
     23 namespace clang {
     24 
     25 template<typename T> class CanProxy;
     26 template<typename T> struct CanProxyAdaptor;
     27 
     28 //----------------------------------------------------------------------------//
     29 // Canonical, qualified type template
     30 //----------------------------------------------------------------------------//
     31 
     32 /// \brief Represents a canonical, potentially-qualified type.
     33 ///
     34 /// The CanQual template is a lightweight smart pointer that provides access
     35 /// to the canonical representation of a type, where all typedefs and other
     36 /// syntactic sugar has been eliminated. A CanQualType may also have various
     37 /// qualifiers (const, volatile, restrict) attached to it.
     38 ///
     39 /// The template type parameter @p T is one of the Type classes (PointerType,
     40 /// BuiltinType, etc.). The type stored within @c CanQual<T> will be of that
     41 /// type (or some subclass of that type). The typedef @c CanQualType is just
     42 /// a shorthand for @c CanQual<Type>.
     43 ///
     44 /// An instance of @c CanQual<T> can be implicitly converted to a
     45 /// @c CanQual<U> when T is derived from U, which essentially provides an
     46 /// implicit upcast. For example, @c CanQual<LValueReferenceType> can be
     47 /// converted to @c CanQual<ReferenceType>. Note that any @c CanQual type can
     48 /// be implicitly converted to a QualType, but the reverse operation requires
     49 /// a call to ASTContext::getCanonicalType().
     50 ///
     51 ///
     52 template<typename T = Type>
     53 class CanQual {
     54   /// \brief The actual, canonical type.
     55   QualType Stored;
     56 
     57 public:
     58   /// \brief Constructs a NULL canonical type.
     59   CanQual() : Stored() { }
     60 
     61   /// \brief Converting constructor that permits implicit upcasting of
     62   /// canonical type pointers.
     63   template<typename U>
     64   CanQual(const CanQual<U>& Other,
     65           typename llvm::enable_if<llvm::is_base_of<T, U>, int>::type = 0);
     66 
     67   /// \brief Retrieve the underlying type pointer, which refers to a
     68   /// canonical type.
     69   ///
     70   /// The underlying pointer must not be NULL.
     71   const T *getTypePtr() const { return cast<T>(Stored.getTypePtr()); }
     72 
     73   /// \brief Retrieve the underlying type pointer, which refers to a
     74   /// canonical type, or NULL.
     75   ///
     76   const T *getTypePtrOrNull() const {
     77     return cast_or_null<T>(Stored.getTypePtrOrNull());
     78   }
     79 
     80   /// \brief Implicit conversion to a qualified type.
     81   operator QualType() const { return Stored; }
     82 
     83   /// \brief Implicit conversion to bool.
     84   operator bool() const { return !isNull(); }
     85 
     86   bool isNull() const {
     87     return Stored.isNull();
     88   }
     89 
     90   SplitQualType split() const { return Stored.split(); }
     91 
     92   /// \brief Retrieve a canonical type pointer with a different static type,
     93   /// upcasting or downcasting as needed.
     94   ///
     95   /// The getAs() function is typically used to try to downcast to a
     96   /// more specific (canonical) type in the type system. For example:
     97   ///
     98   /// @code
     99   /// void f(CanQual<Type> T) {
    100   ///   if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) {
    101   ///     // look at Ptr's pointee type
    102   ///   }
    103   /// }
    104   /// @endcode
    105   ///
    106   /// \returns A proxy pointer to the same type, but with the specified
    107   /// static type (@p U). If the dynamic type is not the specified static type
    108   /// or a derived class thereof, a NULL canonical type.
    109   template<typename U> CanProxy<U> getAs() const;
    110 
    111   template<typename U> CanProxy<U> castAs() const;
    112 
    113   /// \brief Overloaded arrow operator that produces a canonical type
    114   /// proxy.
    115   CanProxy<T> operator->() const;
    116 
    117   /// \brief Retrieve all qualifiers.
    118   Qualifiers getQualifiers() const { return Stored.getLocalQualifiers(); }
    119 
    120   /// \brief Retrieve the const/volatile/restrict qualifiers.
    121   unsigned getCVRQualifiers() const { return Stored.getLocalCVRQualifiers(); }
    122 
    123   /// \brief Determines whether this type has any qualifiers
    124   bool hasQualifiers() const { return Stored.hasLocalQualifiers(); }
    125 
    126   bool isConstQualified() const {
    127     return Stored.isLocalConstQualified();
    128   }
    129   bool isVolatileQualified() const {
    130     return Stored.isLocalVolatileQualified();
    131   }
    132   bool isRestrictQualified() const {
    133     return Stored.isLocalRestrictQualified();
    134   }
    135 
    136   /// \brief Determines if this canonical type is furthermore
    137   /// canonical as a parameter.  The parameter-canonicalization
    138   /// process decays arrays to pointers and drops top-level qualifiers.
    139   bool isCanonicalAsParam() const {
    140     return Stored.isCanonicalAsParam();
    141   }
    142 
    143   /// \brief Retrieve the unqualified form of this type.
    144   CanQual<T> getUnqualifiedType() const;
    145 
    146   /// \brief Retrieves a version of this type with const applied.
    147   /// Note that this does not always yield a canonical type.
    148   QualType withConst() const {
    149     return Stored.withConst();
    150   }
    151 
    152   /// \brief Determines whether this canonical type is more qualified than
    153   /// the @p Other canonical type.
    154   bool isMoreQualifiedThan(CanQual<T> Other) const {
    155     return Stored.isMoreQualifiedThan(Other.Stored);
    156   }
    157 
    158   /// \brief Determines whether this canonical type is at least as qualified as
    159   /// the @p Other canonical type.
    160   bool isAtLeastAsQualifiedAs(CanQual<T> Other) const {
    161     return Stored.isAtLeastAsQualifiedAs(Other.Stored);
    162   }
    163 
    164   /// \brief If the canonical type is a reference type, returns the type that
    165   /// it refers to; otherwise, returns the type itself.
    166   CanQual<Type> getNonReferenceType() const;
    167 
    168   /// \brief Retrieve the internal representation of this canonical type.
    169   void *getAsOpaquePtr() const { return Stored.getAsOpaquePtr(); }
    170 
    171   /// \brief Construct a canonical type from its internal representation.
    172   static CanQual<T> getFromOpaquePtr(void *Ptr);
    173 
    174   /// \brief Builds a canonical type from a QualType.
    175   ///
    176   /// This routine is inherently unsafe, because it requires the user to
    177   /// ensure that the given type is a canonical type with the correct
    178   // (dynamic) type.
    179   static CanQual<T> CreateUnsafe(QualType Other);
    180 
    181   void dump() const { Stored.dump(); }
    182 
    183   void Profile(llvm::FoldingSetNodeID &ID) const {
    184     ID.AddPointer(getAsOpaquePtr());
    185   }
    186 };
    187 
    188 template<typename T, typename U>
    189 inline bool operator==(CanQual<T> x, CanQual<U> y) {
    190   return x.getAsOpaquePtr() == y.getAsOpaquePtr();
    191 }
    192 
    193 template<typename T, typename U>
    194 inline bool operator!=(CanQual<T> x, CanQual<U> y) {
    195   return x.getAsOpaquePtr() != y.getAsOpaquePtr();
    196 }
    197 
    198 /// \brief Represents a canonical, potentially-qualified type.
    199 typedef CanQual<Type> CanQualType;
    200 
    201 inline CanQualType Type::getCanonicalTypeUnqualified() const {
    202   return CanQualType::CreateUnsafe(getCanonicalTypeInternal());
    203 }
    204 
    205 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
    206                                            CanQualType T) {
    207   DB << static_cast<QualType>(T);
    208   return DB;
    209 }
    210 
    211 //----------------------------------------------------------------------------//
    212 // Internal proxy classes used by canonical types
    213 //----------------------------------------------------------------------------//
    214 
    215 #define LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(Accessor)                    \
    216 CanQualType Accessor() const {                                           \
    217 return CanQualType::CreateUnsafe(this->getTypePtr()->Accessor());      \
    218 }
    219 
    220 #define LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type, Accessor)             \
    221 Type Accessor() const { return this->getTypePtr()->Accessor(); }
    222 
    223 /// \brief Base class of all canonical proxy types, which is responsible for
    224 /// storing the underlying canonical type and providing basic conversions.
    225 template<typename T>
    226 class CanProxyBase {
    227 protected:
    228   CanQual<T> Stored;
    229 
    230 public:
    231   /// \brief Retrieve the pointer to the underlying Type
    232   const T *getTypePtr() const { return Stored.getTypePtr(); }
    233 
    234   /// \brief Implicit conversion to the underlying pointer.
    235   ///
    236   /// Also provides the ability to use canonical type proxies in a Boolean
    237   // context,e.g.,
    238   /// @code
    239   ///   if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) { ... }
    240   /// @endcode
    241   operator const T*() const { return this->Stored.getTypePtrOrNull(); }
    242 
    243   /// \brief Try to convert the given canonical type to a specific structural
    244   /// type.
    245   template<typename U> CanProxy<U> getAs() const {
    246     return this->Stored.template getAs<U>();
    247   }
    248 
    249   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type::TypeClass, getTypeClass)
    250 
    251   // Type predicates
    252   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjectType)
    253   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteType)
    254   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteOrObjectType)
    255   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariablyModifiedType)
    256   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegerType)
    257   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isEnumeralType)
    258   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBooleanType)
    259   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isCharType)
    260   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isWideCharType)
    261   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralType)
    262   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralOrEnumerationType)
    263   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealFloatingType)
    264   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexType)
    265   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyComplexType)
    266   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFloatingType)
    267   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealType)
    268   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArithmeticType)
    269   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidType)
    270   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDerivedType)
    271   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isScalarType)
    272   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAggregateType)
    273   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyPointerType)
    274   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidPointerType)
    275   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFunctionPointerType)
    276   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isMemberFunctionPointerType)
    277   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isClassType)
    278   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureType)
    279   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isInterfaceType)
    280   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureOrClassType)
    281   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnionType)
    282   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexIntegerType)
    283   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isNullPtrType)
    284   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDependentType)
    285   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isOverloadableType)
    286   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArrayType)
    287   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasPointerRepresentation)
    288   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasObjCPointerRepresentation)
    289   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasIntegerRepresentation)
    290   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasSignedIntegerRepresentation)
    291   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasUnsignedIntegerRepresentation)
    292   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasFloatingRepresentation)
    293   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isPromotableIntegerType)
    294   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerType)
    295   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerType)
    296   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerOrEnumerationType)
    297   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerOrEnumerationType)
    298   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isConstantSizeType)
    299   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSpecifierType)
    300   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(CXXRecordDecl*, getAsCXXRecordDecl)
    301 
    302   /// \brief Retrieve the proxy-adaptor type.
    303   ///
    304   /// This arrow operator is used when CanProxyAdaptor has been specialized
    305   /// for the given type T. In that case, we reference members of the
    306   /// CanProxyAdaptor specialization. Otherwise, this operator will be hidden
    307   /// by the arrow operator in the primary CanProxyAdaptor template.
    308   const CanProxyAdaptor<T> *operator->() const {
    309     return static_cast<const CanProxyAdaptor<T> *>(this);
    310   }
    311 };
    312 
    313 /// \brief Replacable canonical proxy adaptor class that provides the link
    314 /// between a canonical type and the accessors of the type.
    315 ///
    316 /// The CanProxyAdaptor is a replaceable class template that is instantiated
    317 /// as part of each canonical proxy type. The primary template merely provides
    318 /// redirection to the underlying type (T), e.g., @c PointerType. One can
    319 /// provide specializations of this class template for each underlying type
    320 /// that provide accessors returning canonical types (@c CanQualType) rather
    321 /// than the more typical @c QualType, to propagate the notion of "canonical"
    322 /// through the system.
    323 template<typename T>
    324 struct CanProxyAdaptor : CanProxyBase<T> { };
    325 
    326 /// \brief Canonical proxy type returned when retrieving the members of a
    327 /// canonical type or as the result of the @c CanQual<T>::getAs member
    328 /// function.
    329 ///
    330 /// The CanProxy type mainly exists as a proxy through which operator-> will
    331 /// look to either map down to a raw T* (e.g., PointerType*) or to a proxy
    332 /// type that provides canonical-type access to the fields of the type.
    333 template<typename T>
    334 class CanProxy : public CanProxyAdaptor<T> {
    335 public:
    336   /// \brief Build a NULL proxy.
    337   CanProxy() { }
    338 
    339   /// \brief Build a proxy to the given canonical type.
    340   CanProxy(CanQual<T> Stored) { this->Stored = Stored; }
    341 
    342   /// \brief Implicit conversion to the stored canonical type.
    343   operator CanQual<T>() const { return this->Stored; }
    344 };
    345 
    346 } // end namespace clang
    347 
    348 namespace llvm {
    349 
    350 /// Implement simplify_type for CanQual<T>, so that we can dyn_cast from
    351 /// CanQual<T> to a specific Type class. We're prefer isa/dyn_cast/cast/etc.
    352 /// to return smart pointer (proxies?).
    353 template<typename T>
    354 struct simplify_type<const ::clang::CanQual<T> > {
    355   typedef const T *SimpleType;
    356   static SimpleType getSimplifiedValue(const ::clang::CanQual<T> &Val) {
    357     return Val.getTypePtr();
    358   }
    359 };
    360 template<typename T>
    361 struct simplify_type< ::clang::CanQual<T> >
    362 : public simplify_type<const ::clang::CanQual<T> > {};
    363 
    364 // Teach SmallPtrSet that CanQual<T> is "basically a pointer".
    365 template<typename T>
    366 class PointerLikeTypeTraits<clang::CanQual<T> > {
    367 public:
    368   static inline void *getAsVoidPointer(clang::CanQual<T> P) {
    369     return P.getAsOpaquePtr();
    370   }
    371   static inline clang::CanQual<T> getFromVoidPointer(void *P) {
    372     return clang::CanQual<T>::getFromOpaquePtr(P);
    373   }
    374   // qualifier information is encoded in the low bits.
    375   enum { NumLowBitsAvailable = 0 };
    376 };
    377 
    378 } // end namespace llvm
    379 
    380 namespace clang {
    381 
    382 //----------------------------------------------------------------------------//
    383 // Canonical proxy adaptors for canonical type nodes.
    384 //----------------------------------------------------------------------------//
    385 
    386 /// \brief Iterator adaptor that turns an iterator over canonical QualTypes
    387 /// into an iterator over CanQualTypes.
    388 template<typename InputIterator>
    389 class CanTypeIterator {
    390   InputIterator Iter;
    391 
    392 public:
    393   typedef CanQualType    value_type;
    394   typedef value_type     reference;
    395   typedef CanProxy<Type> pointer;
    396   typedef typename std::iterator_traits<InputIterator>::difference_type
    397     difference_type;
    398   typedef typename std::iterator_traits<InputIterator>::iterator_category
    399     iterator_category;
    400 
    401   CanTypeIterator() : Iter() { }
    402   explicit CanTypeIterator(InputIterator Iter) : Iter(Iter) { }
    403 
    404   // Input iterator
    405   reference operator*() const {
    406     return CanQualType::CreateUnsafe(*Iter);
    407   }
    408 
    409   pointer operator->() const;
    410 
    411   CanTypeIterator &operator++() {
    412     ++Iter;
    413     return *this;
    414   }
    415 
    416   CanTypeIterator operator++(int) {
    417     CanTypeIterator Tmp(*this);
    418     ++Iter;
    419     return Tmp;
    420   }
    421 
    422   friend bool operator==(const CanTypeIterator& X, const CanTypeIterator &Y) {
    423     return X.Iter == Y.Iter;
    424   }
    425   friend bool operator!=(const CanTypeIterator& X, const CanTypeIterator &Y) {
    426     return X.Iter != Y.Iter;
    427   }
    428 
    429   // Bidirectional iterator
    430   CanTypeIterator &operator--() {
    431     --Iter;
    432     return *this;
    433   }
    434 
    435   CanTypeIterator operator--(int) {
    436     CanTypeIterator Tmp(*this);
    437     --Iter;
    438     return Tmp;
    439   }
    440 
    441   // Random access iterator
    442   reference operator[](difference_type n) const {
    443     return CanQualType::CreateUnsafe(Iter[n]);
    444   }
    445 
    446   CanTypeIterator &operator+=(difference_type n) {
    447     Iter += n;
    448     return *this;
    449   }
    450 
    451   CanTypeIterator &operator-=(difference_type n) {
    452     Iter -= n;
    453     return *this;
    454   }
    455 
    456   friend CanTypeIterator operator+(CanTypeIterator X, difference_type n) {
    457     X += n;
    458     return X;
    459   }
    460 
    461   friend CanTypeIterator operator+(difference_type n, CanTypeIterator X) {
    462     X += n;
    463     return X;
    464   }
    465 
    466   friend CanTypeIterator operator-(CanTypeIterator X, difference_type n) {
    467     X -= n;
    468     return X;
    469   }
    470 
    471   friend difference_type operator-(const CanTypeIterator &X,
    472                                    const CanTypeIterator &Y) {
    473     return X - Y;
    474   }
    475 };
    476 
    477 template<>
    478 struct CanProxyAdaptor<ComplexType> : public CanProxyBase<ComplexType> {
    479   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
    480 };
    481 
    482 template<>
    483 struct CanProxyAdaptor<PointerType> : public CanProxyBase<PointerType> {
    484   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    485 };
    486 
    487 template<>
    488 struct CanProxyAdaptor<BlockPointerType>
    489   : public CanProxyBase<BlockPointerType> {
    490   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    491 };
    492 
    493 template<>
    494 struct CanProxyAdaptor<ReferenceType> : public CanProxyBase<ReferenceType> {
    495   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    496 };
    497 
    498 template<>
    499 struct CanProxyAdaptor<LValueReferenceType>
    500   : public CanProxyBase<LValueReferenceType> {
    501   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    502 };
    503 
    504 template<>
    505 struct CanProxyAdaptor<RValueReferenceType>
    506   : public CanProxyBase<RValueReferenceType> {
    507   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    508 };
    509 
    510 template<>
    511 struct CanProxyAdaptor<MemberPointerType>
    512   : public CanProxyBase<MemberPointerType> {
    513   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    514   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Type *, getClass)
    515 };
    516 
    517 // CanProxyAdaptors for arrays are intentionally unimplemented because
    518 // they are not safe.
    519 template<> struct CanProxyAdaptor<ArrayType>;
    520 template<> struct CanProxyAdaptor<ConstantArrayType>;
    521 template<> struct CanProxyAdaptor<IncompleteArrayType>;
    522 template<> struct CanProxyAdaptor<VariableArrayType>;
    523 template<> struct CanProxyAdaptor<DependentSizedArrayType>;
    524 
    525 template<>
    526 struct CanProxyAdaptor<DependentSizedExtVectorType>
    527   : public CanProxyBase<DependentSizedExtVectorType> {
    528   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
    529   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Expr *, getSizeExpr)
    530   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(SourceLocation, getAttributeLoc)
    531 };
    532 
    533 template<>
    534 struct CanProxyAdaptor<VectorType> : public CanProxyBase<VectorType> {
    535   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
    536   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
    537 };
    538 
    539 template<>
    540 struct CanProxyAdaptor<ExtVectorType> : public CanProxyBase<ExtVectorType> {
    541   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
    542   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
    543 };
    544 
    545 template<>
    546 struct CanProxyAdaptor<FunctionType> : public CanProxyBase<FunctionType> {
    547   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getResultType)
    548   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
    549 };
    550 
    551 template<>
    552 struct CanProxyAdaptor<FunctionNoProtoType>
    553   : public CanProxyBase<FunctionNoProtoType> {
    554   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getResultType)
    555   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
    556 };
    557 
    558 template<>
    559 struct CanProxyAdaptor<FunctionProtoType>
    560   : public CanProxyBase<FunctionProtoType> {
    561   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getResultType)
    562   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
    563   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumArgs)
    564   CanQualType getArgType(unsigned i) const {
    565     return CanQualType::CreateUnsafe(this->getTypePtr()->getArgType(i));
    566   }
    567 
    568   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariadic)
    569   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getTypeQuals)
    570 
    571   typedef CanTypeIterator<FunctionProtoType::arg_type_iterator>
    572     arg_type_iterator;
    573 
    574   arg_type_iterator arg_type_begin() const {
    575     return arg_type_iterator(this->getTypePtr()->arg_type_begin());
    576   }
    577 
    578   arg_type_iterator arg_type_end() const {
    579     return arg_type_iterator(this->getTypePtr()->arg_type_end());
    580   }
    581 
    582   // Note: canonical function types never have exception specifications
    583 };
    584 
    585 template<>
    586 struct CanProxyAdaptor<TypeOfType> : public CanProxyBase<TypeOfType> {
    587   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
    588 };
    589 
    590 template<>
    591 struct CanProxyAdaptor<DecltypeType> : public CanProxyBase<DecltypeType> {
    592   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Expr *, getUnderlyingExpr)
    593   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
    594 };
    595 
    596 template <>
    597 struct CanProxyAdaptor<UnaryTransformType>
    598     : public CanProxyBase<UnaryTransformType> {
    599   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
    600   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
    601   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(UnaryTransformType::UTTKind, getUTTKind)
    602 };
    603 
    604 template<>
    605 struct CanProxyAdaptor<TagType> : public CanProxyBase<TagType> {
    606   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TagDecl *, getDecl)
    607   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
    608 };
    609 
    610 template<>
    611 struct CanProxyAdaptor<RecordType> : public CanProxyBase<RecordType> {
    612   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(RecordDecl *, getDecl)
    613   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
    614   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasConstFields)
    615 };
    616 
    617 template<>
    618 struct CanProxyAdaptor<EnumType> : public CanProxyBase<EnumType> {
    619   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(EnumDecl *, getDecl)
    620   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
    621 };
    622 
    623 template<>
    624 struct CanProxyAdaptor<TemplateTypeParmType>
    625   : public CanProxyBase<TemplateTypeParmType> {
    626   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getDepth)
    627   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getIndex)
    628   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isParameterPack)
    629   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TemplateTypeParmDecl *, getDecl)
    630   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(IdentifierInfo *, getIdentifier)
    631 };
    632 
    633 template<>
    634 struct CanProxyAdaptor<ObjCObjectType>
    635   : public CanProxyBase<ObjCObjectType> {
    636   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
    637   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceDecl *,
    638                                       getInterface)
    639   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedId)
    640   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedClass)
    641   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedId)
    642   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClass)
    643 
    644   typedef ObjCObjectPointerType::qual_iterator qual_iterator;
    645   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
    646   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
    647   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
    648   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
    649 };
    650 
    651 template<>
    652 struct CanProxyAdaptor<ObjCObjectPointerType>
    653   : public CanProxyBase<ObjCObjectPointerType> {
    654   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
    655   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceType *,
    656                                       getInterfaceType)
    657   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCIdType)
    658   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCClassType)
    659   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedIdType)
    660   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClassType)
    661 
    662   typedef ObjCObjectPointerType::qual_iterator qual_iterator;
    663   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
    664   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
    665   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
    666   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
    667 };
    668 
    669 //----------------------------------------------------------------------------//
    670 // Method and function definitions
    671 //----------------------------------------------------------------------------//
    672 template<typename T>
    673 inline CanQual<T> CanQual<T>::getUnqualifiedType() const {
    674   return CanQual<T>::CreateUnsafe(Stored.getLocalUnqualifiedType());
    675 }
    676 
    677 template<typename T>
    678 inline CanQual<Type> CanQual<T>::getNonReferenceType() const {
    679   if (CanQual<ReferenceType> RefType = getAs<ReferenceType>())
    680     return RefType->getPointeeType();
    681   else
    682     return *this;
    683 }
    684 
    685 template<typename T>
    686 CanQual<T> CanQual<T>::getFromOpaquePtr(void *Ptr) {
    687   CanQual<T> Result;
    688   Result.Stored = QualType::getFromOpaquePtr(Ptr);
    689   assert((!Result || Result.Stored.getAsOpaquePtr() == (void*)-1 ||
    690           Result.Stored.isCanonical()) && "Type is not canonical!");
    691   return Result;
    692 }
    693 
    694 template<typename T>
    695 CanQual<T> CanQual<T>::CreateUnsafe(QualType Other) {
    696   assert((Other.isNull() || Other.isCanonical()) && "Type is not canonical!");
    697   assert((Other.isNull() || isa<T>(Other.getTypePtr())) &&
    698          "Dynamic type does not meet the static type's requires");
    699   CanQual<T> Result;
    700   Result.Stored = Other;
    701   return Result;
    702 }
    703 
    704 template<typename T>
    705 template<typename U>
    706 CanProxy<U> CanQual<T>::getAs() const {
    707   ArrayType_cannot_be_used_with_getAs<U> at;
    708   (void)at;
    709 
    710   if (Stored.isNull())
    711     return CanProxy<U>();
    712 
    713   if (isa<U>(Stored.getTypePtr()))
    714     return CanQual<U>::CreateUnsafe(Stored);
    715 
    716   return CanProxy<U>();
    717 }
    718 
    719 template<typename T>
    720 template<typename U>
    721 CanProxy<U> CanQual<T>::castAs() const {
    722   ArrayType_cannot_be_used_with_getAs<U> at;
    723   (void)at;
    724 
    725   assert(!Stored.isNull() && isa<U>(Stored.getTypePtr()));
    726   return CanQual<U>::CreateUnsafe(Stored);
    727 }
    728 
    729 template<typename T>
    730 CanProxy<T> CanQual<T>::operator->() const {
    731   return CanProxy<T>(*this);
    732 }
    733 
    734 template<typename InputIterator>
    735 typename CanTypeIterator<InputIterator>::pointer
    736 CanTypeIterator<InputIterator>::operator->() const {
    737   return CanProxy<Type>(*this);
    738 }
    739 
    740 }
    741 
    742 
    743 #endif // LLVM_CLANG_AST_CANONICAL_TYPE_H
    744