1 //===-- tsan_rtl.cc -------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main file (entry points) for the TSan run-time. 13 //===----------------------------------------------------------------------===// 14 15 #include "sanitizer_common/sanitizer_atomic.h" 16 #include "sanitizer_common/sanitizer_common.h" 17 #include "sanitizer_common/sanitizer_libc.h" 18 #include "sanitizer_common/sanitizer_stackdepot.h" 19 #include "sanitizer_common/sanitizer_placement_new.h" 20 #include "sanitizer_common/sanitizer_symbolizer.h" 21 #include "tsan_defs.h" 22 #include "tsan_platform.h" 23 #include "tsan_rtl.h" 24 #include "tsan_mman.h" 25 #include "tsan_suppressions.h" 26 27 volatile int __tsan_resumed = 0; 28 29 extern "C" void __tsan_resume() { 30 __tsan_resumed = 1; 31 } 32 33 namespace __tsan { 34 35 #ifndef TSAN_GO 36 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); 37 #endif 38 static char ctx_placeholder[sizeof(Context)] ALIGNED(64); 39 40 // Can be overriden by a front-end. 41 bool CPP_WEAK OnFinalize(bool failed) { 42 return failed; 43 } 44 45 static Context *ctx; 46 Context *CTX() { 47 return ctx; 48 } 49 50 static char thread_registry_placeholder[sizeof(ThreadRegistry)]; 51 52 static ThreadContextBase *CreateThreadContext(u32 tid) { 53 // Map thread trace when context is created. 54 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event)); 55 void *mem = MmapOrDie(sizeof(ThreadContext), "ThreadContext"); 56 return new(mem) ThreadContext(tid); 57 } 58 59 #ifndef TSAN_GO 60 static const u32 kThreadQuarantineSize = 16; 61 #else 62 static const u32 kThreadQuarantineSize = 64; 63 #endif 64 65 Context::Context() 66 : initialized() 67 , report_mtx(MutexTypeReport, StatMtxReport) 68 , nreported() 69 , nmissed_expected() 70 , thread_registry(new(thread_registry_placeholder) ThreadRegistry( 71 CreateThreadContext, kMaxTid, kThreadQuarantineSize)) 72 , racy_stacks(MBlockRacyStacks) 73 , racy_addresses(MBlockRacyAddresses) 74 , fired_suppressions(MBlockRacyAddresses) { 75 } 76 77 // The objects are allocated in TLS, so one may rely on zero-initialization. 78 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 79 uptr stk_addr, uptr stk_size, 80 uptr tls_addr, uptr tls_size) 81 : fast_state(tid, epoch) 82 // Do not touch these, rely on zero initialization, 83 // they may be accessed before the ctor. 84 // , fast_ignore_reads() 85 // , fast_ignore_writes() 86 // , in_rtl() 87 , shadow_stack_pos(&shadow_stack[0]) 88 , tid(tid) 89 , unique_id(unique_id) 90 , stk_addr(stk_addr) 91 , stk_size(stk_size) 92 , tls_addr(tls_addr) 93 , tls_size(tls_size) { 94 } 95 96 static void MemoryProfileThread(void *arg) { 97 ScopedInRtl in_rtl; 98 fd_t fd = (fd_t)(uptr)arg; 99 Context *ctx = CTX(); 100 for (int i = 0; ; i++) { 101 InternalScopedBuffer<char> buf(4096); 102 uptr n_threads; 103 uptr n_running_threads; 104 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); 105 internal_snprintf(buf.data(), buf.size(), "%d: nthr=%d nlive=%d\n", 106 i, n_threads, n_running_threads); 107 internal_write(fd, buf.data(), internal_strlen(buf.data())); 108 WriteMemoryProfile(buf.data(), buf.size()); 109 internal_write(fd, buf.data(), internal_strlen(buf.data())); 110 SleepForSeconds(1); 111 } 112 } 113 114 static void InitializeMemoryProfile() { 115 if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0) 116 return; 117 InternalScopedBuffer<char> filename(4096); 118 internal_snprintf(filename.data(), filename.size(), "%s.%d", 119 flags()->profile_memory, GetPid()); 120 fd_t fd = OpenFile(filename.data(), true); 121 if (fd == kInvalidFd) { 122 Printf("Failed to open memory profile file '%s'\n", &filename[0]); 123 Die(); 124 } 125 internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd); 126 } 127 128 void DontNeedShadowFor(uptr addr, uptr size) { 129 uptr shadow_beg = MemToShadow(addr); 130 uptr shadow_end = MemToShadow(addr + size); 131 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); 132 } 133 134 static void MemoryFlushThread(void *arg) { 135 ScopedInRtl in_rtl; 136 for (int i = 0; ; i++) { 137 SleepForMillis(flags()->flush_memory_ms); 138 FlushShadowMemory(); 139 } 140 } 141 142 static void InitializeMemoryFlush() { 143 if (flags()->flush_memory_ms == 0) 144 return; 145 if (flags()->flush_memory_ms < 100) 146 flags()->flush_memory_ms = 100; 147 internal_start_thread(&MemoryFlushThread, 0); 148 } 149 150 void MapShadow(uptr addr, uptr size) { 151 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier); 152 } 153 154 void MapThreadTrace(uptr addr, uptr size) { 155 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); 156 CHECK_GE(addr, kTraceMemBegin); 157 CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize); 158 if (addr != (uptr)MmapFixedNoReserve(addr, size)) { 159 Printf("FATAL: ThreadSanitizer can not mmap thread trace\n"); 160 Die(); 161 } 162 } 163 164 void Initialize(ThreadState *thr) { 165 // Thread safe because done before all threads exist. 166 static bool is_initialized = false; 167 if (is_initialized) 168 return; 169 is_initialized = true; 170 SanitizerToolName = "ThreadSanitizer"; 171 // Install tool-specific callbacks in sanitizer_common. 172 SetCheckFailedCallback(TsanCheckFailed); 173 174 ScopedInRtl in_rtl; 175 #ifndef TSAN_GO 176 InitializeAllocator(); 177 #endif 178 InitializeInterceptors(); 179 const char *env = InitializePlatform(); 180 InitializeMutex(); 181 InitializeDynamicAnnotations(); 182 ctx = new(ctx_placeholder) Context; 183 #ifndef TSAN_GO 184 InitializeShadowMemory(); 185 #endif 186 InitializeFlags(&ctx->flags, env); 187 // Setup correct file descriptor for error reports. 188 if (internal_strcmp(flags()->log_path, "stdout") == 0) 189 __sanitizer_set_report_fd(kStdoutFd); 190 else if (internal_strcmp(flags()->log_path, "stderr") == 0) 191 __sanitizer_set_report_fd(kStderrFd); 192 else 193 __sanitizer_set_report_path(flags()->log_path); 194 InitializeSuppressions(); 195 #ifndef TSAN_GO 196 // Initialize external symbolizer before internal threads are started. 197 const char *external_symbolizer = flags()->external_symbolizer_path; 198 if (external_symbolizer != 0 && external_symbolizer[0] != '\0') { 199 if (!InitializeExternalSymbolizer(external_symbolizer)) { 200 Printf("Failed to start external symbolizer: '%s'\n", 201 external_symbolizer); 202 Die(); 203 } 204 } 205 #endif 206 InitializeMemoryProfile(); 207 InitializeMemoryFlush(); 208 209 if (ctx->flags.verbosity) 210 Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n", 211 GetPid()); 212 213 // Initialize thread 0. 214 int tid = ThreadCreate(thr, 0, 0, true); 215 CHECK_EQ(tid, 0); 216 ThreadStart(thr, tid, GetPid()); 217 CHECK_EQ(thr->in_rtl, 1); 218 ctx->initialized = true; 219 220 if (flags()->stop_on_start) { 221 Printf("ThreadSanitizer is suspended at startup (pid %d)." 222 " Call __tsan_resume().\n", 223 GetPid()); 224 while (__tsan_resumed == 0) {} 225 } 226 } 227 228 int Finalize(ThreadState *thr) { 229 ScopedInRtl in_rtl; 230 Context *ctx = __tsan::ctx; 231 bool failed = false; 232 233 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 234 SleepForMillis(flags()->atexit_sleep_ms); 235 236 // Wait for pending reports. 237 ctx->report_mtx.Lock(); 238 ctx->report_mtx.Unlock(); 239 240 #ifndef TSAN_GO 241 if (ctx->flags.verbosity) 242 AllocatorPrintStats(); 243 #endif 244 245 ThreadFinalize(thr); 246 247 if (ctx->nreported) { 248 failed = true; 249 #ifndef TSAN_GO 250 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 251 #else 252 Printf("Found %d data race(s)\n", ctx->nreported); 253 #endif 254 } 255 256 if (ctx->nmissed_expected) { 257 failed = true; 258 Printf("ThreadSanitizer: missed %d expected races\n", 259 ctx->nmissed_expected); 260 } 261 262 failed = OnFinalize(failed); 263 264 StatAggregate(ctx->stat, thr->stat); 265 StatOutput(ctx->stat); 266 return failed ? flags()->exitcode : 0; 267 } 268 269 #ifndef TSAN_GO 270 u32 CurrentStackId(ThreadState *thr, uptr pc) { 271 if (thr->shadow_stack_pos == 0) // May happen during bootstrap. 272 return 0; 273 if (pc) { 274 thr->shadow_stack_pos[0] = pc; 275 thr->shadow_stack_pos++; 276 } 277 u32 id = StackDepotPut(thr->shadow_stack, 278 thr->shadow_stack_pos - thr->shadow_stack); 279 if (pc) 280 thr->shadow_stack_pos--; 281 return id; 282 } 283 #endif 284 285 void TraceSwitch(ThreadState *thr) { 286 thr->nomalloc++; 287 ScopedInRtl in_rtl; 288 Lock l(&thr->trace.mtx); 289 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); 290 TraceHeader *hdr = &thr->trace.headers[trace]; 291 hdr->epoch0 = thr->fast_state.epoch(); 292 hdr->stack0.ObtainCurrent(thr, 0); 293 hdr->mset0 = thr->mset; 294 thr->nomalloc--; 295 } 296 297 uptr TraceTopPC(ThreadState *thr) { 298 Event *events = (Event*)GetThreadTrace(thr->tid); 299 uptr pc = events[thr->fast_state.GetTracePos()]; 300 return pc; 301 } 302 303 uptr TraceSize() { 304 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); 305 } 306 307 uptr TraceParts() { 308 return TraceSize() / kTracePartSize; 309 } 310 311 #ifndef TSAN_GO 312 extern "C" void __tsan_trace_switch() { 313 TraceSwitch(cur_thread()); 314 } 315 316 extern "C" void __tsan_report_race() { 317 ReportRace(cur_thread()); 318 } 319 #endif 320 321 ALWAYS_INLINE 322 static Shadow LoadShadow(u64 *p) { 323 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); 324 return Shadow(raw); 325 } 326 327 ALWAYS_INLINE 328 static void StoreShadow(u64 *sp, u64 s) { 329 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); 330 } 331 332 ALWAYS_INLINE 333 static void StoreIfNotYetStored(u64 *sp, u64 *s) { 334 StoreShadow(sp, *s); 335 *s = 0; 336 } 337 338 static inline void HandleRace(ThreadState *thr, u64 *shadow_mem, 339 Shadow cur, Shadow old) { 340 thr->racy_state[0] = cur.raw(); 341 thr->racy_state[1] = old.raw(); 342 thr->racy_shadow_addr = shadow_mem; 343 #ifndef TSAN_GO 344 HACKY_CALL(__tsan_report_race); 345 #else 346 ReportRace(thr); 347 #endif 348 } 349 350 static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) { 351 return old.epoch() >= thr->fast_synch_epoch; 352 } 353 354 static inline bool HappensBefore(Shadow old, ThreadState *thr) { 355 return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); 356 } 357 358 ALWAYS_INLINE 359 void MemoryAccessImpl(ThreadState *thr, uptr addr, 360 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 361 u64 *shadow_mem, Shadow cur) { 362 StatInc(thr, StatMop); 363 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 364 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 365 366 // This potentially can live in an MMX/SSE scratch register. 367 // The required intrinsics are: 368 // __m128i _mm_move_epi64(__m128i*); 369 // _mm_storel_epi64(u64*, __m128i); 370 u64 store_word = cur.raw(); 371 372 // scan all the shadow values and dispatch to 4 categories: 373 // same, replace, candidate and race (see comments below). 374 // we consider only 3 cases regarding access sizes: 375 // equal, intersect and not intersect. initially I considered 376 // larger and smaller as well, it allowed to replace some 377 // 'candidates' with 'same' or 'replace', but I think 378 // it's just not worth it (performance- and complexity-wise). 379 380 Shadow old(0); 381 if (kShadowCnt == 1) { 382 int idx = 0; 383 #include "tsan_update_shadow_word_inl.h" 384 } else if (kShadowCnt == 2) { 385 int idx = 0; 386 #include "tsan_update_shadow_word_inl.h" 387 idx = 1; 388 #include "tsan_update_shadow_word_inl.h" 389 } else if (kShadowCnt == 4) { 390 int idx = 0; 391 #include "tsan_update_shadow_word_inl.h" 392 idx = 1; 393 #include "tsan_update_shadow_word_inl.h" 394 idx = 2; 395 #include "tsan_update_shadow_word_inl.h" 396 idx = 3; 397 #include "tsan_update_shadow_word_inl.h" 398 } else if (kShadowCnt == 8) { 399 int idx = 0; 400 #include "tsan_update_shadow_word_inl.h" 401 idx = 1; 402 #include "tsan_update_shadow_word_inl.h" 403 idx = 2; 404 #include "tsan_update_shadow_word_inl.h" 405 idx = 3; 406 #include "tsan_update_shadow_word_inl.h" 407 idx = 4; 408 #include "tsan_update_shadow_word_inl.h" 409 idx = 5; 410 #include "tsan_update_shadow_word_inl.h" 411 idx = 6; 412 #include "tsan_update_shadow_word_inl.h" 413 idx = 7; 414 #include "tsan_update_shadow_word_inl.h" 415 } else { 416 CHECK(false); 417 } 418 419 // we did not find any races and had already stored 420 // the current access info, so we are done 421 if (LIKELY(store_word == 0)) 422 return; 423 // choose a random candidate slot and replace it 424 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); 425 StatInc(thr, StatShadowReplace); 426 return; 427 RACE: 428 HandleRace(thr, shadow_mem, cur, old); 429 return; 430 } 431 432 ALWAYS_INLINE 433 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 434 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { 435 u64 *shadow_mem = (u64*)MemToShadow(addr); 436 DPrintf2("#%d: MemoryAccess: @%p %p size=%d" 437 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", 438 (int)thr->fast_state.tid(), (void*)pc, (void*)addr, 439 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, 440 (uptr)shadow_mem[0], (uptr)shadow_mem[1], 441 (uptr)shadow_mem[2], (uptr)shadow_mem[3]); 442 #if TSAN_DEBUG 443 if (!IsAppMem(addr)) { 444 Printf("Access to non app mem %zx\n", addr); 445 DCHECK(IsAppMem(addr)); 446 } 447 if (!IsShadowMem((uptr)shadow_mem)) { 448 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 449 DCHECK(IsShadowMem((uptr)shadow_mem)); 450 } 451 #endif 452 453 FastState fast_state = thr->fast_state; 454 if (fast_state.GetIgnoreBit()) 455 return; 456 fast_state.IncrementEpoch(); 457 thr->fast_state = fast_state; 458 Shadow cur(fast_state); 459 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); 460 cur.SetWrite(kAccessIsWrite); 461 cur.SetAtomic(kIsAtomic); 462 463 // We must not store to the trace if we do not store to the shadow. 464 // That is, this call must be moved somewhere below. 465 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 466 467 MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 468 shadow_mem, cur); 469 } 470 471 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, 472 u64 val) { 473 (void)thr; 474 (void)pc; 475 if (size == 0) 476 return; 477 // FIXME: fix me. 478 uptr offset = addr % kShadowCell; 479 if (offset) { 480 offset = kShadowCell - offset; 481 if (size <= offset) 482 return; 483 addr += offset; 484 size -= offset; 485 } 486 DCHECK_EQ(addr % 8, 0); 487 // If a user passes some insane arguments (memset(0)), 488 // let it just crash as usual. 489 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 490 return; 491 // Don't want to touch lots of shadow memory. 492 // If a program maps 10MB stack, there is no need reset the whole range. 493 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); 494 if (size < 64*1024) { 495 u64 *p = (u64*)MemToShadow(addr); 496 CHECK(IsShadowMem((uptr)p)); 497 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); 498 // FIXME: may overwrite a part outside the region 499 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { 500 p[i++] = val; 501 for (uptr j = 1; j < kShadowCnt; j++) 502 p[i++] = 0; 503 } 504 } else { 505 // The region is big, reset only beginning and end. 506 const uptr kPageSize = 4096; 507 u64 *begin = (u64*)MemToShadow(addr); 508 u64 *end = begin + size / kShadowCell * kShadowCnt; 509 u64 *p = begin; 510 // Set at least first kPageSize/2 to page boundary. 511 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { 512 *p++ = val; 513 for (uptr j = 1; j < kShadowCnt; j++) 514 *p++ = 0; 515 } 516 // Reset middle part. 517 u64 *p1 = p; 518 p = RoundDown(end, kPageSize); 519 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); 520 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); 521 // Set the ending. 522 while (p < end) { 523 *p++ = val; 524 for (uptr j = 1; j < kShadowCnt; j++) 525 *p++ = 0; 526 } 527 } 528 } 529 530 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { 531 MemoryRangeSet(thr, pc, addr, size, 0); 532 } 533 534 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { 535 // Processing more than 1k (4k of shadow) is expensive, 536 // can cause excessive memory consumption (user does not necessary touch 537 // the whole range) and most likely unnecessary. 538 if (size > 1024) 539 size = 1024; 540 CHECK_EQ(thr->is_freeing, false); 541 thr->is_freeing = true; 542 MemoryAccessRange(thr, pc, addr, size, true); 543 thr->is_freeing = false; 544 Shadow s(thr->fast_state); 545 s.ClearIgnoreBit(); 546 s.MarkAsFreed(); 547 s.SetWrite(true); 548 s.SetAddr0AndSizeLog(0, 3); 549 MemoryRangeSet(thr, pc, addr, size, s.raw()); 550 } 551 552 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { 553 Shadow s(thr->fast_state); 554 s.ClearIgnoreBit(); 555 s.SetWrite(true); 556 s.SetAddr0AndSizeLog(0, 3); 557 MemoryRangeSet(thr, pc, addr, size, s.raw()); 558 } 559 560 ALWAYS_INLINE 561 void FuncEntry(ThreadState *thr, uptr pc) { 562 DCHECK_EQ(thr->in_rtl, 0); 563 StatInc(thr, StatFuncEnter); 564 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); 565 thr->fast_state.IncrementEpoch(); 566 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); 567 568 // Shadow stack maintenance can be replaced with 569 // stack unwinding during trace switch (which presumably must be faster). 570 DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]); 571 #ifndef TSAN_GO 572 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); 573 #else 574 if (thr->shadow_stack_pos == thr->shadow_stack_end) { 575 const int sz = thr->shadow_stack_end - thr->shadow_stack; 576 const int newsz = 2 * sz; 577 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, 578 newsz * sizeof(uptr)); 579 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 580 internal_free(thr->shadow_stack); 581 thr->shadow_stack = newstack; 582 thr->shadow_stack_pos = newstack + sz; 583 thr->shadow_stack_end = newstack + newsz; 584 } 585 #endif 586 thr->shadow_stack_pos[0] = pc; 587 thr->shadow_stack_pos++; 588 } 589 590 ALWAYS_INLINE 591 void FuncExit(ThreadState *thr) { 592 DCHECK_EQ(thr->in_rtl, 0); 593 StatInc(thr, StatFuncExit); 594 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); 595 thr->fast_state.IncrementEpoch(); 596 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); 597 598 DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]); 599 #ifndef TSAN_GO 600 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); 601 #endif 602 thr->shadow_stack_pos--; 603 } 604 605 void IgnoreCtl(ThreadState *thr, bool write, bool begin) { 606 DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin); 607 thr->ignore_reads_and_writes += begin ? 1 : -1; 608 CHECK_GE(thr->ignore_reads_and_writes, 0); 609 if (thr->ignore_reads_and_writes) 610 thr->fast_state.SetIgnoreBit(); 611 else 612 thr->fast_state.ClearIgnoreBit(); 613 } 614 615 bool MD5Hash::operator==(const MD5Hash &other) const { 616 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 617 } 618 619 #if TSAN_DEBUG 620 void build_consistency_debug() {} 621 #else 622 void build_consistency_release() {} 623 #endif 624 625 #if TSAN_COLLECT_STATS 626 void build_consistency_stats() {} 627 #else 628 void build_consistency_nostats() {} 629 #endif 630 631 #if TSAN_SHADOW_COUNT == 1 632 void build_consistency_shadow1() {} 633 #elif TSAN_SHADOW_COUNT == 2 634 void build_consistency_shadow2() {} 635 #elif TSAN_SHADOW_COUNT == 4 636 void build_consistency_shadow4() {} 637 #else 638 void build_consistency_shadow8() {} 639 #endif 640 641 } // namespace __tsan 642 643 #ifndef TSAN_GO 644 // Must be included in this file to make sure everything is inlined. 645 #include "tsan_interface_inl.h" 646 #endif 647