Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic IR ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // DataLayout information. These functions cannot go in IR due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringMap.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/Operator.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/FEnv.h"
     33 #include "llvm/Support/GetElementPtrTypeIterator.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Target/TargetLibraryInfo.h"
     36 #include <cerrno>
     37 #include <cmath>
     38 using namespace llvm;
     39 
     40 //===----------------------------------------------------------------------===//
     41 // Constant Folding internal helper functions
     42 //===----------------------------------------------------------------------===//
     43 
     44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
     45 /// DataLayout.  This always returns a non-null constant, but it may be a
     46 /// ConstantExpr if unfoldable.
     47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
     48                              const DataLayout &TD) {
     49   // Catch the obvious splat cases.
     50   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     51     return Constant::getNullValue(DestTy);
     52   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
     53     return Constant::getAllOnesValue(DestTy);
     54 
     55   // Handle a vector->integer cast.
     56   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
     57     VectorType *VTy = dyn_cast<VectorType>(C->getType());
     58     if (VTy == 0)
     59       return ConstantExpr::getBitCast(C, DestTy);
     60 
     61     unsigned NumSrcElts = VTy->getNumElements();
     62     Type *SrcEltTy = VTy->getElementType();
     63 
     64     // If the vector is a vector of floating point, convert it to vector of int
     65     // to simplify things.
     66     if (SrcEltTy->isFloatingPointTy()) {
     67       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     68       Type *SrcIVTy =
     69         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     70       // Ask IR to do the conversion now that #elts line up.
     71       C = ConstantExpr::getBitCast(C, SrcIVTy);
     72     }
     73 
     74     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
     75     if (CDV == 0)
     76       return ConstantExpr::getBitCast(C, DestTy);
     77 
     78     // Now that we know that the input value is a vector of integers, just shift
     79     // and insert them into our result.
     80     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
     81     APInt Result(IT->getBitWidth(), 0);
     82     for (unsigned i = 0; i != NumSrcElts; ++i) {
     83       Result <<= BitShift;
     84       if (TD.isLittleEndian())
     85         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
     86       else
     87         Result |= CDV->getElementAsInteger(i);
     88     }
     89 
     90     return ConstantInt::get(IT, Result);
     91   }
     92 
     93   // The code below only handles casts to vectors currently.
     94   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
     95   if (DestVTy == 0)
     96     return ConstantExpr::getBitCast(C, DestTy);
     97 
     98   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
     99   // vector so the code below can handle it uniformly.
    100   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    101     Constant *Ops = C; // don't take the address of C!
    102     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
    103   }
    104 
    105   // If this is a bitcast from constant vector -> vector, fold it.
    106   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    107     return ConstantExpr::getBitCast(C, DestTy);
    108 
    109   // If the element types match, IR can fold it.
    110   unsigned NumDstElt = DestVTy->getNumElements();
    111   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    112   if (NumDstElt == NumSrcElt)
    113     return ConstantExpr::getBitCast(C, DestTy);
    114 
    115   Type *SrcEltTy = C->getType()->getVectorElementType();
    116   Type *DstEltTy = DestVTy->getElementType();
    117 
    118   // Otherwise, we're changing the number of elements in a vector, which
    119   // requires endianness information to do the right thing.  For example,
    120   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    121   // folds to (little endian):
    122   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    123   // and to (big endian):
    124   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    125 
    126   // First thing is first.  We only want to think about integer here, so if
    127   // we have something in FP form, recast it as integer.
    128   if (DstEltTy->isFloatingPointTy()) {
    129     // Fold to an vector of integers with same size as our FP type.
    130     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    131     Type *DestIVTy =
    132       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    133     // Recursively handle this integer conversion, if possible.
    134     C = FoldBitCast(C, DestIVTy, TD);
    135 
    136     // Finally, IR can handle this now that #elts line up.
    137     return ConstantExpr::getBitCast(C, DestTy);
    138   }
    139 
    140   // Okay, we know the destination is integer, if the input is FP, convert
    141   // it to integer first.
    142   if (SrcEltTy->isFloatingPointTy()) {
    143     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    144     Type *SrcIVTy =
    145       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    146     // Ask IR to do the conversion now that #elts line up.
    147     C = ConstantExpr::getBitCast(C, SrcIVTy);
    148     // If IR wasn't able to fold it, bail out.
    149     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    150         !isa<ConstantDataVector>(C))
    151       return C;
    152   }
    153 
    154   // Now we know that the input and output vectors are both integer vectors
    155   // of the same size, and that their #elements is not the same.  Do the
    156   // conversion here, which depends on whether the input or output has
    157   // more elements.
    158   bool isLittleEndian = TD.isLittleEndian();
    159 
    160   SmallVector<Constant*, 32> Result;
    161   if (NumDstElt < NumSrcElt) {
    162     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    163     Constant *Zero = Constant::getNullValue(DstEltTy);
    164     unsigned Ratio = NumSrcElt/NumDstElt;
    165     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    166     unsigned SrcElt = 0;
    167     for (unsigned i = 0; i != NumDstElt; ++i) {
    168       // Build each element of the result.
    169       Constant *Elt = Zero;
    170       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    171       for (unsigned j = 0; j != Ratio; ++j) {
    172         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    173         if (!Src)  // Reject constantexpr elements.
    174           return ConstantExpr::getBitCast(C, DestTy);
    175 
    176         // Zero extend the element to the right size.
    177         Src = ConstantExpr::getZExt(Src, Elt->getType());
    178 
    179         // Shift it to the right place, depending on endianness.
    180         Src = ConstantExpr::getShl(Src,
    181                                    ConstantInt::get(Src->getType(), ShiftAmt));
    182         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    183 
    184         // Mix it in.
    185         Elt = ConstantExpr::getOr(Elt, Src);
    186       }
    187       Result.push_back(Elt);
    188     }
    189     return ConstantVector::get(Result);
    190   }
    191 
    192   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    193   unsigned Ratio = NumDstElt/NumSrcElt;
    194   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    195 
    196   // Loop over each source value, expanding into multiple results.
    197   for (unsigned i = 0; i != NumSrcElt; ++i) {
    198     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    199     if (!Src)  // Reject constantexpr elements.
    200       return ConstantExpr::getBitCast(C, DestTy);
    201 
    202     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    203     for (unsigned j = 0; j != Ratio; ++j) {
    204       // Shift the piece of the value into the right place, depending on
    205       // endianness.
    206       Constant *Elt = ConstantExpr::getLShr(Src,
    207                                   ConstantInt::get(Src->getType(), ShiftAmt));
    208       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    209 
    210       // Truncate and remember this piece.
    211       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    212     }
    213   }
    214 
    215   return ConstantVector::get(Result);
    216 }
    217 
    218 
    219 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
    220 /// from a global, return the global and the constant.  Because of
    221 /// constantexprs, this function is recursive.
    222 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    223                                        APInt &Offset, const DataLayout &TD) {
    224   // Trivial case, constant is the global.
    225   if ((GV = dyn_cast<GlobalValue>(C))) {
    226     Offset.clearAllBits();
    227     return true;
    228   }
    229 
    230   // Otherwise, if this isn't a constant expr, bail out.
    231   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    232   if (!CE) return false;
    233 
    234   // Look through ptr->int and ptr->ptr casts.
    235   if (CE->getOpcode() == Instruction::PtrToInt ||
    236       CE->getOpcode() == Instruction::BitCast)
    237     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
    238 
    239   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    240   if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
    241     // If the base isn't a global+constant, we aren't either.
    242     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
    243       return false;
    244 
    245     // Otherwise, add any offset that our operands provide.
    246     return GEP->accumulateConstantOffset(TD, Offset);
    247   }
    248 
    249   return false;
    250 }
    251 
    252 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
    253 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
    254 /// pointer to copy results into and BytesLeft is the number of bytes left in
    255 /// the CurPtr buffer.  TD is the target data.
    256 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    257                                unsigned char *CurPtr, unsigned BytesLeft,
    258                                const DataLayout &TD) {
    259   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
    260          "Out of range access");
    261 
    262   // If this element is zero or undefined, we can just return since *CurPtr is
    263   // zero initialized.
    264   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    265     return true;
    266 
    267   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    268     if (CI->getBitWidth() > 64 ||
    269         (CI->getBitWidth() & 7) != 0)
    270       return false;
    271 
    272     uint64_t Val = CI->getZExtValue();
    273     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    274 
    275     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    276       int n = ByteOffset;
    277       if (!TD.isLittleEndian())
    278         n = IntBytes - n - 1;
    279       CurPtr[i] = (unsigned char)(Val >> (n * 8));
    280       ++ByteOffset;
    281     }
    282     return true;
    283   }
    284 
    285   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    286     if (CFP->getType()->isDoubleTy()) {
    287       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
    288       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    289     }
    290     if (CFP->getType()->isFloatTy()){
    291       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
    292       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    293     }
    294     if (CFP->getType()->isHalfTy()){
    295       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
    296       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    297     }
    298     return false;
    299   }
    300 
    301   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    302     const StructLayout *SL = TD.getStructLayout(CS->getType());
    303     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    304     uint64_t CurEltOffset = SL->getElementOffset(Index);
    305     ByteOffset -= CurEltOffset;
    306 
    307     while (1) {
    308       // If the element access is to the element itself and not to tail padding,
    309       // read the bytes from the element.
    310       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
    311 
    312       if (ByteOffset < EltSize &&
    313           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    314                               BytesLeft, TD))
    315         return false;
    316 
    317       ++Index;
    318 
    319       // Check to see if we read from the last struct element, if so we're done.
    320       if (Index == CS->getType()->getNumElements())
    321         return true;
    322 
    323       // If we read all of the bytes we needed from this element we're done.
    324       uint64_t NextEltOffset = SL->getElementOffset(Index);
    325 
    326       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
    327         return true;
    328 
    329       // Move to the next element of the struct.
    330       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
    331       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
    332       ByteOffset = 0;
    333       CurEltOffset = NextEltOffset;
    334     }
    335     // not reached.
    336   }
    337 
    338   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    339       isa<ConstantDataSequential>(C)) {
    340     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
    341     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
    342     uint64_t Index = ByteOffset / EltSize;
    343     uint64_t Offset = ByteOffset - Index * EltSize;
    344     uint64_t NumElts;
    345     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
    346       NumElts = AT->getNumElements();
    347     else
    348       NumElts = cast<VectorType>(C->getType())->getNumElements();
    349 
    350     for (; Index != NumElts; ++Index) {
    351       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    352                               BytesLeft, TD))
    353         return false;
    354 
    355       uint64_t BytesWritten = EltSize - Offset;
    356       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    357       if (BytesWritten >= BytesLeft)
    358         return true;
    359 
    360       Offset = 0;
    361       BytesLeft -= BytesWritten;
    362       CurPtr += BytesWritten;
    363     }
    364     return true;
    365   }
    366 
    367   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    368     if (CE->getOpcode() == Instruction::IntToPtr &&
    369         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
    370       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    371                                 BytesLeft, TD);
    372   }
    373 
    374   // Otherwise, unknown initializer type.
    375   return false;
    376 }
    377 
    378 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    379                                                  const DataLayout &TD) {
    380   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
    381   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    382 
    383   // If this isn't an integer load we can't fold it directly.
    384   if (!IntType) {
    385     // If this is a float/double load, we can try folding it as an int32/64 load
    386     // and then bitcast the result.  This can be useful for union cases.  Note
    387     // that address spaces don't matter here since we're not going to result in
    388     // an actual new load.
    389     Type *MapTy;
    390     if (LoadTy->isHalfTy())
    391       MapTy = Type::getInt16PtrTy(C->getContext());
    392     else if (LoadTy->isFloatTy())
    393       MapTy = Type::getInt32PtrTy(C->getContext());
    394     else if (LoadTy->isDoubleTy())
    395       MapTy = Type::getInt64PtrTy(C->getContext());
    396     else if (LoadTy->isVectorTy()) {
    397       MapTy = IntegerType::get(C->getContext(),
    398                                TD.getTypeAllocSizeInBits(LoadTy));
    399       MapTy = PointerType::getUnqual(MapTy);
    400     } else
    401       return 0;
    402 
    403     C = FoldBitCast(C, MapTy, TD);
    404     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
    405       return FoldBitCast(Res, LoadTy, TD);
    406     return 0;
    407   }
    408 
    409   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    410   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
    411 
    412   GlobalValue *GVal;
    413   APInt Offset(TD.getPointerSizeInBits(), 0);
    414   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    415     return 0;
    416 
    417   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    418   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    419       !GV->getInitializer()->getType()->isSized())
    420     return 0;
    421 
    422   // If we're loading off the beginning of the global, some bytes may be valid,
    423   // but we don't try to handle this.
    424   if (Offset.isNegative()) return 0;
    425 
    426   // If we're not accessing anything in this constant, the result is undefined.
    427   if (Offset.getZExtValue() >=
    428       TD.getTypeAllocSize(GV->getInitializer()->getType()))
    429     return UndefValue::get(IntType);
    430 
    431   unsigned char RawBytes[32] = {0};
    432   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
    433                           BytesLoaded, TD))
    434     return 0;
    435 
    436   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
    437   if (TD.isLittleEndian()) {
    438     ResultVal = RawBytes[BytesLoaded - 1];
    439     for (unsigned i = 1; i != BytesLoaded; ++i) {
    440       ResultVal <<= 8;
    441       ResultVal |= RawBytes[BytesLoaded-1-i];
    442     }
    443   } else {
    444     ResultVal = RawBytes[0];
    445     for (unsigned i = 1; i != BytesLoaded; ++i) {
    446       ResultVal <<= 8;
    447       ResultVal |= RawBytes[i];
    448     }
    449   }
    450 
    451   return ConstantInt::get(IntType->getContext(), ResultVal);
    452 }
    453 
    454 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
    455 /// produce if it is constant and determinable.  If this is not determinable,
    456 /// return null.
    457 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    458                                              const DataLayout *TD) {
    459   // First, try the easy cases:
    460   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    461     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    462       return GV->getInitializer();
    463 
    464   // If the loaded value isn't a constant expr, we can't handle it.
    465   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    466   if (!CE) return 0;
    467 
    468   if (CE->getOpcode() == Instruction::GetElementPtr) {
    469     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
    470       if (GV->isConstant() && GV->hasDefinitiveInitializer())
    471         if (Constant *V =
    472              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    473           return V;
    474   }
    475 
    476   // Instead of loading constant c string, use corresponding integer value
    477   // directly if string length is small enough.
    478   StringRef Str;
    479   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
    480     unsigned StrLen = Str.size();
    481     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    482     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    483     // Replace load with immediate integer if the result is an integer or fp
    484     // value.
    485     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    486         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    487       APInt StrVal(NumBits, 0);
    488       APInt SingleChar(NumBits, 0);
    489       if (TD->isLittleEndian()) {
    490         for (signed i = StrLen-1; i >= 0; i--) {
    491           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    492           StrVal = (StrVal << 8) | SingleChar;
    493         }
    494       } else {
    495         for (unsigned i = 0; i < StrLen; i++) {
    496           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    497           StrVal = (StrVal << 8) | SingleChar;
    498         }
    499         // Append NULL at the end.
    500         SingleChar = 0;
    501         StrVal = (StrVal << 8) | SingleChar;
    502       }
    503 
    504       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    505       if (Ty->isFloatingPointTy())
    506         Res = ConstantExpr::getBitCast(Res, Ty);
    507       return Res;
    508     }
    509   }
    510 
    511   // If this load comes from anywhere in a constant global, and if the global
    512   // is all undef or zero, we know what it loads.
    513   if (GlobalVariable *GV =
    514         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
    515     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    516       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    517       if (GV->getInitializer()->isNullValue())
    518         return Constant::getNullValue(ResTy);
    519       if (isa<UndefValue>(GV->getInitializer()))
    520         return UndefValue::get(ResTy);
    521     }
    522   }
    523 
    524   // Try hard to fold loads from bitcasted strange and non-type-safe things.
    525   if (TD)
    526     return FoldReinterpretLoadFromConstPtr(CE, *TD);
    527   return 0;
    528 }
    529 
    530 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
    531   if (LI->isVolatile()) return 0;
    532 
    533   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    534     return ConstantFoldLoadFromConstPtr(C, TD);
    535 
    536   return 0;
    537 }
    538 
    539 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
    540 /// Attempt to symbolically evaluate the result of a binary operator merging
    541 /// these together.  If target data info is available, it is provided as DL,
    542 /// otherwise DL is null.
    543 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    544                                            Constant *Op1, const DataLayout *DL){
    545   // SROA
    546 
    547   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    548   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    549   // bits.
    550 
    551 
    552   if (Opc == Instruction::And && DL) {
    553     unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType());
    554     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
    555     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
    556     ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
    557     ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
    558     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
    559       // All the bits of Op0 that the 'and' could be masking are already zero.
    560       return Op0;
    561     }
    562     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
    563       // All the bits of Op1 that the 'and' could be masking are already zero.
    564       return Op1;
    565     }
    566 
    567     APInt KnownZero = KnownZero0 | KnownZero1;
    568     APInt KnownOne = KnownOne0 & KnownOne1;
    569     if ((KnownZero | KnownOne).isAllOnesValue()) {
    570       return ConstantInt::get(Op0->getType(), KnownOne);
    571     }
    572   }
    573 
    574   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    575   // constant.  This happens frequently when iterating over a global array.
    576   if (Opc == Instruction::Sub && DL) {
    577     GlobalValue *GV1, *GV2;
    578     unsigned PtrSize = DL->getPointerSizeInBits();
    579     unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
    580     APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
    581 
    582     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
    583       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
    584           GV1 == GV2) {
    585         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    586         // PtrToInt may change the bitwidth so we have convert to the right size
    587         // first.
    588         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
    589                                                 Offs2.zextOrTrunc(OpSize));
    590       }
    591   }
    592 
    593   return 0;
    594 }
    595 
    596 /// CastGEPIndices - If array indices are not pointer-sized integers,
    597 /// explicitly cast them so that they aren't implicitly casted by the
    598 /// getelementptr.
    599 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
    600                                 Type *ResultTy, const DataLayout *TD,
    601                                 const TargetLibraryInfo *TLI) {
    602   if (!TD) return 0;
    603   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
    604 
    605   bool Any = false;
    606   SmallVector<Constant*, 32> NewIdxs;
    607   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    608     if ((i == 1 ||
    609          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
    610                                                         Ops.slice(1, i-1)))) &&
    611         Ops[i]->getType() != IntPtrTy) {
    612       Any = true;
    613       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    614                                                                       true,
    615                                                                       IntPtrTy,
    616                                                                       true),
    617                                               Ops[i], IntPtrTy));
    618     } else
    619       NewIdxs.push_back(Ops[i]);
    620   }
    621   if (!Any) return 0;
    622 
    623   Constant *C =
    624     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
    625   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    626     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
    627       C = Folded;
    628   return C;
    629 }
    630 
    631 /// Strip the pointer casts, but preserve the address space information.
    632 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
    633   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    634   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
    635   Ptr = cast<Constant>(Ptr->stripPointerCasts());
    636   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
    637 
    638   // Preserve the address space number of the pointer.
    639   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    640     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
    641       OldPtrTy->getAddressSpace());
    642     Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
    643   }
    644   return Ptr;
    645 }
    646 
    647 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
    648 /// constant expression, do so.
    649 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
    650                                          Type *ResultTy, const DataLayout *TD,
    651                                          const TargetLibraryInfo *TLI) {
    652   Constant *Ptr = Ops[0];
    653   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
    654       !Ptr->getType()->isPointerTy())
    655     return 0;
    656 
    657   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
    658 
    659   // If this is a constant expr gep that is effectively computing an
    660   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    661   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    662     if (!isa<ConstantInt>(Ops[i])) {
    663 
    664       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    665       // "inttoptr (sub (ptrtoint Ptr), V)"
    666       if (Ops.size() == 2 &&
    667           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
    668         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    669         assert((CE == 0 || CE->getType() == IntPtrTy) &&
    670                "CastGEPIndices didn't canonicalize index types!");
    671         if (CE && CE->getOpcode() == Instruction::Sub &&
    672             CE->getOperand(0)->isNullValue()) {
    673           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    674           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    675           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    676           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    677             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
    678           return Res;
    679         }
    680       }
    681       return 0;
    682     }
    683 
    684   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
    685   APInt Offset =
    686     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
    687                                          makeArrayRef((Value *const*)
    688                                                         Ops.data() + 1,
    689                                                       Ops.size() - 1)));
    690   Ptr = StripPtrCastKeepAS(Ptr);
    691 
    692   // If this is a GEP of a GEP, fold it all into a single GEP.
    693   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    694     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
    695 
    696     // Do not try the incorporate the sub-GEP if some index is not a number.
    697     bool AllConstantInt = true;
    698     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    699       if (!isa<ConstantInt>(NestedOps[i])) {
    700         AllConstantInt = false;
    701         break;
    702       }
    703     if (!AllConstantInt)
    704       break;
    705 
    706     Ptr = cast<Constant>(GEP->getOperand(0));
    707     Offset += APInt(BitWidth,
    708                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
    709     Ptr = StripPtrCastKeepAS(Ptr);
    710   }
    711 
    712   // If the base value for this address is a literal integer value, fold the
    713   // getelementptr to the resulting integer value casted to the pointer type.
    714   APInt BasePtr(BitWidth, 0);
    715   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    716     if (CE->getOpcode() == Instruction::IntToPtr)
    717       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    718         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    719   if (Ptr->isNullValue() || BasePtr != 0) {
    720     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    721     return ConstantExpr::getIntToPtr(C, ResultTy);
    722   }
    723 
    724   // Otherwise form a regular getelementptr. Recompute the indices so that
    725   // we eliminate over-indexing of the notional static type array bounds.
    726   // This makes it easy to determine if the getelementptr is "inbounds".
    727   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    728   Type *Ty = Ptr->getType();
    729   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
    730   SmallVector<Constant*, 32> NewIdxs;
    731   do {
    732     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    733       if (ATy->isPointerTy()) {
    734         // The only pointer indexing we'll do is on the first index of the GEP.
    735         if (!NewIdxs.empty())
    736           break;
    737 
    738         // Only handle pointers to sized types, not pointers to functions.
    739         if (!ATy->getElementType()->isSized())
    740           return 0;
    741       }
    742 
    743       // Determine which element of the array the offset points into.
    744       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
    745       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    746       if (ElemSize == 0)
    747         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    748         // index for this level and proceed to the next level to see if it can
    749         // accommodate the offset.
    750         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    751       else {
    752         // The element size is non-zero divide the offset by the element
    753         // size (rounding down), to compute the index at this level.
    754         APInt NewIdx = Offset.udiv(ElemSize);
    755         Offset -= NewIdx * ElemSize;
    756         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    757       }
    758       Ty = ATy->getElementType();
    759     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    760       // If we end up with an offset that isn't valid for this struct type, we
    761       // can't re-form this GEP in a regular form, so bail out. The pointer
    762       // operand likely went through casts that are necessary to make the GEP
    763       // sensible.
    764       const StructLayout &SL = *TD->getStructLayout(STy);
    765       if (Offset.uge(SL.getSizeInBytes()))
    766         break;
    767 
    768       // Determine which field of the struct the offset points into. The
    769       // getZExtValue is fine as we've already ensured that the offset is
    770       // within the range representable by the StructLayout API.
    771       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    772       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    773                                          ElIdx));
    774       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    775       Ty = STy->getTypeAtIndex(ElIdx);
    776     } else {
    777       // We've reached some non-indexable type.
    778       break;
    779     }
    780   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
    781 
    782   // If we haven't used up the entire offset by descending the static
    783   // type, then the offset is pointing into the middle of an indivisible
    784   // member, so we can't simplify it.
    785   if (Offset != 0)
    786     return 0;
    787 
    788   // Create a GEP.
    789   Constant *C =
    790     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
    791   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
    792          "Computed GetElementPtr has unexpected type!");
    793 
    794   // If we ended up indexing a member with a type that doesn't match
    795   // the type of what the original indices indexed, add a cast.
    796   if (Ty != cast<PointerType>(ResultTy)->getElementType())
    797     C = FoldBitCast(C, ResultTy, *TD);
    798 
    799   return C;
    800 }
    801 
    802 
    803 
    804 //===----------------------------------------------------------------------===//
    805 // Constant Folding public APIs
    806 //===----------------------------------------------------------------------===//
    807 
    808 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
    809 /// If successful, the constant result is returned, if not, null is returned.
    810 /// Note that this fails if not all of the operands are constant.  Otherwise,
    811 /// this function can only fail when attempting to fold instructions like loads
    812 /// and stores, which have no constant expression form.
    813 Constant *llvm::ConstantFoldInstruction(Instruction *I,
    814                                         const DataLayout *TD,
    815                                         const TargetLibraryInfo *TLI) {
    816   // Handle PHI nodes quickly here...
    817   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    818     Constant *CommonValue = 0;
    819 
    820     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    821       Value *Incoming = PN->getIncomingValue(i);
    822       // If the incoming value is undef then skip it.  Note that while we could
    823       // skip the value if it is equal to the phi node itself we choose not to
    824       // because that would break the rule that constant folding only applies if
    825       // all operands are constants.
    826       if (isa<UndefValue>(Incoming))
    827         continue;
    828       // If the incoming value is not a constant, then give up.
    829       Constant *C = dyn_cast<Constant>(Incoming);
    830       if (!C)
    831         return 0;
    832       // Fold the PHI's operands.
    833       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
    834         C = ConstantFoldConstantExpression(NewC, TD, TLI);
    835       // If the incoming value is a different constant to
    836       // the one we saw previously, then give up.
    837       if (CommonValue && C != CommonValue)
    838         return 0;
    839       CommonValue = C;
    840     }
    841 
    842 
    843     // If we reach here, all incoming values are the same constant or undef.
    844     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    845   }
    846 
    847   // Scan the operand list, checking to see if they are all constants, if so,
    848   // hand off to ConstantFoldInstOperands.
    849   SmallVector<Constant*, 8> Ops;
    850   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
    851     Constant *Op = dyn_cast<Constant>(*i);
    852     if (!Op)
    853       return 0;  // All operands not constant!
    854 
    855     // Fold the Instruction's operands.
    856     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
    857       Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
    858 
    859     Ops.push_back(Op);
    860   }
    861 
    862   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    863     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    864                                            TD, TLI);
    865 
    866   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    867     return ConstantFoldLoadInst(LI, TD);
    868 
    869   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
    870     return ConstantExpr::getInsertValue(
    871                                 cast<Constant>(IVI->getAggregateOperand()),
    872                                 cast<Constant>(IVI->getInsertedValueOperand()),
    873                                 IVI->getIndices());
    874 
    875   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
    876     return ConstantExpr::getExtractValue(
    877                                     cast<Constant>(EVI->getAggregateOperand()),
    878                                     EVI->getIndices());
    879 
    880   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
    881 }
    882 
    883 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
    884 /// using the specified DataLayout.  If successful, the constant result is
    885 /// result is returned, if not, null is returned.
    886 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    887                                                const DataLayout *TD,
    888                                                const TargetLibraryInfo *TLI) {
    889   SmallVector<Constant*, 8> Ops;
    890   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
    891        i != e; ++i) {
    892     Constant *NewC = cast<Constant>(*i);
    893     // Recursively fold the ConstantExpr's operands.
    894     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
    895       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
    896     Ops.push_back(NewC);
    897   }
    898 
    899   if (CE->isCompare())
    900     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    901                                            TD, TLI);
    902   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
    903 }
    904 
    905 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
    906 /// specified opcode and operands.  If successful, the constant result is
    907 /// returned, if not, null is returned.  Note that this function can fail when
    908 /// attempting to fold instructions like loads and stores, which have no
    909 /// constant expression form.
    910 ///
    911 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    912 /// information, due to only being passed an opcode and operands. Constant
    913 /// folding using this function strips this information.
    914 ///
    915 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
    916                                          ArrayRef<Constant *> Ops,
    917                                          const DataLayout *TD,
    918                                          const TargetLibraryInfo *TLI) {
    919   // Handle easy binops first.
    920   if (Instruction::isBinaryOp(Opcode)) {
    921     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
    922       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
    923         return C;
    924 
    925     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
    926   }
    927 
    928   switch (Opcode) {
    929   default: return 0;
    930   case Instruction::ICmp:
    931   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
    932   case Instruction::Call:
    933     if (Function *F = dyn_cast<Function>(Ops.back()))
    934       if (canConstantFoldCallTo(F))
    935         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
    936     return 0;
    937   case Instruction::PtrToInt:
    938     // If the input is a inttoptr, eliminate the pair.  This requires knowing
    939     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    940     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
    941       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
    942         Constant *Input = CE->getOperand(0);
    943         unsigned InWidth = Input->getType()->getScalarSizeInBits();
    944         if (TD->getPointerSizeInBits() < InWidth) {
    945           Constant *Mask =
    946             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
    947                                                   TD->getPointerSizeInBits()));
    948           Input = ConstantExpr::getAnd(Input, Mask);
    949         }
    950         // Do a zext or trunc to get to the dest size.
    951         return ConstantExpr::getIntegerCast(Input, DestTy, false);
    952       }
    953     }
    954     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    955   case Instruction::IntToPtr:
    956     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    957     // the int size is >= the ptr size.  This requires knowing the width of a
    958     // pointer, so it can't be done in ConstantExpr::getCast.
    959     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
    960       if (TD &&
    961           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
    962           CE->getOpcode() == Instruction::PtrToInt)
    963         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
    964 
    965     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    966   case Instruction::Trunc:
    967   case Instruction::ZExt:
    968   case Instruction::SExt:
    969   case Instruction::FPTrunc:
    970   case Instruction::FPExt:
    971   case Instruction::UIToFP:
    972   case Instruction::SIToFP:
    973   case Instruction::FPToUI:
    974   case Instruction::FPToSI:
    975       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    976   case Instruction::BitCast:
    977     if (TD)
    978       return FoldBitCast(Ops[0], DestTy, *TD);
    979     return ConstantExpr::getBitCast(Ops[0], DestTy);
    980   case Instruction::Select:
    981     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    982   case Instruction::ExtractElement:
    983     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    984   case Instruction::InsertElement:
    985     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    986   case Instruction::ShuffleVector:
    987     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    988   case Instruction::GetElementPtr:
    989     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
    990       return C;
    991     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
    992       return C;
    993 
    994     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
    995   }
    996 }
    997 
    998 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
    999 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
   1000 /// returns a constant expression of the specified operands.
   1001 ///
   1002 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   1003                                                 Constant *Ops0, Constant *Ops1,
   1004                                                 const DataLayout *TD,
   1005                                                 const TargetLibraryInfo *TLI) {
   1006   // fold: icmp (inttoptr x), null         -> icmp x, 0
   1007   // fold: icmp (ptrtoint x), 0            -> icmp x, null
   1008   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
   1009   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
   1010   //
   1011   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
   1012   // around to know if bit truncation is happening.
   1013   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
   1014     if (TD && Ops1->isNullValue()) {
   1015       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
   1016       if (CE0->getOpcode() == Instruction::IntToPtr) {
   1017         // Convert the integer value to the right size to ensure we get the
   1018         // proper extension or truncation.
   1019         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1020                                                    IntPtrTy, false);
   1021         Constant *Null = Constant::getNullValue(C->getType());
   1022         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
   1023       }
   1024 
   1025       // Only do this transformation if the int is intptrty in size, otherwise
   1026       // there is a truncation or extension that we aren't modeling.
   1027       if (CE0->getOpcode() == Instruction::PtrToInt &&
   1028           CE0->getType() == IntPtrTy) {
   1029         Constant *C = CE0->getOperand(0);
   1030         Constant *Null = Constant::getNullValue(C->getType());
   1031         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
   1032       }
   1033     }
   1034 
   1035     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1036       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
   1037         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
   1038 
   1039         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1040           // Convert the integer value to the right size to ensure we get the
   1041           // proper extension or truncation.
   1042           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1043                                                       IntPtrTy, false);
   1044           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1045                                                       IntPtrTy, false);
   1046           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
   1047         }
   1048 
   1049         // Only do this transformation if the int is intptrty in size, otherwise
   1050         // there is a truncation or extension that we aren't modeling.
   1051         if ((CE0->getOpcode() == Instruction::PtrToInt &&
   1052              CE0->getType() == IntPtrTy &&
   1053              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
   1054           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
   1055                                                  CE1->getOperand(0), TD, TLI);
   1056       }
   1057     }
   1058 
   1059     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1060     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1061     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1062         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1063       Constant *LHS =
   1064         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
   1065                                         TD, TLI);
   1066       Constant *RHS =
   1067         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
   1068                                         TD, TLI);
   1069       unsigned OpC =
   1070         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1071       Constant *Ops[] = { LHS, RHS };
   1072       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
   1073     }
   1074   }
   1075 
   1076   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1077 }
   1078 
   1079 
   1080 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
   1081 /// getelementptr constantexpr, return the constant value being addressed by the
   1082 /// constant expression, or null if something is funny and we can't decide.
   1083 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1084                                                        ConstantExpr *CE) {
   1085   if (!CE->getOperand(1)->isNullValue())
   1086     return 0;  // Do not allow stepping over the value!
   1087 
   1088   // Loop over all of the operands, tracking down which value we are
   1089   // addressing.
   1090   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1091     C = C->getAggregateElement(CE->getOperand(i));
   1092     if (C == 0) return 0;
   1093   }
   1094   return C;
   1095 }
   1096 
   1097 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
   1098 /// indices (with an *implied* zero pointer index that is not in the list),
   1099 /// return the constant value being addressed by a virtual load, or null if
   1100 /// something is funny and we can't decide.
   1101 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1102                                                   ArrayRef<Constant*> Indices) {
   1103   // Loop over all of the operands, tracking down which value we are
   1104   // addressing.
   1105   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1106     C = C->getAggregateElement(Indices[i]);
   1107     if (C == 0) return 0;
   1108   }
   1109   return C;
   1110 }
   1111 
   1112 
   1113 //===----------------------------------------------------------------------===//
   1114 //  Constant Folding for Calls
   1115 //
   1116 
   1117 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
   1118 /// the specified function.
   1119 bool
   1120 llvm::canConstantFoldCallTo(const Function *F) {
   1121   switch (F->getIntrinsicID()) {
   1122   case Intrinsic::fabs:
   1123   case Intrinsic::log:
   1124   case Intrinsic::log2:
   1125   case Intrinsic::log10:
   1126   case Intrinsic::exp:
   1127   case Intrinsic::exp2:
   1128   case Intrinsic::floor:
   1129   case Intrinsic::sqrt:
   1130   case Intrinsic::pow:
   1131   case Intrinsic::powi:
   1132   case Intrinsic::bswap:
   1133   case Intrinsic::ctpop:
   1134   case Intrinsic::ctlz:
   1135   case Intrinsic::cttz:
   1136   case Intrinsic::sadd_with_overflow:
   1137   case Intrinsic::uadd_with_overflow:
   1138   case Intrinsic::ssub_with_overflow:
   1139   case Intrinsic::usub_with_overflow:
   1140   case Intrinsic::smul_with_overflow:
   1141   case Intrinsic::umul_with_overflow:
   1142   case Intrinsic::convert_from_fp16:
   1143   case Intrinsic::convert_to_fp16:
   1144   case Intrinsic::x86_sse_cvtss2si:
   1145   case Intrinsic::x86_sse_cvtss2si64:
   1146   case Intrinsic::x86_sse_cvttss2si:
   1147   case Intrinsic::x86_sse_cvttss2si64:
   1148   case Intrinsic::x86_sse2_cvtsd2si:
   1149   case Intrinsic::x86_sse2_cvtsd2si64:
   1150   case Intrinsic::x86_sse2_cvttsd2si:
   1151   case Intrinsic::x86_sse2_cvttsd2si64:
   1152     return true;
   1153   default:
   1154     return false;
   1155   case 0: break;
   1156   }
   1157 
   1158   if (!F->hasName()) return false;
   1159   StringRef Name = F->getName();
   1160 
   1161   // In these cases, the check of the length is required.  We don't want to
   1162   // return true for a name like "cos\0blah" which strcmp would return equal to
   1163   // "cos", but has length 8.
   1164   switch (Name[0]) {
   1165   default: return false;
   1166   case 'a':
   1167     return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
   1168   case 'c':
   1169     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1170   case 'e':
   1171     return Name == "exp" || Name == "exp2";
   1172   case 'f':
   1173     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1174   case 'l':
   1175     return Name == "log" || Name == "log10";
   1176   case 'p':
   1177     return Name == "pow";
   1178   case 's':
   1179     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1180       Name == "sinf" || Name == "sqrtf";
   1181   case 't':
   1182     return Name == "tan" || Name == "tanh";
   1183   }
   1184 }
   1185 
   1186 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1187                                 Type *Ty) {
   1188   sys::llvm_fenv_clearexcept();
   1189   V = NativeFP(V);
   1190   if (sys::llvm_fenv_testexcept()) {
   1191     sys::llvm_fenv_clearexcept();
   1192     return 0;
   1193   }
   1194 
   1195   if (Ty->isHalfTy()) {
   1196     APFloat APF(V);
   1197     bool unused;
   1198     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
   1199     return ConstantFP::get(Ty->getContext(), APF);
   1200   }
   1201   if (Ty->isFloatTy())
   1202     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1203   if (Ty->isDoubleTy())
   1204     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1205   llvm_unreachable("Can only constant fold half/float/double");
   1206 }
   1207 
   1208 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1209                                       double V, double W, Type *Ty) {
   1210   sys::llvm_fenv_clearexcept();
   1211   V = NativeFP(V, W);
   1212   if (sys::llvm_fenv_testexcept()) {
   1213     sys::llvm_fenv_clearexcept();
   1214     return 0;
   1215   }
   1216 
   1217   if (Ty->isHalfTy()) {
   1218     APFloat APF(V);
   1219     bool unused;
   1220     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
   1221     return ConstantFP::get(Ty->getContext(), APF);
   1222   }
   1223   if (Ty->isFloatTy())
   1224     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1225   if (Ty->isDoubleTy())
   1226     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1227   llvm_unreachable("Can only constant fold half/float/double");
   1228 }
   1229 
   1230 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
   1231 /// conversion of a constant floating point. If roundTowardZero is false, the
   1232 /// default IEEE rounding is used (toward nearest, ties to even). This matches
   1233 /// the behavior of the non-truncating SSE instructions in the default rounding
   1234 /// mode. The desired integer type Ty is used to select how many bits are
   1235 /// available for the result. Returns null if the conversion cannot be
   1236 /// performed, otherwise returns the Constant value resulting from the
   1237 /// conversion.
   1238 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
   1239                                           bool roundTowardZero, Type *Ty) {
   1240   // All of these conversion intrinsics form an integer of at most 64bits.
   1241   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
   1242   assert(ResultWidth <= 64 &&
   1243          "Can only constant fold conversions to 64 and 32 bit ints");
   1244 
   1245   uint64_t UIntVal;
   1246   bool isExact = false;
   1247   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1248                                               : APFloat::rmNearestTiesToEven;
   1249   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1250                                                   /*isSigned=*/true, mode,
   1251                                                   &isExact);
   1252   if (status != APFloat::opOK && status != APFloat::opInexact)
   1253     return 0;
   1254   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1255 }
   1256 
   1257 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
   1258 /// with the specified arguments, returning null if unsuccessful.
   1259 Constant *
   1260 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1261                        const TargetLibraryInfo *TLI) {
   1262   if (!F->hasName()) return 0;
   1263   StringRef Name = F->getName();
   1264 
   1265   Type *Ty = F->getReturnType();
   1266   if (Operands.size() == 1) {
   1267     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1268       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
   1269         APFloat Val(Op->getValueAPF());
   1270 
   1271         bool lost = false;
   1272         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1273 
   1274         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
   1275       }
   1276       if (!TLI)
   1277         return 0;
   1278 
   1279       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1280         return 0;
   1281 
   1282       /// We only fold functions with finite arguments. Folding NaN and inf is
   1283       /// likely to be aborted with an exception anyway, and some host libms
   1284       /// have known errors raising exceptions.
   1285       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1286         return 0;
   1287 
   1288       /// Currently APFloat versions of these functions do not exist, so we use
   1289       /// the host native double versions.  Float versions are not called
   1290       /// directly but for all these it is true (float)(f((double)arg)) ==
   1291       /// f(arg).  Long double not supported yet.
   1292       double V;
   1293       if (Ty->isFloatTy())
   1294         V = Op->getValueAPF().convertToFloat();
   1295       else if (Ty->isDoubleTy())
   1296         V = Op->getValueAPF().convertToDouble();
   1297       else {
   1298         bool unused;
   1299         APFloat APF = Op->getValueAPF();
   1300         APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1301         V = APF.convertToDouble();
   1302       }
   1303 
   1304       switch (F->getIntrinsicID()) {
   1305         default: break;
   1306         case Intrinsic::fabs:
   1307           return ConstantFoldFP(fabs, V, Ty);
   1308 #if HAVE_LOG2
   1309         case Intrinsic::log2:
   1310           return ConstantFoldFP(log2, V, Ty);
   1311 #endif
   1312 #if HAVE_LOG
   1313         case Intrinsic::log:
   1314           return ConstantFoldFP(log, V, Ty);
   1315 #endif
   1316 #if HAVE_LOG10
   1317         case Intrinsic::log10:
   1318           return ConstantFoldFP(log10, V, Ty);
   1319 #endif
   1320 #if HAVE_EXP
   1321         case Intrinsic::exp:
   1322           return ConstantFoldFP(exp, V, Ty);
   1323 #endif
   1324 #if HAVE_EXP2
   1325         case Intrinsic::exp2:
   1326           return ConstantFoldFP(exp2, V, Ty);
   1327 #endif
   1328         case Intrinsic::floor:
   1329           return ConstantFoldFP(floor, V, Ty);
   1330       }
   1331 
   1332       switch (Name[0]) {
   1333       case 'a':
   1334         if (Name == "acos" && TLI->has(LibFunc::acos))
   1335           return ConstantFoldFP(acos, V, Ty);
   1336         else if (Name == "asin" && TLI->has(LibFunc::asin))
   1337           return ConstantFoldFP(asin, V, Ty);
   1338         else if (Name == "atan" && TLI->has(LibFunc::atan))
   1339           return ConstantFoldFP(atan, V, Ty);
   1340         break;
   1341       case 'c':
   1342         if (Name == "ceil" && TLI->has(LibFunc::ceil))
   1343           return ConstantFoldFP(ceil, V, Ty);
   1344         else if (Name == "cos" && TLI->has(LibFunc::cos))
   1345           return ConstantFoldFP(cos, V, Ty);
   1346         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
   1347           return ConstantFoldFP(cosh, V, Ty);
   1348         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
   1349           return ConstantFoldFP(cos, V, Ty);
   1350         break;
   1351       case 'e':
   1352         if (Name == "exp" && TLI->has(LibFunc::exp))
   1353           return ConstantFoldFP(exp, V, Ty);
   1354 
   1355         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
   1356           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1357           // C99 library.
   1358           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1359         }
   1360         break;
   1361       case 'f':
   1362         if (Name == "fabs" && TLI->has(LibFunc::fabs))
   1363           return ConstantFoldFP(fabs, V, Ty);
   1364         else if (Name == "floor" && TLI->has(LibFunc::floor))
   1365           return ConstantFoldFP(floor, V, Ty);
   1366         break;
   1367       case 'l':
   1368         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
   1369           return ConstantFoldFP(log, V, Ty);
   1370         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
   1371           return ConstantFoldFP(log10, V, Ty);
   1372         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
   1373                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
   1374           if (V >= -0.0)
   1375             return ConstantFoldFP(sqrt, V, Ty);
   1376           else // Undefined
   1377             return Constant::getNullValue(Ty);
   1378         }
   1379         break;
   1380       case 's':
   1381         if (Name == "sin" && TLI->has(LibFunc::sin))
   1382           return ConstantFoldFP(sin, V, Ty);
   1383         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
   1384           return ConstantFoldFP(sinh, V, Ty);
   1385         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
   1386           return ConstantFoldFP(sqrt, V, Ty);
   1387         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
   1388           return ConstantFoldFP(sqrt, V, Ty);
   1389         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
   1390           return ConstantFoldFP(sin, V, Ty);
   1391         break;
   1392       case 't':
   1393         if (Name == "tan" && TLI->has(LibFunc::tan))
   1394           return ConstantFoldFP(tan, V, Ty);
   1395         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
   1396           return ConstantFoldFP(tanh, V, Ty);
   1397         break;
   1398       default:
   1399         break;
   1400       }
   1401       return 0;
   1402     }
   1403 
   1404     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1405       switch (F->getIntrinsicID()) {
   1406       case Intrinsic::bswap:
   1407         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
   1408       case Intrinsic::ctpop:
   1409         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1410       case Intrinsic::convert_from_fp16: {
   1411         APFloat Val(APFloat::IEEEhalf, Op->getValue());
   1412 
   1413         bool lost = false;
   1414         APFloat::opStatus status =
   1415           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1416 
   1417         // Conversion is always precise.
   1418         (void)status;
   1419         assert(status == APFloat::opOK && !lost &&
   1420                "Precision lost during fp16 constfolding");
   1421 
   1422         return ConstantFP::get(F->getContext(), Val);
   1423       }
   1424       default:
   1425         return 0;
   1426       }
   1427     }
   1428 
   1429     // Support ConstantVector in case we have an Undef in the top.
   1430     if (isa<ConstantVector>(Operands[0]) ||
   1431         isa<ConstantDataVector>(Operands[0])) {
   1432       Constant *Op = cast<Constant>(Operands[0]);
   1433       switch (F->getIntrinsicID()) {
   1434       default: break;
   1435       case Intrinsic::x86_sse_cvtss2si:
   1436       case Intrinsic::x86_sse_cvtss2si64:
   1437       case Intrinsic::x86_sse2_cvtsd2si:
   1438       case Intrinsic::x86_sse2_cvtsd2si64:
   1439         if (ConstantFP *FPOp =
   1440               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1441           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1442                                           /*roundTowardZero=*/false, Ty);
   1443       case Intrinsic::x86_sse_cvttss2si:
   1444       case Intrinsic::x86_sse_cvttss2si64:
   1445       case Intrinsic::x86_sse2_cvttsd2si:
   1446       case Intrinsic::x86_sse2_cvttsd2si64:
   1447         if (ConstantFP *FPOp =
   1448               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1449           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1450                                           /*roundTowardZero=*/true, Ty);
   1451       }
   1452     }
   1453 
   1454     if (isa<UndefValue>(Operands[0])) {
   1455       if (F->getIntrinsicID() == Intrinsic::bswap)
   1456         return Operands[0];
   1457       return 0;
   1458     }
   1459 
   1460     return 0;
   1461   }
   1462 
   1463   if (Operands.size() == 2) {
   1464     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1465       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1466         return 0;
   1467       double Op1V;
   1468       if (Ty->isFloatTy())
   1469         Op1V = Op1->getValueAPF().convertToFloat();
   1470       else if (Ty->isDoubleTy())
   1471         Op1V = Op1->getValueAPF().convertToDouble();
   1472       else {
   1473         bool unused;
   1474         APFloat APF = Op1->getValueAPF();
   1475         APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1476         Op1V = APF.convertToDouble();
   1477       }
   1478 
   1479       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1480         if (Op2->getType() != Op1->getType())
   1481           return 0;
   1482 
   1483         double Op2V;
   1484         if (Ty->isFloatTy())
   1485           Op2V = Op2->getValueAPF().convertToFloat();
   1486         else if (Ty->isDoubleTy())
   1487           Op2V = Op2->getValueAPF().convertToDouble();
   1488         else {
   1489           bool unused;
   1490           APFloat APF = Op2->getValueAPF();
   1491           APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1492           Op2V = APF.convertToDouble();
   1493         }
   1494 
   1495         if (F->getIntrinsicID() == Intrinsic::pow) {
   1496           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1497         }
   1498         if (!TLI)
   1499           return 0;
   1500         if (Name == "pow" && TLI->has(LibFunc::pow))
   1501           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1502         if (Name == "fmod" && TLI->has(LibFunc::fmod))
   1503           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1504         if (Name == "atan2" && TLI->has(LibFunc::atan2))
   1505           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1506       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1507         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
   1508           return ConstantFP::get(F->getContext(),
   1509                                  APFloat((float)std::pow((float)Op1V,
   1510                                                  (int)Op2C->getZExtValue())));
   1511         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
   1512           return ConstantFP::get(F->getContext(),
   1513                                  APFloat((float)std::pow((float)Op1V,
   1514                                                  (int)Op2C->getZExtValue())));
   1515         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
   1516           return ConstantFP::get(F->getContext(),
   1517                                  APFloat((double)std::pow((double)Op1V,
   1518                                                    (int)Op2C->getZExtValue())));
   1519       }
   1520       return 0;
   1521     }
   1522 
   1523     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1524       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1525         switch (F->getIntrinsicID()) {
   1526         default: break;
   1527         case Intrinsic::sadd_with_overflow:
   1528         case Intrinsic::uadd_with_overflow:
   1529         case Intrinsic::ssub_with_overflow:
   1530         case Intrinsic::usub_with_overflow:
   1531         case Intrinsic::smul_with_overflow:
   1532         case Intrinsic::umul_with_overflow: {
   1533           APInt Res;
   1534           bool Overflow;
   1535           switch (F->getIntrinsicID()) {
   1536           default: llvm_unreachable("Invalid case");
   1537           case Intrinsic::sadd_with_overflow:
   1538             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1539             break;
   1540           case Intrinsic::uadd_with_overflow:
   1541             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1542             break;
   1543           case Intrinsic::ssub_with_overflow:
   1544             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1545             break;
   1546           case Intrinsic::usub_with_overflow:
   1547             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1548             break;
   1549           case Intrinsic::smul_with_overflow:
   1550             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1551             break;
   1552           case Intrinsic::umul_with_overflow:
   1553             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1554             break;
   1555           }
   1556           Constant *Ops[] = {
   1557             ConstantInt::get(F->getContext(), Res),
   1558             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
   1559           };
   1560           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
   1561         }
   1562         case Intrinsic::cttz:
   1563           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
   1564             return UndefValue::get(Ty);
   1565           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1566         case Intrinsic::ctlz:
   1567           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
   1568             return UndefValue::get(Ty);
   1569           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1570         }
   1571       }
   1572 
   1573       return 0;
   1574     }
   1575     return 0;
   1576   }
   1577   return 0;
   1578 }
   1579